Actual source code: fe.c
1: /* Basis Jet Tabulation
3: We would like to tabulate the nodal basis functions and derivatives at a set of points, usually quadrature points. We
4: follow here the derviation in http://www.math.ttu.edu/~kirby/papers/fiat-toms-2004.pdf. The nodal basis $\psi_i$ can
5: be expressed in terms of a prime basis $\phi_i$ which can be stably evaluated. In PETSc, we will use the Legendre basis
6: as a prime basis.
8: \psi_i = \sum_k \alpha_{ki} \phi_k
10: Our nodal basis is defined in terms of the dual basis $n_j$
12: n_j \cdot \psi_i = \delta_{ji}
14: and we may act on the first equation to obtain
16: n_j \cdot \psi_i = \sum_k \alpha_{ki} n_j \cdot \phi_k
17: \delta_{ji} = \sum_k \alpha_{ki} V_{jk}
18: I = V \alpha
20: so the coefficients of the nodal basis in the prime basis are
22: \alpha = V^{-1}
24: We will define the dual basis vectors $n_j$ using a quadrature rule.
26: Right now, we will just use the polynomial spaces P^k. I know some elements use the space of symmetric polynomials
27: (I think Nedelec), but we will neglect this for now. Constraints in the space, e.g. Arnold-Winther elements, can
28: be implemented exactly as in FIAT using functionals $L_j$.
30: I will have to count the degrees correctly for the Legendre product when we are on simplices.
32: We will have three objects:
33: - Space, P: this just need point evaluation I think
34: - Dual Space, P'+K: This looks like a set of functionals that can act on members of P, each n is defined by a Q
35: - FEM: This keeps {P, P', Q}
36: */
37: #include <petsc/private/petscfeimpl.h>
38: #include <petscdmplex.h>
40: PetscBool FEcite = PETSC_FALSE;
41: const char FECitation[] = "@article{kirby2004,\n"
42: " title = {Algorithm 839: FIAT, a New Paradigm for Computing Finite Element Basis Functions},\n"
43: " journal = {ACM Transactions on Mathematical Software},\n"
44: " author = {Robert C. Kirby},\n"
45: " volume = {30},\n"
46: " number = {4},\n"
47: " pages = {502--516},\n"
48: " doi = {10.1145/1039813.1039820},\n"
49: " year = {2004}\n}\n";
51: PetscClassId PETSCFE_CLASSID = 0;
53: PetscLogEvent PETSCFE_SetUp;
55: PetscFunctionList PetscFEList = NULL;
56: PetscBool PetscFERegisterAllCalled = PETSC_FALSE;
58: /*@C
59: PetscFERegister - Adds a new `PetscFEType`
61: Not Collective, No Fortran Support
63: Input Parameters:
64: + sname - The name of a new user-defined creation routine
65: - function - The creation routine
67: Example Usage:
68: .vb
69: PetscFERegister("my_fe", MyPetscFECreate);
70: .ve
72: Then, your PetscFE type can be chosen with the procedural interface via
73: .vb
74: PetscFECreate(MPI_Comm, PetscFE *);
75: PetscFESetType(PetscFE, "my_fe");
76: .ve
77: or at runtime via the option
78: .vb
79: -petscfe_type my_fe
80: .ve
82: Level: advanced
84: Note:
85: `PetscFERegister()` may be called multiple times to add several user-defined `PetscFE`s
87: .seealso: `PetscFE`, `PetscFEType`, `PetscFERegisterAll()`, `PetscFERegisterDestroy()`
88: @*/
89: PetscErrorCode PetscFERegister(const char sname[], PetscErrorCode (*function)(PetscFE))
90: {
91: PetscFunctionBegin;
92: PetscCall(PetscFunctionListAdd(&PetscFEList, sname, function));
93: PetscFunctionReturn(PETSC_SUCCESS);
94: }
96: /*@
97: PetscFESetType - Builds a particular `PetscFE`
99: Collective
101: Input Parameters:
102: + fem - The `PetscFE` object
103: - name - The kind of FEM space
105: Options Database Key:
106: . -petscfe_type <type> - Sets the `PetscFE` type; use -help for a list of available types
108: Level: intermediate
110: .seealso: `PetscFEType`, `PetscFE`, `PetscFEGetType()`, `PetscFECreate()`
111: @*/
112: PetscErrorCode PetscFESetType(PetscFE fem, PetscFEType name)
113: {
114: PetscErrorCode (*r)(PetscFE);
115: PetscBool match;
117: PetscFunctionBegin;
119: PetscCall(PetscObjectTypeCompare((PetscObject)fem, name, &match));
120: if (match) PetscFunctionReturn(PETSC_SUCCESS);
122: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
123: PetscCall(PetscFunctionListFind(PetscFEList, name, &r));
124: PetscCheck(r, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown PetscFE type: %s", name);
126: PetscTryTypeMethod(fem, destroy);
127: fem->ops->destroy = NULL;
129: PetscCall((*r)(fem));
130: PetscCall(PetscObjectChangeTypeName((PetscObject)fem, name));
131: PetscFunctionReturn(PETSC_SUCCESS);
132: }
134: /*@
135: PetscFEGetType - Gets the `PetscFEType` (as a string) from the `PetscFE` object.
137: Not Collective
139: Input Parameter:
140: . fem - The `PetscFE`
142: Output Parameter:
143: . name - The `PetscFEType` name
145: Level: intermediate
147: .seealso: `PetscFEType`, `PetscFE`, `PetscFESetType()`, `PetscFECreate()`
148: @*/
149: PetscErrorCode PetscFEGetType(PetscFE fem, PetscFEType *name)
150: {
151: PetscFunctionBegin;
153: PetscAssertPointer(name, 2);
154: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
155: *name = ((PetscObject)fem)->type_name;
156: PetscFunctionReturn(PETSC_SUCCESS);
157: }
159: /*@
160: PetscFEViewFromOptions - View from a `PetscFE` based on values in the options database
162: Collective
164: Input Parameters:
165: + A - the `PetscFE` object
166: . obj - Optional object that provides the options prefix
167: - name - command line option name
169: Level: intermediate
171: .seealso: `PetscFE`, `PetscFEView()`, `PetscObjectViewFromOptions()`, `PetscFECreate()`
172: @*/
173: PetscErrorCode PetscFEViewFromOptions(PetscFE A, PetscObject obj, const char name[])
174: {
175: PetscFunctionBegin;
177: PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
178: PetscFunctionReturn(PETSC_SUCCESS);
179: }
181: /*@
182: PetscFEView - Views a `PetscFE`
184: Collective
186: Input Parameters:
187: + fem - the `PetscFE` object to view
188: - viewer - the viewer
190: Level: beginner
192: .seealso: `PetscFE`, `PetscViewer`, `PetscFEDestroy()`, `PetscFEViewFromOptions()`
193: @*/
194: PetscErrorCode PetscFEView(PetscFE fem, PetscViewer viewer)
195: {
196: PetscBool iascii;
198: PetscFunctionBegin;
201: if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)fem), &viewer));
202: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)fem, viewer));
203: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
204: PetscTryTypeMethod(fem, view, viewer);
205: PetscFunctionReturn(PETSC_SUCCESS);
206: }
208: /*@
209: PetscFESetFromOptions - sets parameters in a `PetscFE` from the options database
211: Collective
213: Input Parameter:
214: . fem - the `PetscFE` object to set options for
216: Options Database Keys:
217: + -petscfe_num_blocks - the number of cell blocks to integrate concurrently
218: - -petscfe_num_batches - the number of cell batches to integrate serially
220: Level: intermediate
222: .seealso: `PetscFEV`, `PetscFEView()`
223: @*/
224: PetscErrorCode PetscFESetFromOptions(PetscFE fem)
225: {
226: const char *defaultType;
227: char name[256];
228: PetscBool flg;
230: PetscFunctionBegin;
232: if (!((PetscObject)fem)->type_name) {
233: defaultType = PETSCFEBASIC;
234: } else {
235: defaultType = ((PetscObject)fem)->type_name;
236: }
237: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
239: PetscObjectOptionsBegin((PetscObject)fem);
240: PetscCall(PetscOptionsFList("-petscfe_type", "Finite element space", "PetscFESetType", PetscFEList, defaultType, name, 256, &flg));
241: if (flg) {
242: PetscCall(PetscFESetType(fem, name));
243: } else if (!((PetscObject)fem)->type_name) {
244: PetscCall(PetscFESetType(fem, defaultType));
245: }
246: PetscCall(PetscOptionsBoundedInt("-petscfe_num_blocks", "The number of cell blocks to integrate concurrently", "PetscSpaceSetTileSizes", fem->numBlocks, &fem->numBlocks, NULL, 1));
247: PetscCall(PetscOptionsBoundedInt("-petscfe_num_batches", "The number of cell batches to integrate serially", "PetscSpaceSetTileSizes", fem->numBatches, &fem->numBatches, NULL, 1));
248: PetscTryTypeMethod(fem, setfromoptions, PetscOptionsObject);
249: /* process any options handlers added with PetscObjectAddOptionsHandler() */
250: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)fem, PetscOptionsObject));
251: PetscOptionsEnd();
252: PetscCall(PetscFEViewFromOptions(fem, NULL, "-petscfe_view"));
253: PetscFunctionReturn(PETSC_SUCCESS);
254: }
256: /*@
257: PetscFESetUp - Construct data structures for the `PetscFE` after the `PetscFEType` has been set
259: Collective
261: Input Parameter:
262: . fem - the `PetscFE` object to setup
264: Level: intermediate
266: .seealso: `PetscFE`, `PetscFEView()`, `PetscFEDestroy()`
267: @*/
268: PetscErrorCode PetscFESetUp(PetscFE fem)
269: {
270: PetscFunctionBegin;
272: if (fem->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
273: PetscCall(PetscLogEventBegin(PETSCFE_SetUp, fem, 0, 0, 0));
274: fem->setupcalled = PETSC_TRUE;
275: PetscTryTypeMethod(fem, setup);
276: PetscCall(PetscLogEventEnd(PETSCFE_SetUp, fem, 0, 0, 0));
277: PetscFunctionReturn(PETSC_SUCCESS);
278: }
280: /*@
281: PetscFEDestroy - Destroys a `PetscFE` object
283: Collective
285: Input Parameter:
286: . fem - the `PetscFE` object to destroy
288: Level: beginner
290: .seealso: `PetscFE`, `PetscFEView()`
291: @*/
292: PetscErrorCode PetscFEDestroy(PetscFE *fem)
293: {
294: PetscFunctionBegin;
295: if (!*fem) PetscFunctionReturn(PETSC_SUCCESS);
298: if (--((PetscObject)*fem)->refct > 0) {
299: *fem = NULL;
300: PetscFunctionReturn(PETSC_SUCCESS);
301: }
302: ((PetscObject)*fem)->refct = 0;
304: if ((*fem)->subspaces) {
305: PetscInt dim, d;
307: PetscCall(PetscDualSpaceGetDimension((*fem)->dualSpace, &dim));
308: for (d = 0; d < dim; ++d) PetscCall(PetscFEDestroy(&(*fem)->subspaces[d]));
309: }
310: PetscCall(PetscFree((*fem)->subspaces));
311: PetscCall(PetscFree((*fem)->invV));
312: PetscCall(PetscTabulationDestroy(&(*fem)->T));
313: PetscCall(PetscTabulationDestroy(&(*fem)->Tf));
314: PetscCall(PetscTabulationDestroy(&(*fem)->Tc));
315: PetscCall(PetscSpaceDestroy(&(*fem)->basisSpace));
316: PetscCall(PetscDualSpaceDestroy(&(*fem)->dualSpace));
317: PetscCall(PetscQuadratureDestroy(&(*fem)->quadrature));
318: PetscCall(PetscQuadratureDestroy(&(*fem)->faceQuadrature));
319: #ifdef PETSC_HAVE_LIBCEED
320: PetscCallCEED(CeedBasisDestroy(&(*fem)->ceedBasis));
321: PetscCallCEED(CeedDestroy(&(*fem)->ceed));
322: #endif
324: PetscTryTypeMethod(*fem, destroy);
325: PetscCall(PetscHeaderDestroy(fem));
326: PetscFunctionReturn(PETSC_SUCCESS);
327: }
329: /*@
330: PetscFECreate - Creates an empty `PetscFE` object. The type can then be set with `PetscFESetType()`.
332: Collective
334: Input Parameter:
335: . comm - The communicator for the `PetscFE` object
337: Output Parameter:
338: . fem - The `PetscFE` object
340: Level: beginner
342: .seealso: `PetscFE`, `PetscFEType`, `PetscFESetType()`, `PetscFECreateDefault()`, `PETSCFEGALERKIN`
343: @*/
344: PetscErrorCode PetscFECreate(MPI_Comm comm, PetscFE *fem)
345: {
346: PetscFE f;
348: PetscFunctionBegin;
349: PetscAssertPointer(fem, 2);
350: PetscCall(PetscCitationsRegister(FECitation, &FEcite));
351: PetscCall(PetscFEInitializePackage());
353: PetscCall(PetscHeaderCreate(f, PETSCFE_CLASSID, "PetscFE", "Finite Element", "PetscFE", comm, PetscFEDestroy, PetscFEView));
355: f->basisSpace = NULL;
356: f->dualSpace = NULL;
357: f->numComponents = 1;
358: f->subspaces = NULL;
359: f->invV = NULL;
360: f->T = NULL;
361: f->Tf = NULL;
362: f->Tc = NULL;
363: PetscCall(PetscArrayzero(&f->quadrature, 1));
364: PetscCall(PetscArrayzero(&f->faceQuadrature, 1));
365: f->blockSize = 0;
366: f->numBlocks = 1;
367: f->batchSize = 0;
368: f->numBatches = 1;
370: *fem = f;
371: PetscFunctionReturn(PETSC_SUCCESS);
372: }
374: /*@
375: PetscFEGetSpatialDimension - Returns the spatial dimension of the element
377: Not Collective
379: Input Parameter:
380: . fem - The `PetscFE` object
382: Output Parameter:
383: . dim - The spatial dimension
385: Level: intermediate
387: .seealso: `PetscFE`, `PetscFECreate()`
388: @*/
389: PetscErrorCode PetscFEGetSpatialDimension(PetscFE fem, PetscInt *dim)
390: {
391: DM dm;
393: PetscFunctionBegin;
395: PetscAssertPointer(dim, 2);
396: PetscCall(PetscDualSpaceGetDM(fem->dualSpace, &dm));
397: PetscCall(DMGetDimension(dm, dim));
398: PetscFunctionReturn(PETSC_SUCCESS);
399: }
401: /*@
402: PetscFESetNumComponents - Sets the number of field components in the element
404: Not Collective
406: Input Parameters:
407: + fem - The `PetscFE` object
408: - comp - The number of field components
410: Level: intermediate
412: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetSpatialDimension()`, `PetscFEGetNumComponents()`
413: @*/
414: PetscErrorCode PetscFESetNumComponents(PetscFE fem, PetscInt comp)
415: {
416: PetscFunctionBegin;
418: fem->numComponents = comp;
419: PetscFunctionReturn(PETSC_SUCCESS);
420: }
422: /*@
423: PetscFEGetNumComponents - Returns the number of components in the element
425: Not Collective
427: Input Parameter:
428: . fem - The `PetscFE` object
430: Output Parameter:
431: . comp - The number of field components
433: Level: intermediate
435: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetSpatialDimension()`
436: @*/
437: PetscErrorCode PetscFEGetNumComponents(PetscFE fem, PetscInt *comp)
438: {
439: PetscFunctionBegin;
441: PetscAssertPointer(comp, 2);
442: *comp = fem->numComponents;
443: PetscFunctionReturn(PETSC_SUCCESS);
444: }
446: /*@
447: PetscFESetTileSizes - Sets the tile sizes for evaluation
449: Not Collective
451: Input Parameters:
452: + fem - The `PetscFE` object
453: . blockSize - The number of elements in a block
454: . numBlocks - The number of blocks in a batch
455: . batchSize - The number of elements in a batch
456: - numBatches - The number of batches in a chunk
458: Level: intermediate
460: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetTileSizes()`
461: @*/
462: PetscErrorCode PetscFESetTileSizes(PetscFE fem, PetscInt blockSize, PetscInt numBlocks, PetscInt batchSize, PetscInt numBatches)
463: {
464: PetscFunctionBegin;
466: fem->blockSize = blockSize;
467: fem->numBlocks = numBlocks;
468: fem->batchSize = batchSize;
469: fem->numBatches = numBatches;
470: PetscFunctionReturn(PETSC_SUCCESS);
471: }
473: /*@
474: PetscFEGetTileSizes - Returns the tile sizes for evaluation
476: Not Collective
478: Input Parameter:
479: . fem - The `PetscFE` object
481: Output Parameters:
482: + blockSize - The number of elements in a block
483: . numBlocks - The number of blocks in a batch
484: . batchSize - The number of elements in a batch
485: - numBatches - The number of batches in a chunk
487: Level: intermediate
489: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFESetTileSizes()`
490: @*/
491: PetscErrorCode PetscFEGetTileSizes(PetscFE fem, PetscInt *blockSize, PetscInt *numBlocks, PetscInt *batchSize, PetscInt *numBatches)
492: {
493: PetscFunctionBegin;
495: if (blockSize) PetscAssertPointer(blockSize, 2);
496: if (numBlocks) PetscAssertPointer(numBlocks, 3);
497: if (batchSize) PetscAssertPointer(batchSize, 4);
498: if (numBatches) PetscAssertPointer(numBatches, 5);
499: if (blockSize) *blockSize = fem->blockSize;
500: if (numBlocks) *numBlocks = fem->numBlocks;
501: if (batchSize) *batchSize = fem->batchSize;
502: if (numBatches) *numBatches = fem->numBatches;
503: PetscFunctionReturn(PETSC_SUCCESS);
504: }
506: /*@
507: PetscFEGetBasisSpace - Returns the `PetscSpace` used for the approximation of the solution for the `PetscFE`
509: Not Collective
511: Input Parameter:
512: . fem - The `PetscFE` object
514: Output Parameter:
515: . sp - The `PetscSpace` object
517: Level: intermediate
519: .seealso: `PetscFE`, `PetscSpace`, `PetscFECreate()`
520: @*/
521: PetscErrorCode PetscFEGetBasisSpace(PetscFE fem, PetscSpace *sp)
522: {
523: PetscFunctionBegin;
525: PetscAssertPointer(sp, 2);
526: *sp = fem->basisSpace;
527: PetscFunctionReturn(PETSC_SUCCESS);
528: }
530: /*@
531: PetscFESetBasisSpace - Sets the `PetscSpace` used for the approximation of the solution
533: Not Collective
535: Input Parameters:
536: + fem - The `PetscFE` object
537: - sp - The `PetscSpace` object
539: Level: intermediate
541: Developer Notes:
542: There is `PetscFESetBasisSpace()` but the `PetscFESetDualSpace()`, likely the Basis is unneeded in the function name
544: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`, `PetscFESetDualSpace()`
545: @*/
546: PetscErrorCode PetscFESetBasisSpace(PetscFE fem, PetscSpace sp)
547: {
548: PetscFunctionBegin;
551: PetscCall(PetscSpaceDestroy(&fem->basisSpace));
552: fem->basisSpace = sp;
553: PetscCall(PetscObjectReference((PetscObject)fem->basisSpace));
554: PetscFunctionReturn(PETSC_SUCCESS);
555: }
557: /*@
558: PetscFEGetDualSpace - Returns the `PetscDualSpace` used to define the inner product for a `PetscFE`
560: Not Collective
562: Input Parameter:
563: . fem - The `PetscFE` object
565: Output Parameter:
566: . sp - The `PetscDualSpace` object
568: Level: intermediate
570: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`
571: @*/
572: PetscErrorCode PetscFEGetDualSpace(PetscFE fem, PetscDualSpace *sp)
573: {
574: PetscFunctionBegin;
576: PetscAssertPointer(sp, 2);
577: *sp = fem->dualSpace;
578: PetscFunctionReturn(PETSC_SUCCESS);
579: }
581: /*@
582: PetscFESetDualSpace - Sets the `PetscDualSpace` used to define the inner product
584: Not Collective
586: Input Parameters:
587: + fem - The `PetscFE` object
588: - sp - The `PetscDualSpace` object
590: Level: intermediate
592: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`, `PetscFESetBasisSpace()`
593: @*/
594: PetscErrorCode PetscFESetDualSpace(PetscFE fem, PetscDualSpace sp)
595: {
596: PetscFunctionBegin;
599: PetscCall(PetscDualSpaceDestroy(&fem->dualSpace));
600: fem->dualSpace = sp;
601: PetscCall(PetscObjectReference((PetscObject)fem->dualSpace));
602: PetscFunctionReturn(PETSC_SUCCESS);
603: }
605: /*@
606: PetscFEGetQuadrature - Returns the `PetscQuadrature` used to calculate inner products
608: Not Collective
610: Input Parameter:
611: . fem - The `PetscFE` object
613: Output Parameter:
614: . q - The `PetscQuadrature` object
616: Level: intermediate
618: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`
619: @*/
620: PetscErrorCode PetscFEGetQuadrature(PetscFE fem, PetscQuadrature *q)
621: {
622: PetscFunctionBegin;
624: PetscAssertPointer(q, 2);
625: *q = fem->quadrature;
626: PetscFunctionReturn(PETSC_SUCCESS);
627: }
629: /*@
630: PetscFESetQuadrature - Sets the `PetscQuadrature` used to calculate inner products
632: Not Collective
634: Input Parameters:
635: + fem - The `PetscFE` object
636: - q - The `PetscQuadrature` object
638: Level: intermediate
640: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFEGetFaceQuadrature()`
641: @*/
642: PetscErrorCode PetscFESetQuadrature(PetscFE fem, PetscQuadrature q)
643: {
644: PetscInt Nc, qNc;
646: PetscFunctionBegin;
648: if (q == fem->quadrature) PetscFunctionReturn(PETSC_SUCCESS);
649: PetscCall(PetscFEGetNumComponents(fem, &Nc));
650: PetscCall(PetscQuadratureGetNumComponents(q, &qNc));
651: PetscCheck(!(qNc != 1) || !(Nc != qNc), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_SIZ, "FE components %" PetscInt_FMT " != Quadrature components %" PetscInt_FMT " and non-scalar quadrature", Nc, qNc);
652: PetscCall(PetscTabulationDestroy(&fem->T));
653: PetscCall(PetscTabulationDestroy(&fem->Tc));
654: PetscCall(PetscObjectReference((PetscObject)q));
655: PetscCall(PetscQuadratureDestroy(&fem->quadrature));
656: fem->quadrature = q;
657: PetscFunctionReturn(PETSC_SUCCESS);
658: }
660: /*@
661: PetscFEGetFaceQuadrature - Returns the `PetscQuadrature` used to calculate inner products on faces
663: Not Collective
665: Input Parameter:
666: . fem - The `PetscFE` object
668: Output Parameter:
669: . q - The `PetscQuadrature` object
671: Level: intermediate
673: Developer Notes:
674: There is a special face quadrature but not edge, likely this API would benefit from a refactorization
676: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
677: @*/
678: PetscErrorCode PetscFEGetFaceQuadrature(PetscFE fem, PetscQuadrature *q)
679: {
680: PetscFunctionBegin;
682: PetscAssertPointer(q, 2);
683: *q = fem->faceQuadrature;
684: PetscFunctionReturn(PETSC_SUCCESS);
685: }
687: /*@
688: PetscFESetFaceQuadrature - Sets the `PetscQuadrature` used to calculate inner products on faces
690: Not Collective
692: Input Parameters:
693: + fem - The `PetscFE` object
694: - q - The `PetscQuadrature` object
696: Level: intermediate
698: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`
699: @*/
700: PetscErrorCode PetscFESetFaceQuadrature(PetscFE fem, PetscQuadrature q)
701: {
702: PetscInt Nc, qNc;
704: PetscFunctionBegin;
706: if (q == fem->faceQuadrature) PetscFunctionReturn(PETSC_SUCCESS);
707: PetscCall(PetscFEGetNumComponents(fem, &Nc));
708: PetscCall(PetscQuadratureGetNumComponents(q, &qNc));
709: PetscCheck(!(qNc != 1) || !(Nc != qNc), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_SIZ, "FE components %" PetscInt_FMT " != Quadrature components %" PetscInt_FMT " and non-scalar quadrature", Nc, qNc);
710: PetscCall(PetscTabulationDestroy(&fem->Tf));
711: PetscCall(PetscObjectReference((PetscObject)q));
712: PetscCall(PetscQuadratureDestroy(&fem->faceQuadrature));
713: fem->faceQuadrature = q;
714: PetscFunctionReturn(PETSC_SUCCESS);
715: }
717: /*@
718: PetscFECopyQuadrature - Copy both volumetric and surface quadrature to a new `PetscFE`
720: Not Collective
722: Input Parameters:
723: + sfe - The `PetscFE` source for the quadratures
724: - tfe - The `PetscFE` target for the quadratures
726: Level: intermediate
728: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
729: @*/
730: PetscErrorCode PetscFECopyQuadrature(PetscFE sfe, PetscFE tfe)
731: {
732: PetscQuadrature q;
734: PetscFunctionBegin;
737: PetscCall(PetscFEGetQuadrature(sfe, &q));
738: PetscCall(PetscFESetQuadrature(tfe, q));
739: PetscCall(PetscFEGetFaceQuadrature(sfe, &q));
740: PetscCall(PetscFESetFaceQuadrature(tfe, q));
741: PetscFunctionReturn(PETSC_SUCCESS);
742: }
744: /*@C
745: PetscFEGetNumDof - Returns the number of dofs (dual basis vectors) associated to mesh points on the reference cell of a given dimension
747: Not Collective
749: Input Parameter:
750: . fem - The `PetscFE` object
752: Output Parameter:
753: . numDof - Array of length `dim` with the number of dofs in each dimension
755: Level: intermediate
757: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`
758: @*/
759: PetscErrorCode PetscFEGetNumDof(PetscFE fem, const PetscInt *numDof[])
760: {
761: PetscFunctionBegin;
763: PetscAssertPointer(numDof, 2);
764: PetscCall(PetscDualSpaceGetNumDof(fem->dualSpace, numDof));
765: PetscFunctionReturn(PETSC_SUCCESS);
766: }
768: /*@C
769: PetscFEGetCellTabulation - Returns the tabulation of the basis functions at the quadrature points on the reference cell
771: Not Collective
773: Input Parameters:
774: + fem - The `PetscFE` object
775: - k - The highest derivative we need to tabulate, very often 1
777: Output Parameter:
778: . T - The basis function values and derivatives at quadrature points
780: Level: intermediate
782: Note:
783: .vb
784: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
785: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
786: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
787: .ve
789: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
790: @*/
791: PetscErrorCode PetscFEGetCellTabulation(PetscFE fem, PetscInt k, PetscTabulation *T)
792: {
793: PetscInt npoints;
794: const PetscReal *points;
796: PetscFunctionBegin;
798: PetscAssertPointer(T, 3);
799: PetscCall(PetscQuadratureGetData(fem->quadrature, NULL, NULL, &npoints, &points, NULL));
800: if (!fem->T) PetscCall(PetscFECreateTabulation(fem, 1, npoints, points, k, &fem->T));
801: PetscCheck(!fem->T || k <= fem->T->K || (!fem->T->cdim && !fem->T->K), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %" PetscInt_FMT " derivatives, but only tabulated %" PetscInt_FMT, k, fem->T->K);
802: *T = fem->T;
803: PetscFunctionReturn(PETSC_SUCCESS);
804: }
806: /*@C
807: PetscFEGetFaceTabulation - Returns the tabulation of the basis functions at the face quadrature points for each face of the reference cell
809: Not Collective
811: Input Parameters:
812: + fem - The `PetscFE` object
813: - k - The highest derivative we need to tabulate, very often 1
815: Output Parameter:
816: . Tf - The basis function values and derivatives at face quadrature points
818: Level: intermediate
820: Note:
821: .vb
822: T->T[0] = Bf[((f*Nq + q)*pdim + i)*Nc + c] is the value at point f,q for basis function i and component c
823: T->T[1] = Df[(((f*Nq + q)*pdim + i)*Nc + c)*dim + d] is the derivative value at point f,q for basis function i, component c, in direction d
824: T->T[2] = Hf[((((f*Nq + q)*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point f,q for basis function i, component c, in directions d and e
825: .ve
827: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
828: @*/
829: PetscErrorCode PetscFEGetFaceTabulation(PetscFE fem, PetscInt k, PetscTabulation *Tf)
830: {
831: PetscFunctionBegin;
833: PetscAssertPointer(Tf, 3);
834: if (!fem->Tf) {
835: const PetscReal xi0[3] = {-1., -1., -1.};
836: PetscReal v0[3], J[9], detJ;
837: PetscQuadrature fq;
838: PetscDualSpace sp;
839: DM dm;
840: const PetscInt *faces;
841: PetscInt dim, numFaces, f, npoints, q;
842: const PetscReal *points;
843: PetscReal *facePoints;
845: PetscCall(PetscFEGetDualSpace(fem, &sp));
846: PetscCall(PetscDualSpaceGetDM(sp, &dm));
847: PetscCall(DMGetDimension(dm, &dim));
848: PetscCall(DMPlexGetConeSize(dm, 0, &numFaces));
849: PetscCall(DMPlexGetCone(dm, 0, &faces));
850: PetscCall(PetscFEGetFaceQuadrature(fem, &fq));
851: if (fq) {
852: PetscCall(PetscQuadratureGetData(fq, NULL, NULL, &npoints, &points, NULL));
853: PetscCall(PetscMalloc1(numFaces * npoints * dim, &facePoints));
854: for (f = 0; f < numFaces; ++f) {
855: PetscCall(DMPlexComputeCellGeometryFEM(dm, faces[f], NULL, v0, J, NULL, &detJ));
856: for (q = 0; q < npoints; ++q) CoordinatesRefToReal(dim, dim - 1, xi0, v0, J, &points[q * (dim - 1)], &facePoints[(f * npoints + q) * dim]);
857: }
858: PetscCall(PetscFECreateTabulation(fem, numFaces, npoints, facePoints, k, &fem->Tf));
859: PetscCall(PetscFree(facePoints));
860: }
861: }
862: PetscCheck(!fem->Tf || k <= fem->Tf->K, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %" PetscInt_FMT " derivatives, but only tabulated %" PetscInt_FMT, k, fem->Tf->K);
863: *Tf = fem->Tf;
864: PetscFunctionReturn(PETSC_SUCCESS);
865: }
867: /*@C
868: PetscFEGetFaceCentroidTabulation - Returns the tabulation of the basis functions at the face centroid points
870: Not Collective
872: Input Parameter:
873: . fem - The `PetscFE` object
875: Output Parameter:
876: . Tc - The basis function values at face centroid points
878: Level: intermediate
880: Note:
881: .vb
882: T->T[0] = Bf[(f*pdim + i)*Nc + c] is the value at point f for basis function i and component c
883: .ve
885: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFEGetFaceTabulation()`, `PetscFEGetCellTabulation()`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
886: @*/
887: PetscErrorCode PetscFEGetFaceCentroidTabulation(PetscFE fem, PetscTabulation *Tc)
888: {
889: PetscFunctionBegin;
891: PetscAssertPointer(Tc, 2);
892: if (!fem->Tc) {
893: PetscDualSpace sp;
894: DM dm;
895: const PetscInt *cone;
896: PetscReal *centroids;
897: PetscInt dim, numFaces, f;
899: PetscCall(PetscFEGetDualSpace(fem, &sp));
900: PetscCall(PetscDualSpaceGetDM(sp, &dm));
901: PetscCall(DMGetDimension(dm, &dim));
902: PetscCall(DMPlexGetConeSize(dm, 0, &numFaces));
903: PetscCall(DMPlexGetCone(dm, 0, &cone));
904: PetscCall(PetscMalloc1(numFaces * dim, ¢roids));
905: for (f = 0; f < numFaces; ++f) PetscCall(DMPlexComputeCellGeometryFVM(dm, cone[f], NULL, ¢roids[f * dim], NULL));
906: PetscCall(PetscFECreateTabulation(fem, 1, numFaces, centroids, 0, &fem->Tc));
907: PetscCall(PetscFree(centroids));
908: }
909: *Tc = fem->Tc;
910: PetscFunctionReturn(PETSC_SUCCESS);
911: }
913: /*@C
914: PetscFECreateTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
916: Not Collective
918: Input Parameters:
919: + fem - The `PetscFE` object
920: . nrepl - The number of replicas
921: . npoints - The number of tabulation points in a replica
922: . points - The tabulation point coordinates
923: - K - The number of derivatives calculated
925: Output Parameter:
926: . T - The basis function values and derivatives at tabulation points
928: Level: intermediate
930: Note:
931: .vb
932: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
933: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
934: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis
935: T->function i, component c, in directions d and e
936: .ve
938: .seealso: `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscTabulationDestroy()`
939: @*/
940: PetscErrorCode PetscFECreateTabulation(PetscFE fem, PetscInt nrepl, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation *T)
941: {
942: DM dm;
943: PetscDualSpace Q;
944: PetscInt Nb; /* Dimension of FE space P */
945: PetscInt Nc; /* Field components */
946: PetscInt cdim; /* Reference coordinate dimension */
947: PetscInt k;
949: PetscFunctionBegin;
950: if (!npoints || !fem->dualSpace || K < 0) {
951: *T = NULL;
952: PetscFunctionReturn(PETSC_SUCCESS);
953: }
955: PetscAssertPointer(points, 4);
956: PetscAssertPointer(T, 6);
957: PetscCall(PetscFEGetDualSpace(fem, &Q));
958: PetscCall(PetscDualSpaceGetDM(Q, &dm));
959: PetscCall(DMGetDimension(dm, &cdim));
960: PetscCall(PetscDualSpaceGetDimension(Q, &Nb));
961: PetscCall(PetscFEGetNumComponents(fem, &Nc));
962: PetscCall(PetscMalloc1(1, T));
963: (*T)->K = !cdim ? 0 : K;
964: (*T)->Nr = nrepl;
965: (*T)->Np = npoints;
966: (*T)->Nb = Nb;
967: (*T)->Nc = Nc;
968: (*T)->cdim = cdim;
969: PetscCall(PetscMalloc1((*T)->K + 1, &(*T)->T));
970: for (k = 0; k <= (*T)->K; ++k) PetscCall(PetscCalloc1(nrepl * npoints * Nb * Nc * PetscPowInt(cdim, k), &(*T)->T[k]));
971: PetscUseTypeMethod(fem, createtabulation, nrepl * npoints, points, K, *T);
972: PetscFunctionReturn(PETSC_SUCCESS);
973: }
975: /*@C
976: PetscFEComputeTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
978: Not Collective
980: Input Parameters:
981: + fem - The `PetscFE` object
982: . npoints - The number of tabulation points
983: . points - The tabulation point coordinates
984: . K - The number of derivatives calculated
985: - T - An existing tabulation object with enough allocated space
987: Output Parameter:
988: . T - The basis function values and derivatives at tabulation points
990: Level: intermediate
992: Note:
993: .vb
994: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
995: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
996: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
997: .ve
999: .seealso: `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscTabulationDestroy()`
1000: @*/
1001: PetscErrorCode PetscFEComputeTabulation(PetscFE fem, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation T)
1002: {
1003: PetscFunctionBeginHot;
1004: if (!npoints || !fem->dualSpace || K < 0) PetscFunctionReturn(PETSC_SUCCESS);
1006: PetscAssertPointer(points, 3);
1007: PetscAssertPointer(T, 5);
1008: if (PetscDefined(USE_DEBUG)) {
1009: DM dm;
1010: PetscDualSpace Q;
1011: PetscInt Nb; /* Dimension of FE space P */
1012: PetscInt Nc; /* Field components */
1013: PetscInt cdim; /* Reference coordinate dimension */
1015: PetscCall(PetscFEGetDualSpace(fem, &Q));
1016: PetscCall(PetscDualSpaceGetDM(Q, &dm));
1017: PetscCall(DMGetDimension(dm, &cdim));
1018: PetscCall(PetscDualSpaceGetDimension(Q, &Nb));
1019: PetscCall(PetscFEGetNumComponents(fem, &Nc));
1020: PetscCheck(T->K == (!cdim ? 0 : K), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation K %" PetscInt_FMT " must match requested K %" PetscInt_FMT, T->K, !cdim ? 0 : K);
1021: PetscCheck(T->Nb == Nb, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nb %" PetscInt_FMT " must match requested Nb %" PetscInt_FMT, T->Nb, Nb);
1022: PetscCheck(T->Nc == Nc, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nc %" PetscInt_FMT " must match requested Nc %" PetscInt_FMT, T->Nc, Nc);
1023: PetscCheck(T->cdim == cdim, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation cdim %" PetscInt_FMT " must match requested cdim %" PetscInt_FMT, T->cdim, cdim);
1024: }
1025: T->Nr = 1;
1026: T->Np = npoints;
1027: PetscUseTypeMethod(fem, createtabulation, npoints, points, K, T);
1028: PetscFunctionReturn(PETSC_SUCCESS);
1029: }
1031: /*@
1032: PetscTabulationDestroy - Frees memory from the associated tabulation.
1034: Not Collective
1036: Input Parameter:
1037: . T - The tabulation
1039: Level: intermediate
1041: .seealso: `PetscTabulation`, `PetscFECreateTabulation()`, `PetscFEGetCellTabulation()`
1042: @*/
1043: PetscErrorCode PetscTabulationDestroy(PetscTabulation *T)
1044: {
1045: PetscInt k;
1047: PetscFunctionBegin;
1048: PetscAssertPointer(T, 1);
1049: if (!T || !*T) PetscFunctionReturn(PETSC_SUCCESS);
1050: for (k = 0; k <= (*T)->K; ++k) PetscCall(PetscFree((*T)->T[k]));
1051: PetscCall(PetscFree((*T)->T));
1052: PetscCall(PetscFree(*T));
1053: *T = NULL;
1054: PetscFunctionReturn(PETSC_SUCCESS);
1055: }
1057: static PetscErrorCode PetscFECreatePointTraceDefault_Internal(PetscFE fe, PetscInt refPoint, PetscFE *trFE)
1058: {
1059: PetscSpace bsp, bsubsp;
1060: PetscDualSpace dsp, dsubsp;
1061: PetscInt dim, depth, numComp, i, j, coneSize, order;
1062: DM dm;
1063: DMLabel label;
1064: PetscReal *xi, *v, *J, detJ;
1065: const char *name;
1066: PetscQuadrature origin, fullQuad, subQuad;
1068: PetscFunctionBegin;
1069: PetscCall(PetscFEGetBasisSpace(fe, &bsp));
1070: PetscCall(PetscFEGetDualSpace(fe, &dsp));
1071: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
1072: PetscCall(DMGetDimension(dm, &dim));
1073: PetscCall(DMPlexGetDepthLabel(dm, &label));
1074: PetscCall(DMLabelGetValue(label, refPoint, &depth));
1075: PetscCall(PetscCalloc1(depth, &xi));
1076: PetscCall(PetscMalloc1(dim, &v));
1077: PetscCall(PetscMalloc1(dim * dim, &J));
1078: for (i = 0; i < depth; i++) xi[i] = 0.;
1079: PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &origin));
1080: PetscCall(PetscQuadratureSetData(origin, depth, 0, 1, xi, NULL));
1081: PetscCall(DMPlexComputeCellGeometryFEM(dm, refPoint, origin, v, J, NULL, &detJ));
1082: /* CellGeometryFEM computes the expanded Jacobian, we want the true jacobian */
1083: for (i = 1; i < dim; i++) {
1084: for (j = 0; j < depth; j++) J[i * depth + j] = J[i * dim + j];
1085: }
1086: PetscCall(PetscQuadratureDestroy(&origin));
1087: PetscCall(PetscDualSpaceGetPointSubspace(dsp, refPoint, &dsubsp));
1088: PetscCall(PetscSpaceCreateSubspace(bsp, dsubsp, v, J, NULL, NULL, PETSC_OWN_POINTER, &bsubsp));
1089: PetscCall(PetscSpaceSetUp(bsubsp));
1090: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), trFE));
1091: PetscCall(PetscFESetType(*trFE, PETSCFEBASIC));
1092: PetscCall(PetscFEGetNumComponents(fe, &numComp));
1093: PetscCall(PetscFESetNumComponents(*trFE, numComp));
1094: PetscCall(PetscFESetBasisSpace(*trFE, bsubsp));
1095: PetscCall(PetscFESetDualSpace(*trFE, dsubsp));
1096: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
1097: if (name) PetscCall(PetscFESetName(*trFE, name));
1098: PetscCall(PetscFEGetQuadrature(fe, &fullQuad));
1099: PetscCall(PetscQuadratureGetOrder(fullQuad, &order));
1100: PetscCall(DMPlexGetConeSize(dm, refPoint, &coneSize));
1101: if (coneSize == 2 * depth) PetscCall(PetscDTGaussTensorQuadrature(depth, 1, (order + 2) / 2, -1., 1., &subQuad));
1102: else PetscCall(PetscDTSimplexQuadrature(depth, order, PETSCDTSIMPLEXQUAD_DEFAULT, &subQuad));
1103: PetscCall(PetscFESetQuadrature(*trFE, subQuad));
1104: PetscCall(PetscFESetUp(*trFE));
1105: PetscCall(PetscQuadratureDestroy(&subQuad));
1106: PetscCall(PetscSpaceDestroy(&bsubsp));
1107: PetscFunctionReturn(PETSC_SUCCESS);
1108: }
1110: PETSC_EXTERN PetscErrorCode PetscFECreatePointTrace(PetscFE fe, PetscInt refPoint, PetscFE *trFE)
1111: {
1112: PetscFunctionBegin;
1114: PetscAssertPointer(trFE, 3);
1115: if (fe->ops->createpointtrace) PetscUseTypeMethod(fe, createpointtrace, refPoint, trFE);
1116: else PetscCall(PetscFECreatePointTraceDefault_Internal(fe, refPoint, trFE));
1117: PetscFunctionReturn(PETSC_SUCCESS);
1118: }
1120: PetscErrorCode PetscFECreateHeightTrace(PetscFE fe, PetscInt height, PetscFE *trFE)
1121: {
1122: PetscInt hStart, hEnd;
1123: PetscDualSpace dsp;
1124: DM dm;
1126: PetscFunctionBegin;
1128: PetscAssertPointer(trFE, 3);
1129: *trFE = NULL;
1130: PetscCall(PetscFEGetDualSpace(fe, &dsp));
1131: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
1132: PetscCall(DMPlexGetHeightStratum(dm, height, &hStart, &hEnd));
1133: if (hEnd <= hStart) PetscFunctionReturn(PETSC_SUCCESS);
1134: PetscCall(PetscFECreatePointTrace(fe, hStart, trFE));
1135: PetscFunctionReturn(PETSC_SUCCESS);
1136: }
1138: /*@
1139: PetscFEGetDimension - Get the dimension of the finite element space on a cell
1141: Not Collective
1143: Input Parameter:
1144: . fem - The `PetscFE`
1146: Output Parameter:
1147: . dim - The dimension
1149: Level: intermediate
1151: .seealso: `PetscFE`, `PetscFECreate()`, `PetscSpaceGetDimension()`, `PetscDualSpaceGetDimension()`
1152: @*/
1153: PetscErrorCode PetscFEGetDimension(PetscFE fem, PetscInt *dim)
1154: {
1155: PetscFunctionBegin;
1157: PetscAssertPointer(dim, 2);
1158: PetscTryTypeMethod(fem, getdimension, dim);
1159: PetscFunctionReturn(PETSC_SUCCESS);
1160: }
1162: /*@
1163: PetscFEPushforward - Map the reference element function to real space
1165: Input Parameters:
1166: + fe - The `PetscFE`
1167: . fegeom - The cell geometry
1168: . Nv - The number of function values
1169: - vals - The function values
1171: Output Parameter:
1172: . vals - The transformed function values
1174: Level: advanced
1176: Notes:
1177: This just forwards the call onto `PetscDualSpacePushforward()`.
1179: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1181: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscDualSpacePushforward()`
1182: @*/
1183: PetscErrorCode PetscFEPushforward(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1184: {
1185: PetscFunctionBeginHot;
1186: PetscCall(PetscDualSpacePushforward(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1187: PetscFunctionReturn(PETSC_SUCCESS);
1188: }
1190: /*@
1191: PetscFEPushforwardGradient - Map the reference element function gradient to real space
1193: Input Parameters:
1194: + fe - The `PetscFE`
1195: . fegeom - The cell geometry
1196: . Nv - The number of function gradient values
1197: - vals - The function gradient values
1199: Output Parameter:
1200: . vals - The transformed function gradient values
1202: Level: advanced
1204: Notes:
1205: This just forwards the call onto `PetscDualSpacePushforwardGradient()`.
1207: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1209: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscFEPushforward()`, `PetscDualSpacePushforwardGradient()`, `PetscDualSpacePushforward()`
1210: @*/
1211: PetscErrorCode PetscFEPushforwardGradient(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1212: {
1213: PetscFunctionBeginHot;
1214: PetscCall(PetscDualSpacePushforwardGradient(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1215: PetscFunctionReturn(PETSC_SUCCESS);
1216: }
1218: /*@
1219: PetscFEPushforwardHessian - Map the reference element function Hessian to real space
1221: Input Parameters:
1222: + fe - The `PetscFE`
1223: . fegeom - The cell geometry
1224: . Nv - The number of function Hessian values
1225: - vals - The function Hessian values
1227: Output Parameter:
1228: . vals - The transformed function Hessian values
1230: Level: advanced
1232: Notes:
1233: This just forwards the call onto `PetscDualSpacePushforwardHessian()`.
1235: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1237: Developer Notes:
1238: It is unclear why all these one line convenience routines are desirable
1240: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscFEPushforward()`, `PetscDualSpacePushforwardHessian()`, `PetscDualSpacePushforward()`
1241: @*/
1242: PetscErrorCode PetscFEPushforwardHessian(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1243: {
1244: PetscFunctionBeginHot;
1245: PetscCall(PetscDualSpacePushforwardHessian(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1246: PetscFunctionReturn(PETSC_SUCCESS);
1247: }
1249: /*
1250: Purpose: Compute element vector for chunk of elements
1252: Input:
1253: Sizes:
1254: Ne: number of elements
1255: Nf: number of fields
1256: PetscFE
1257: dim: spatial dimension
1258: Nb: number of basis functions
1259: Nc: number of field components
1260: PetscQuadrature
1261: Nq: number of quadrature points
1263: Geometry:
1264: PetscFEGeom[Ne] possibly *Nq
1265: PetscReal v0s[dim]
1266: PetscReal n[dim]
1267: PetscReal jacobians[dim*dim]
1268: PetscReal jacobianInverses[dim*dim]
1269: PetscReal jacobianDeterminants
1270: FEM:
1271: PetscFE
1272: PetscQuadrature
1273: PetscReal quadPoints[Nq*dim]
1274: PetscReal quadWeights[Nq]
1275: PetscReal basis[Nq*Nb*Nc]
1276: PetscReal basisDer[Nq*Nb*Nc*dim]
1277: PetscScalar coefficients[Ne*Nb*Nc]
1278: PetscScalar elemVec[Ne*Nb*Nc]
1280: Problem:
1281: PetscInt f: the active field
1282: f0, f1
1284: Work Space:
1285: PetscFE
1286: PetscScalar f0[Nq*dim];
1287: PetscScalar f1[Nq*dim*dim];
1288: PetscScalar u[Nc];
1289: PetscScalar gradU[Nc*dim];
1290: PetscReal x[dim];
1291: PetscScalar realSpaceDer[dim];
1293: Purpose: Compute element vector for N_cb batches of elements
1295: Input:
1296: Sizes:
1297: N_cb: Number of serial cell batches
1299: Geometry:
1300: PetscReal v0s[Ne*dim]
1301: PetscReal jacobians[Ne*dim*dim] possibly *Nq
1302: PetscReal jacobianInverses[Ne*dim*dim] possibly *Nq
1303: PetscReal jacobianDeterminants[Ne] possibly *Nq
1304: FEM:
1305: static PetscReal quadPoints[Nq*dim]
1306: static PetscReal quadWeights[Nq]
1307: static PetscReal basis[Nq*Nb*Nc]
1308: static PetscReal basisDer[Nq*Nb*Nc*dim]
1309: PetscScalar coefficients[Ne*Nb*Nc]
1310: PetscScalar elemVec[Ne*Nb*Nc]
1312: ex62.c:
1313: PetscErrorCode PetscFEIntegrateResidualBatch(PetscInt Ne, PetscInt numFields, PetscInt field, PetscQuadrature quad[], const PetscScalar coefficients[],
1314: const PetscReal v0s[], const PetscReal jacobians[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[],
1315: void (*f0_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f0[]),
1316: void (*f1_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f1[]), PetscScalar elemVec[])
1318: ex52.c:
1319: PetscErrorCode IntegrateLaplacianBatchCPU(PetscInt Ne, PetscInt Nb, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1320: PetscErrorCode IntegrateElasticityBatchCPU(PetscInt Ne, PetscInt Nb, PetscInt Ncomp, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1322: ex52_integrateElement.cu
1323: __global__ void integrateElementQuadrature(int N_cb, realType *coefficients, realType *jacobianInverses, realType *jacobianDeterminants, realType *elemVec)
1325: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt Nbl, const PetscScalar coefficients[],
1326: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1327: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1329: ex52_integrateElementOpenCL.c:
1330: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt N_bl, const PetscScalar coefficients[],
1331: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1332: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1334: __kernel void integrateElementQuadrature(int N_cb, __global float *coefficients, __global float *jacobianInverses, __global float *jacobianDeterminants, __global float *elemVec)
1335: */
1337: /*@
1338: PetscFEIntegrate - Produce the integral for the given field for a chunk of elements by quadrature integration
1340: Not Collective
1342: Input Parameters:
1343: + prob - The `PetscDS` specifying the discretizations and continuum functions
1344: . field - The field being integrated
1345: . Ne - The number of elements in the chunk
1346: . cgeom - The cell geometry for each cell in the chunk
1347: . coefficients - The array of FEM basis coefficients for the elements
1348: . probAux - The `PetscDS` specifying the auxiliary discretizations
1349: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1351: Output Parameter:
1352: . integral - the integral for this field
1354: Level: intermediate
1356: Developer Notes:
1357: The function name begins with `PetscFE` and yet the first argument is `PetscDS` and it has no `PetscFE` arguments.
1359: .seealso: `PetscFE`, `PetscDS`, `PetscFEIntegrateResidual()`, `PetscFEIntegrateBd()`
1360: @*/
1361: PetscErrorCode PetscFEIntegrate(PetscDS prob, PetscInt field, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1362: {
1363: PetscFE fe;
1365: PetscFunctionBegin;
1367: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
1368: if (fe->ops->integrate) PetscCall((*fe->ops->integrate)(prob, field, Ne, cgeom, coefficients, probAux, coefficientsAux, integral));
1369: PetscFunctionReturn(PETSC_SUCCESS);
1370: }
1372: /*@C
1373: PetscFEIntegrateBd - Produce the integral for the given field for a chunk of elements by quadrature integration
1375: Not Collective
1377: Input Parameters:
1378: + prob - The `PetscDS` specifying the discretizations and continuum functions
1379: . field - The field being integrated
1380: . obj_func - The function to be integrated
1381: . Ne - The number of elements in the chunk
1382: . geom - The face geometry for each face in the chunk
1383: . coefficients - The array of FEM basis coefficients for the elements
1384: . probAux - The `PetscDS` specifying the auxiliary discretizations
1385: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1387: Output Parameter:
1388: . integral - the integral for this field
1390: Level: intermediate
1392: Developer Notes:
1393: The function name begins with `PetscFE` and yet the first argument is `PetscDS` and it has no `PetscFE` arguments.
1395: .seealso: `PetscFE`, `PetscDS`, `PetscFEIntegrateResidual()`, `PetscFEIntegrate()`
1396: @*/
1397: PetscErrorCode PetscFEIntegrateBd(PetscDS prob, PetscInt field, void (*obj_func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscInt Ne, PetscFEGeom *geom, const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1398: {
1399: PetscFE fe;
1401: PetscFunctionBegin;
1403: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
1404: if (fe->ops->integratebd) PetscCall((*fe->ops->integratebd)(prob, field, obj_func, Ne, geom, coefficients, probAux, coefficientsAux, integral));
1405: PetscFunctionReturn(PETSC_SUCCESS);
1406: }
1408: /*@
1409: PetscFEIntegrateResidual - Produce the element residual vector for a chunk of elements by quadrature integration
1411: Not Collective
1413: Input Parameters:
1414: + ds - The `PetscDS` specifying the discretizations and continuum functions
1415: . key - The (label+value, field) being integrated
1416: . Ne - The number of elements in the chunk
1417: . cgeom - The cell geometry for each cell in the chunk
1418: . coefficients - The array of FEM basis coefficients for the elements
1419: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1420: . probAux - The `PetscDS` specifying the auxiliary discretizations
1421: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1422: - t - The time
1424: Output Parameter:
1425: . elemVec - the element residual vectors from each element
1427: Level: intermediate
1429: Note:
1430: .vb
1431: Loop over batch of elements (e):
1432: Loop over quadrature points (q):
1433: Make u_q and gradU_q (loops over fields,Nb,Ncomp) and x_q
1434: Call f_0 and f_1
1435: Loop over element vector entries (f,fc --> i):
1436: elemVec[i] += \psi^{fc}_f(q) f0_{fc}(u, \nabla u) + \nabla\psi^{fc}_f(q) \cdot f1_{fc,df}(u, \nabla u)
1437: .ve
1439: .seealso: `PetscFEIntegrateBdResidual()`
1440: @*/
1441: PetscErrorCode PetscFEIntegrateResidual(PetscDS ds, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1442: {
1443: PetscFE fe;
1445: PetscFunctionBeginHot;
1447: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1448: if (fe->ops->integrateresidual) PetscCall((*fe->ops->integrateresidual)(ds, key, Ne, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1449: PetscFunctionReturn(PETSC_SUCCESS);
1450: }
1452: /*@
1453: PetscFEIntegrateBdResidual - Produce the element residual vector for a chunk of elements by quadrature integration over a boundary
1455: Not Collective
1457: Input Parameters:
1458: + ds - The `PetscDS` specifying the discretizations and continuum functions
1459: . wf - The PetscWeakForm object holding the pointwise functions
1460: . key - The (label+value, field) being integrated
1461: . Ne - The number of elements in the chunk
1462: . fgeom - The face geometry for each cell in the chunk
1463: . coefficients - The array of FEM basis coefficients for the elements
1464: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1465: . probAux - The `PetscDS` specifying the auxiliary discretizations
1466: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1467: - t - The time
1469: Output Parameter:
1470: . elemVec - the element residual vectors from each element
1472: Level: intermediate
1474: .seealso: `PetscFEIntegrateResidual()`
1475: @*/
1476: PetscErrorCode PetscFEIntegrateBdResidual(PetscDS ds, PetscWeakForm wf, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1477: {
1478: PetscFE fe;
1480: PetscFunctionBegin;
1482: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1483: if (fe->ops->integratebdresidual) PetscCall((*fe->ops->integratebdresidual)(ds, wf, key, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1484: PetscFunctionReturn(PETSC_SUCCESS);
1485: }
1487: /*@
1488: PetscFEIntegrateHybridResidual - Produce the element residual vector for a chunk of hybrid element faces by quadrature integration
1490: Not Collective
1492: Input Parameters:
1493: + ds - The `PetscDS` specifying the discretizations and continuum functions
1494: . dsIn - The `PetscDS` specifying the discretizations and continuum functions for input
1495: . key - The (label+value, field) being integrated
1496: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1497: . Ne - The number of elements in the chunk
1498: . fgeom - The face geometry for each cell in the chunk
1499: . coefficients - The array of FEM basis coefficients for the elements
1500: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1501: . probAux - The `PetscDS` specifying the auxiliary discretizations
1502: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1503: - t - The time
1505: Output Parameter:
1506: . elemVec - the element residual vectors from each element
1508: Level: developer
1510: .seealso: `PetscFEIntegrateResidual()`
1511: @*/
1512: PetscErrorCode PetscFEIntegrateHybridResidual(PetscDS ds, PetscDS dsIn, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1513: {
1514: PetscFE fe;
1516: PetscFunctionBegin;
1519: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1520: if (fe->ops->integratehybridresidual) PetscCall((*fe->ops->integratehybridresidual)(ds, dsIn, key, s, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1521: PetscFunctionReturn(PETSC_SUCCESS);
1522: }
1524: /*@
1525: PetscFEIntegrateJacobian - Produce the element Jacobian for a chunk of elements by quadrature integration
1527: Not Collective
1529: Input Parameters:
1530: + ds - The `PetscDS` specifying the discretizations and continuum functions
1531: . jtype - The type of matrix pointwise functions that should be used
1532: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1533: . Ne - The number of elements in the chunk
1534: . cgeom - The cell geometry for each cell in the chunk
1535: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1536: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1537: . probAux - The `PetscDS` specifying the auxiliary discretizations
1538: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1539: . t - The time
1540: - u_tshift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1542: Output Parameter:
1543: . elemMat - the element matrices for the Jacobian from each element
1545: Level: intermediate
1547: Note:
1548: .vb
1549: Loop over batch of elements (e):
1550: Loop over element matrix entries (f,fc,g,gc --> i,j):
1551: Loop over quadrature points (q):
1552: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1553: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1554: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1555: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1556: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1557: .ve
1559: .seealso: `PetscFEIntegrateResidual()`
1560: @*/
1561: PetscErrorCode PetscFEIntegrateJacobian(PetscDS ds, PetscFEJacobianType jtype, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1562: {
1563: PetscFE fe;
1564: PetscInt Nf;
1566: PetscFunctionBegin;
1568: PetscCall(PetscDSGetNumFields(ds, &Nf));
1569: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1570: if (fe->ops->integratejacobian) PetscCall((*fe->ops->integratejacobian)(ds, jtype, key, Ne, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1571: PetscFunctionReturn(PETSC_SUCCESS);
1572: }
1574: /*@
1575: PetscFEIntegrateBdJacobian - Produce the boundary element Jacobian for a chunk of elements by quadrature integration
1577: Not Collective
1579: Input Parameters:
1580: + ds - The `PetscDS` specifying the discretizations and continuum functions
1581: . wf - The PetscWeakForm holding the pointwise functions
1582: . jtype - The type of matrix pointwise functions that should be used
1583: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1584: . Ne - The number of elements in the chunk
1585: . fgeom - The face geometry for each cell in the chunk
1586: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1587: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1588: . probAux - The `PetscDS` specifying the auxiliary discretizations
1589: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1590: . t - The time
1591: - u_tshift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1593: Output Parameter:
1594: . elemMat - the element matrices for the Jacobian from each element
1596: Level: intermediate
1598: Note:
1599: .vb
1600: Loop over batch of elements (e):
1601: Loop over element matrix entries (f,fc,g,gc --> i,j):
1602: Loop over quadrature points (q):
1603: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1604: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1605: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1606: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1607: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1608: .ve
1610: .seealso: `PetscFEIntegrateJacobian()`, `PetscFEIntegrateResidual()`
1611: @*/
1612: PetscErrorCode PetscFEIntegrateBdJacobian(PetscDS ds, PetscWeakForm wf, PetscFEJacobianType jtype, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1613: {
1614: PetscFE fe;
1615: PetscInt Nf;
1617: PetscFunctionBegin;
1619: PetscCall(PetscDSGetNumFields(ds, &Nf));
1620: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1621: if (fe->ops->integratebdjacobian) PetscCall((*fe->ops->integratebdjacobian)(ds, wf, jtype, key, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1622: PetscFunctionReturn(PETSC_SUCCESS);
1623: }
1625: /*@
1626: PetscFEIntegrateHybridJacobian - Produce the boundary element Jacobian for a chunk of hybrid elements by quadrature integration
1628: Not Collective
1630: Input Parameters:
1631: + ds - The `PetscDS` specifying the discretizations and continuum functions for the output
1632: . dsIn - The `PetscDS` specifying the discretizations and continuum functions for the input
1633: . jtype - The type of matrix pointwise functions that should be used
1634: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1635: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1636: . Ne - The number of elements in the chunk
1637: . fgeom - The face geometry for each cell in the chunk
1638: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1639: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1640: . probAux - The `PetscDS` specifying the auxiliary discretizations
1641: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1642: . t - The time
1643: - u_tshift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1645: Output Parameter:
1646: . elemMat - the element matrices for the Jacobian from each element
1648: Level: developer
1650: Note:
1651: .vb
1652: Loop over batch of elements (e):
1653: Loop over element matrix entries (f,fc,g,gc --> i,j):
1654: Loop over quadrature points (q):
1655: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1656: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1657: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1658: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1659: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1660: .ve
1662: .seealso: `PetscFEIntegrateJacobian()`, `PetscFEIntegrateResidual()`
1663: @*/
1664: PetscErrorCode PetscFEIntegrateHybridJacobian(PetscDS ds, PetscDS dsIn, PetscFEJacobianType jtype, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1665: {
1666: PetscFE fe;
1667: PetscInt Nf;
1669: PetscFunctionBegin;
1671: PetscCall(PetscDSGetNumFields(ds, &Nf));
1672: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1673: if (fe->ops->integratehybridjacobian) PetscCall((*fe->ops->integratehybridjacobian)(ds, dsIn, jtype, key, s, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1674: PetscFunctionReturn(PETSC_SUCCESS);
1675: }
1677: /*@
1678: PetscFEGetHeightSubspace - Get the subspace of this space for a mesh point of a given height
1680: Input Parameters:
1681: + fe - The finite element space
1682: - height - The height of the `DMPLEX` point
1684: Output Parameter:
1685: . subfe - The subspace of this `PetscFE` space
1687: Level: advanced
1689: Note:
1690: For example, if we want the subspace of this space for a face, we would choose height = 1.
1692: .seealso: `PetscFECreateDefault()`
1693: @*/
1694: PetscErrorCode PetscFEGetHeightSubspace(PetscFE fe, PetscInt height, PetscFE *subfe)
1695: {
1696: PetscSpace P, subP;
1697: PetscDualSpace Q, subQ;
1698: PetscQuadrature subq;
1699: PetscInt dim, Nc;
1701: PetscFunctionBegin;
1703: PetscAssertPointer(subfe, 3);
1704: if (height == 0) {
1705: *subfe = fe;
1706: PetscFunctionReturn(PETSC_SUCCESS);
1707: }
1708: PetscCall(PetscFEGetBasisSpace(fe, &P));
1709: PetscCall(PetscFEGetDualSpace(fe, &Q));
1710: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1711: PetscCall(PetscFEGetFaceQuadrature(fe, &subq));
1712: PetscCall(PetscDualSpaceGetDimension(Q, &dim));
1713: PetscCheck(height <= dim && height >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Asked for space at height %" PetscInt_FMT " for dimension %" PetscInt_FMT " space", height, dim);
1714: if (!fe->subspaces) PetscCall(PetscCalloc1(dim, &fe->subspaces));
1715: if (height <= dim) {
1716: if (!fe->subspaces[height - 1]) {
1717: PetscFE sub = NULL;
1718: const char *name;
1720: PetscCall(PetscSpaceGetHeightSubspace(P, height, &subP));
1721: PetscCall(PetscDualSpaceGetHeightSubspace(Q, height, &subQ));
1722: if (subQ) {
1723: PetscCall(PetscObjectReference((PetscObject)subP));
1724: PetscCall(PetscObjectReference((PetscObject)subQ));
1725: PetscCall(PetscObjectReference((PetscObject)subq));
1726: PetscCall(PetscFECreateFromSpaces(subP, subQ, subq, NULL, &sub));
1727: }
1728: if (sub) {
1729: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
1730: if (name) PetscCall(PetscFESetName(sub, name));
1731: }
1732: fe->subspaces[height - 1] = sub;
1733: }
1734: *subfe = fe->subspaces[height - 1];
1735: } else {
1736: *subfe = NULL;
1737: }
1738: PetscFunctionReturn(PETSC_SUCCESS);
1739: }
1741: /*@
1742: PetscFERefine - Create a "refined" `PetscFE` object that refines the reference cell into
1743: smaller copies.
1745: Collective
1747: Input Parameter:
1748: . fe - The initial `PetscFE`
1750: Output Parameter:
1751: . feRef - The refined `PetscFE`
1753: Level: advanced
1755: Notes:
1756: This is typically used to generate a preconditioner for a higher order method from a lower order method on a
1757: refined mesh having the same number of dofs (but more sparsity). It is also used to create an
1758: interpolation between regularly refined meshes.
1760: .seealso: `PetscFEType`, `PetscFECreate()`, `PetscFESetType()`
1761: @*/
1762: PetscErrorCode PetscFERefine(PetscFE fe, PetscFE *feRef)
1763: {
1764: PetscSpace P, Pref;
1765: PetscDualSpace Q, Qref;
1766: DM K, Kref;
1767: PetscQuadrature q, qref;
1768: const PetscReal *v0, *jac;
1769: PetscInt numComp, numSubelements;
1770: PetscInt cStart, cEnd, c;
1771: PetscDualSpace *cellSpaces;
1773: PetscFunctionBegin;
1774: PetscCall(PetscFEGetBasisSpace(fe, &P));
1775: PetscCall(PetscFEGetDualSpace(fe, &Q));
1776: PetscCall(PetscFEGetQuadrature(fe, &q));
1777: PetscCall(PetscDualSpaceGetDM(Q, &K));
1778: /* Create space */
1779: PetscCall(PetscObjectReference((PetscObject)P));
1780: Pref = P;
1781: /* Create dual space */
1782: PetscCall(PetscDualSpaceDuplicate(Q, &Qref));
1783: PetscCall(PetscDualSpaceSetType(Qref, PETSCDUALSPACEREFINED));
1784: PetscCall(DMRefine(K, PetscObjectComm((PetscObject)fe), &Kref));
1785: PetscCall(DMGetCoordinatesLocalSetUp(Kref));
1786: PetscCall(PetscDualSpaceSetDM(Qref, Kref));
1787: PetscCall(DMPlexGetHeightStratum(Kref, 0, &cStart, &cEnd));
1788: PetscCall(PetscMalloc1(cEnd - cStart, &cellSpaces));
1789: /* TODO: fix for non-uniform refinement */
1790: for (c = 0; c < cEnd - cStart; c++) cellSpaces[c] = Q;
1791: PetscCall(PetscDualSpaceRefinedSetCellSpaces(Qref, cellSpaces));
1792: PetscCall(PetscFree(cellSpaces));
1793: PetscCall(DMDestroy(&Kref));
1794: PetscCall(PetscDualSpaceSetUp(Qref));
1795: /* Create element */
1796: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), feRef));
1797: PetscCall(PetscFESetType(*feRef, PETSCFECOMPOSITE));
1798: PetscCall(PetscFESetBasisSpace(*feRef, Pref));
1799: PetscCall(PetscFESetDualSpace(*feRef, Qref));
1800: PetscCall(PetscFEGetNumComponents(fe, &numComp));
1801: PetscCall(PetscFESetNumComponents(*feRef, numComp));
1802: PetscCall(PetscFESetUp(*feRef));
1803: PetscCall(PetscSpaceDestroy(&Pref));
1804: PetscCall(PetscDualSpaceDestroy(&Qref));
1805: /* Create quadrature */
1806: PetscCall(PetscFECompositeGetMapping(*feRef, &numSubelements, &v0, &jac, NULL));
1807: PetscCall(PetscQuadratureExpandComposite(q, numSubelements, v0, jac, &qref));
1808: PetscCall(PetscFESetQuadrature(*feRef, qref));
1809: PetscCall(PetscQuadratureDestroy(&qref));
1810: PetscFunctionReturn(PETSC_SUCCESS);
1811: }
1813: static PetscErrorCode PetscFESetDefaultName_Private(PetscFE fe)
1814: {
1815: PetscSpace P;
1816: PetscDualSpace Q;
1817: DM K;
1818: DMPolytopeType ct;
1819: PetscInt degree;
1820: char name[64];
1822: PetscFunctionBegin;
1823: PetscCall(PetscFEGetBasisSpace(fe, &P));
1824: PetscCall(PetscSpaceGetDegree(P, °ree, NULL));
1825: PetscCall(PetscFEGetDualSpace(fe, &Q));
1826: PetscCall(PetscDualSpaceGetDM(Q, &K));
1827: PetscCall(DMPlexGetCellType(K, 0, &ct));
1828: switch (ct) {
1829: case DM_POLYTOPE_SEGMENT:
1830: case DM_POLYTOPE_POINT_PRISM_TENSOR:
1831: case DM_POLYTOPE_QUADRILATERAL:
1832: case DM_POLYTOPE_SEG_PRISM_TENSOR:
1833: case DM_POLYTOPE_HEXAHEDRON:
1834: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
1835: PetscCall(PetscSNPrintf(name, sizeof(name), "Q%" PetscInt_FMT, degree));
1836: break;
1837: case DM_POLYTOPE_TRIANGLE:
1838: case DM_POLYTOPE_TETRAHEDRON:
1839: PetscCall(PetscSNPrintf(name, sizeof(name), "P%" PetscInt_FMT, degree));
1840: break;
1841: case DM_POLYTOPE_TRI_PRISM:
1842: case DM_POLYTOPE_TRI_PRISM_TENSOR:
1843: PetscCall(PetscSNPrintf(name, sizeof(name), "P%" PetscInt_FMT "xQ%" PetscInt_FMT, degree, degree));
1844: break;
1845: default:
1846: PetscCall(PetscSNPrintf(name, sizeof(name), "FE"));
1847: }
1848: PetscCall(PetscFESetName(fe, name));
1849: PetscFunctionReturn(PETSC_SUCCESS);
1850: }
1852: /*@
1853: PetscFECreateFromSpaces - Create a `PetscFE` from the basis and dual spaces
1855: Collective
1857: Input Parameters:
1858: + P - The basis space
1859: . Q - The dual space
1860: . q - The cell quadrature
1861: - fq - The face quadrature
1863: Output Parameter:
1864: . fem - The `PetscFE` object
1866: Level: beginner
1868: Note:
1869: The `PetscFE` takes ownership of these spaces by calling destroy on each. They should not be used after this call, and for borrowed references from `PetscFEGetSpace()` and the like, the caller must use `PetscObjectReference` before this call.
1871: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`,
1872: `PetscFECreateLagrangeByCell()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
1873: @*/
1874: PetscErrorCode PetscFECreateFromSpaces(PetscSpace P, PetscDualSpace Q, PetscQuadrature q, PetscQuadrature fq, PetscFE *fem)
1875: {
1876: PetscInt Nc;
1877: PetscInt p_Ns = -1, p_Nc = -1, q_Ns = -1, q_Nc = -1;
1878: PetscBool p_is_uniform_sum = PETSC_FALSE, p_interleave_basis = PETSC_FALSE, p_interleave_components = PETSC_FALSE;
1879: PetscBool q_is_uniform_sum = PETSC_FALSE, q_interleave_basis = PETSC_FALSE, q_interleave_components = PETSC_FALSE;
1880: const char *prefix;
1882: PetscFunctionBegin;
1883: PetscCall(PetscObjectTypeCompare((PetscObject)P, PETSCSPACESUM, &p_is_uniform_sum));
1884: if (p_is_uniform_sum) {
1885: PetscSpace subsp_0 = NULL;
1886: PetscCall(PetscSpaceSumGetNumSubspaces(P, &p_Ns));
1887: PetscCall(PetscSpaceGetNumComponents(P, &p_Nc));
1888: PetscCall(PetscSpaceSumGetConcatenate(P, &p_is_uniform_sum));
1889: PetscCall(PetscSpaceSumGetInterleave(P, &p_interleave_basis, &p_interleave_components));
1890: for (PetscInt s = 0; s < p_Ns; s++) {
1891: PetscSpace subsp;
1893: PetscCall(PetscSpaceSumGetSubspace(P, s, &subsp));
1894: if (!s) {
1895: subsp_0 = subsp;
1896: } else if (subsp != subsp_0) {
1897: p_is_uniform_sum = PETSC_FALSE;
1898: }
1899: }
1900: }
1901: PetscCall(PetscObjectTypeCompare((PetscObject)Q, PETSCDUALSPACESUM, &q_is_uniform_sum));
1902: if (q_is_uniform_sum) {
1903: PetscDualSpace subsp_0 = NULL;
1904: PetscCall(PetscDualSpaceSumGetNumSubspaces(Q, &q_Ns));
1905: PetscCall(PetscDualSpaceGetNumComponents(Q, &q_Nc));
1906: PetscCall(PetscDualSpaceSumGetConcatenate(Q, &q_is_uniform_sum));
1907: PetscCall(PetscDualSpaceSumGetInterleave(Q, &q_interleave_basis, &q_interleave_components));
1908: for (PetscInt s = 0; s < q_Ns; s++) {
1909: PetscDualSpace subsp;
1911: PetscCall(PetscDualSpaceSumGetSubspace(Q, s, &subsp));
1912: if (!s) {
1913: subsp_0 = subsp;
1914: } else if (subsp != subsp_0) {
1915: q_is_uniform_sum = PETSC_FALSE;
1916: }
1917: }
1918: }
1919: if (p_is_uniform_sum && q_is_uniform_sum && (p_interleave_basis == q_interleave_basis) && (p_interleave_components == q_interleave_components) && (p_Ns == q_Ns) && (p_Nc == q_Nc)) {
1920: PetscSpace scalar_space;
1921: PetscDualSpace scalar_dspace;
1922: PetscFE scalar_fe;
1924: PetscCall(PetscSpaceSumGetSubspace(P, 0, &scalar_space));
1925: PetscCall(PetscDualSpaceSumGetSubspace(Q, 0, &scalar_dspace));
1926: PetscCall(PetscObjectReference((PetscObject)scalar_space));
1927: PetscCall(PetscObjectReference((PetscObject)scalar_dspace));
1928: PetscCall(PetscObjectReference((PetscObject)q));
1929: PetscCall(PetscObjectReference((PetscObject)fq));
1930: PetscCall(PetscFECreateFromSpaces(scalar_space, scalar_dspace, q, fq, &scalar_fe));
1931: PetscCall(PetscFECreateVector(scalar_fe, p_Ns, p_interleave_basis, p_interleave_components, fem));
1932: PetscCall(PetscFEDestroy(&scalar_fe));
1933: } else {
1934: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)P), fem));
1935: PetscCall(PetscFESetType(*fem, PETSCFEBASIC));
1936: }
1937: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
1938: PetscCall(PetscFESetNumComponents(*fem, Nc));
1939: PetscCall(PetscFESetBasisSpace(*fem, P));
1940: PetscCall(PetscFESetDualSpace(*fem, Q));
1941: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)P, &prefix));
1942: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)*fem, prefix));
1943: PetscCall(PetscFESetUp(*fem));
1944: PetscCall(PetscSpaceDestroy(&P));
1945: PetscCall(PetscDualSpaceDestroy(&Q));
1946: PetscCall(PetscFESetQuadrature(*fem, q));
1947: PetscCall(PetscFESetFaceQuadrature(*fem, fq));
1948: PetscCall(PetscQuadratureDestroy(&q));
1949: PetscCall(PetscQuadratureDestroy(&fq));
1950: PetscCall(PetscFESetDefaultName_Private(*fem));
1951: PetscFunctionReturn(PETSC_SUCCESS);
1952: }
1954: static PetscErrorCode PetscFECreate_Internal(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, const char prefix[], PetscInt degree, PetscInt qorder, PetscBool setFromOptions, PetscFE *fem)
1955: {
1956: DM K;
1957: PetscSpace P;
1958: PetscDualSpace Q;
1959: PetscQuadrature q, fq;
1960: PetscBool tensor;
1962: PetscFunctionBegin;
1963: if (prefix) PetscAssertPointer(prefix, 5);
1964: PetscAssertPointer(fem, 9);
1965: switch (ct) {
1966: case DM_POLYTOPE_SEGMENT:
1967: case DM_POLYTOPE_POINT_PRISM_TENSOR:
1968: case DM_POLYTOPE_QUADRILATERAL:
1969: case DM_POLYTOPE_SEG_PRISM_TENSOR:
1970: case DM_POLYTOPE_HEXAHEDRON:
1971: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
1972: tensor = PETSC_TRUE;
1973: break;
1974: default:
1975: tensor = PETSC_FALSE;
1976: }
1977: /* Create space */
1978: PetscCall(PetscSpaceCreate(comm, &P));
1979: PetscCall(PetscSpaceSetType(P, PETSCSPACEPOLYNOMIAL));
1980: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)P, prefix));
1981: PetscCall(PetscSpacePolynomialSetTensor(P, tensor));
1982: PetscCall(PetscSpaceSetNumComponents(P, Nc));
1983: PetscCall(PetscSpaceSetNumVariables(P, dim));
1984: if (degree >= 0) {
1985: PetscCall(PetscSpaceSetDegree(P, degree, PETSC_DETERMINE));
1986: if (ct == DM_POLYTOPE_TRI_PRISM || ct == DM_POLYTOPE_TRI_PRISM_TENSOR) {
1987: PetscSpace Pend, Pside;
1989: PetscCall(PetscSpaceSetNumComponents(P, 1));
1990: PetscCall(PetscSpaceCreate(comm, &Pend));
1991: PetscCall(PetscSpaceSetType(Pend, PETSCSPACEPOLYNOMIAL));
1992: PetscCall(PetscSpacePolynomialSetTensor(Pend, PETSC_FALSE));
1993: PetscCall(PetscSpaceSetNumComponents(Pend, 1));
1994: PetscCall(PetscSpaceSetNumVariables(Pend, dim - 1));
1995: PetscCall(PetscSpaceSetDegree(Pend, degree, PETSC_DETERMINE));
1996: PetscCall(PetscSpaceCreate(comm, &Pside));
1997: PetscCall(PetscSpaceSetType(Pside, PETSCSPACEPOLYNOMIAL));
1998: PetscCall(PetscSpacePolynomialSetTensor(Pside, PETSC_FALSE));
1999: PetscCall(PetscSpaceSetNumComponents(Pside, 1));
2000: PetscCall(PetscSpaceSetNumVariables(Pside, 1));
2001: PetscCall(PetscSpaceSetDegree(Pside, degree, PETSC_DETERMINE));
2002: PetscCall(PetscSpaceSetType(P, PETSCSPACETENSOR));
2003: PetscCall(PetscSpaceTensorSetNumSubspaces(P, 2));
2004: PetscCall(PetscSpaceTensorSetSubspace(P, 0, Pend));
2005: PetscCall(PetscSpaceTensorSetSubspace(P, 1, Pside));
2006: PetscCall(PetscSpaceDestroy(&Pend));
2007: PetscCall(PetscSpaceDestroy(&Pside));
2009: if (Nc > 1) {
2010: PetscSpace scalar_P = P;
2012: PetscCall(PetscSpaceCreate(comm, &P));
2013: PetscCall(PetscSpaceSetNumVariables(P, dim));
2014: PetscCall(PetscSpaceSetNumComponents(P, Nc));
2015: PetscCall(PetscSpaceSetType(P, PETSCSPACESUM));
2016: PetscCall(PetscSpaceSumSetNumSubspaces(P, Nc));
2017: PetscCall(PetscSpaceSumSetConcatenate(P, PETSC_TRUE));
2018: PetscCall(PetscSpaceSumSetInterleave(P, PETSC_TRUE, PETSC_FALSE));
2019: for (PetscInt i = 0; i < Nc; i++) PetscCall(PetscSpaceSumSetSubspace(P, i, scalar_P));
2020: PetscCall(PetscSpaceDestroy(&scalar_P));
2021: }
2022: }
2023: }
2024: if (setFromOptions) PetscCall(PetscSpaceSetFromOptions(P));
2025: PetscCall(PetscSpaceSetUp(P));
2026: PetscCall(PetscSpaceGetDegree(P, °ree, NULL));
2027: PetscCall(PetscSpacePolynomialGetTensor(P, &tensor));
2028: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
2029: /* Create dual space */
2030: PetscCall(PetscDualSpaceCreate(comm, &Q));
2031: PetscCall(PetscDualSpaceSetType(Q, PETSCDUALSPACELAGRANGE));
2032: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)Q, prefix));
2033: PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, ct, &K));
2034: PetscCall(PetscDualSpaceSetDM(Q, K));
2035: PetscCall(DMDestroy(&K));
2036: PetscCall(PetscDualSpaceSetNumComponents(Q, Nc));
2037: PetscCall(PetscDualSpaceSetOrder(Q, degree));
2038: PetscCall(PetscDualSpaceLagrangeSetTensor(Q, (tensor || (ct == DM_POLYTOPE_TRI_PRISM)) ? PETSC_TRUE : PETSC_FALSE));
2039: if (setFromOptions) PetscCall(PetscDualSpaceSetFromOptions(Q));
2040: PetscCall(PetscDualSpaceSetUp(Q));
2041: /* Create quadrature */
2042: qorder = qorder >= 0 ? qorder : degree;
2043: if (setFromOptions) {
2044: PetscObjectOptionsBegin((PetscObject)P);
2045: PetscCall(PetscOptionsBoundedInt("-petscfe_default_quadrature_order", "Quadrature order is one less than quadrature points per edge", "PetscFECreateDefault", qorder, &qorder, NULL, 0));
2046: PetscOptionsEnd();
2047: }
2048: PetscCall(PetscDTCreateDefaultQuadrature(ct, qorder, &q, &fq));
2049: /* Create finite element */
2050: PetscCall(PetscFECreateFromSpaces(P, Q, q, fq, fem));
2051: if (setFromOptions) PetscCall(PetscFESetFromOptions(*fem));
2052: PetscFunctionReturn(PETSC_SUCCESS);
2053: }
2055: /*@
2056: PetscFECreateDefault - Create a `PetscFE` for basic FEM computation
2058: Collective
2060: Input Parameters:
2061: + comm - The MPI comm
2062: . dim - The spatial dimension
2063: . Nc - The number of components
2064: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
2065: . prefix - The options prefix, or `NULL`
2066: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2068: Output Parameter:
2069: . fem - The `PetscFE` object
2071: Level: beginner
2073: Note:
2074: Each subobject is SetFromOption() during creation, so that the object may be customized from the command line, using the prefix specified above. See the links below for the particular options available.
2076: .seealso: `PetscFECreateLagrange()`, `PetscFECreateByCell()`, `PetscSpaceSetFromOptions()`, `PetscDualSpaceSetFromOptions()`, `PetscFESetFromOptions()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2077: @*/
2078: PetscErrorCode PetscFECreateDefault(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, const char prefix[], PetscInt qorder, PetscFE *fem)
2079: {
2080: PetscFunctionBegin;
2081: PetscCall(PetscFECreate_Internal(comm, dim, Nc, DMPolytopeTypeSimpleShape(dim, isSimplex), prefix, PETSC_DECIDE, qorder, PETSC_TRUE, fem));
2082: PetscFunctionReturn(PETSC_SUCCESS);
2083: }
2085: /*@
2086: PetscFECreateByCell - Create a `PetscFE` for basic FEM computation
2088: Collective
2090: Input Parameters:
2091: + comm - The MPI comm
2092: . dim - The spatial dimension
2093: . Nc - The number of components
2094: . ct - The celltype of the reference cell
2095: . prefix - The options prefix, or `NULL`
2096: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2098: Output Parameter:
2099: . fem - The `PetscFE` object
2101: Level: beginner
2103: Note:
2104: Each subobject is SetFromOption() during creation, so that the object may be customized from the command line, using the prefix specified above. See the links below for the particular options available.
2106: .seealso: `PetscFECreateDefault()`, `PetscFECreateLagrange()`, `PetscSpaceSetFromOptions()`, `PetscDualSpaceSetFromOptions()`, `PetscFESetFromOptions()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2107: @*/
2108: PetscErrorCode PetscFECreateByCell(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, const char prefix[], PetscInt qorder, PetscFE *fem)
2109: {
2110: PetscFunctionBegin;
2111: PetscCall(PetscFECreate_Internal(comm, dim, Nc, ct, prefix, PETSC_DECIDE, qorder, PETSC_TRUE, fem));
2112: PetscFunctionReturn(PETSC_SUCCESS);
2113: }
2115: /*@
2116: PetscFECreateLagrange - Create a `PetscFE` for the basic Lagrange space of degree k
2118: Collective
2120: Input Parameters:
2121: + comm - The MPI comm
2122: . dim - The spatial dimension
2123: . Nc - The number of components
2124: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
2125: . k - The degree k of the space
2126: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2128: Output Parameter:
2129: . fem - The `PetscFE` object
2131: Level: beginner
2133: Note:
2134: For simplices, this element is the space of maximum polynomial degree k, otherwise it is a tensor product of 1D polynomials, each with maximal degree k.
2136: .seealso: `PetscFECreateLagrangeByCell()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2137: @*/
2138: PetscErrorCode PetscFECreateLagrange(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, PetscInt k, PetscInt qorder, PetscFE *fem)
2139: {
2140: PetscFunctionBegin;
2141: PetscCall(PetscFECreate_Internal(comm, dim, Nc, DMPolytopeTypeSimpleShape(dim, isSimplex), NULL, k, qorder, PETSC_FALSE, fem));
2142: PetscFunctionReturn(PETSC_SUCCESS);
2143: }
2145: /*@
2146: PetscFECreateLagrangeByCell - Create a `PetscFE` for the basic Lagrange space of degree k
2148: Collective
2150: Input Parameters:
2151: + comm - The MPI comm
2152: . dim - The spatial dimension
2153: . Nc - The number of components
2154: . ct - The celltype of the reference cell
2155: . k - The degree k of the space
2156: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2158: Output Parameter:
2159: . fem - The `PetscFE` object
2161: Level: beginner
2163: Note:
2164: For simplices, this element is the space of maximum polynomial degree k, otherwise it is a tensor product of 1D polynomials, each with maximal degree k.
2166: .seealso: `PetscFECreateLagrange()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2167: @*/
2168: PetscErrorCode PetscFECreateLagrangeByCell(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, PetscInt k, PetscInt qorder, PetscFE *fem)
2169: {
2170: PetscFunctionBegin;
2171: PetscCall(PetscFECreate_Internal(comm, dim, Nc, ct, NULL, k, qorder, PETSC_FALSE, fem));
2172: PetscFunctionReturn(PETSC_SUCCESS);
2173: }
2175: /*@
2176: PetscFELimitDegree - Copy a `PetscFE` but limit the degree to be in the given range
2178: Collective
2180: Input Parameters:
2181: + fe - The `PetscFE`
2182: . minDegree - The minimum degree, or `PETSC_DETERMINE` for no limit
2183: - maxDegree - The maximum degree, or `PETSC_DETERMINE` for no limit
2185: Output Parameter:
2186: . newfe - The `PetscFE` object
2188: Level: advanced
2190: Note:
2191: This currently only works for Lagrange elements.
2193: .seealso: `PetscFECreateLagrange()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2194: @*/
2195: PetscErrorCode PetscFELimitDegree(PetscFE fe, PetscInt minDegree, PetscInt maxDegree, PetscFE *newfe)
2196: {
2197: PetscDualSpace Q;
2198: PetscBool islag, issum;
2199: PetscInt oldk = 0, k;
2201: PetscFunctionBegin;
2202: PetscCall(PetscFEGetDualSpace(fe, &Q));
2203: PetscCall(PetscObjectTypeCompare((PetscObject)Q, PETSCDUALSPACELAGRANGE, &islag));
2204: PetscCall(PetscObjectTypeCompare((PetscObject)Q, PETSCDUALSPACESUM, &issum));
2205: if (islag) {
2206: PetscCall(PetscDualSpaceGetOrder(Q, &oldk));
2207: } else if (issum) {
2208: PetscDualSpace subQ;
2210: PetscCall(PetscDualSpaceSumGetSubspace(Q, 0, &subQ));
2211: PetscCall(PetscDualSpaceGetOrder(subQ, &oldk));
2212: } else {
2213: PetscCall(PetscObjectReference((PetscObject)fe));
2214: *newfe = fe;
2215: PetscFunctionReturn(PETSC_SUCCESS);
2216: }
2217: k = oldk;
2218: if (minDegree >= 0) k = PetscMax(k, minDegree);
2219: if (maxDegree >= 0) k = PetscMin(k, maxDegree);
2220: if (k != oldk) {
2221: DM K;
2222: PetscSpace P;
2223: PetscQuadrature q;
2224: DMPolytopeType ct;
2225: PetscInt dim, Nc;
2227: PetscCall(PetscFEGetBasisSpace(fe, &P));
2228: PetscCall(PetscSpaceGetNumVariables(P, &dim));
2229: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
2230: PetscCall(PetscDualSpaceGetDM(Q, &K));
2231: PetscCall(DMPlexGetCellType(K, 0, &ct));
2232: PetscCall(PetscFECreateLagrangeByCell(PetscObjectComm((PetscObject)fe), dim, Nc, ct, k, PETSC_DETERMINE, newfe));
2233: PetscCall(PetscFEGetQuadrature(fe, &q));
2234: PetscCall(PetscFESetQuadrature(*newfe, q));
2235: } else {
2236: PetscCall(PetscObjectReference((PetscObject)fe));
2237: *newfe = fe;
2238: }
2239: PetscFunctionReturn(PETSC_SUCCESS);
2240: }
2242: /*@
2243: PetscFESetName - Names the `PetscFE` and its subobjects
2245: Not Collective
2247: Input Parameters:
2248: + fe - The `PetscFE`
2249: - name - The name
2251: Level: intermediate
2253: .seealso: `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2254: @*/
2255: PetscErrorCode PetscFESetName(PetscFE fe, const char name[])
2256: {
2257: PetscSpace P;
2258: PetscDualSpace Q;
2260: PetscFunctionBegin;
2261: PetscCall(PetscFEGetBasisSpace(fe, &P));
2262: PetscCall(PetscFEGetDualSpace(fe, &Q));
2263: PetscCall(PetscObjectSetName((PetscObject)fe, name));
2264: PetscCall(PetscObjectSetName((PetscObject)P, name));
2265: PetscCall(PetscObjectSetName((PetscObject)Q, name));
2266: PetscFunctionReturn(PETSC_SUCCESS);
2267: }
2269: PetscErrorCode PetscFEEvaluateFieldJets_Internal(PetscDS ds, PetscInt Nf, PetscInt r, PetscInt q, PetscTabulation T[], PetscFEGeom *fegeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2270: {
2271: PetscInt dOffset = 0, fOffset = 0, f, g;
2273: for (f = 0; f < Nf; ++f) {
2274: PetscCheck(r < T[f]->Nr, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Replica number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", r, T[f]->Nr);
2275: PetscCheck(q < T[f]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Point number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", q, T[f]->Np);
2276: PetscFE fe;
2277: const PetscInt k = ds->jetDegree[f];
2278: const PetscInt cdim = T[f]->cdim;
2279: const PetscInt dE = fegeom->dimEmbed;
2280: const PetscInt Nq = T[f]->Np;
2281: const PetscInt Nbf = T[f]->Nb;
2282: const PetscInt Ncf = T[f]->Nc;
2283: const PetscReal *Bq = &T[f]->T[0][(r * Nq + q) * Nbf * Ncf];
2284: const PetscReal *Dq = &T[f]->T[1][(r * Nq + q) * Nbf * Ncf * cdim];
2285: const PetscReal *Hq = k > 1 ? &T[f]->T[2][(r * Nq + q) * Nbf * Ncf * cdim * cdim] : NULL;
2286: PetscInt hOffset = 0, b, c, d;
2288: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
2289: for (c = 0; c < Ncf; ++c) u[fOffset + c] = 0.0;
2290: for (d = 0; d < dE * Ncf; ++d) u_x[fOffset * dE + d] = 0.0;
2291: for (b = 0; b < Nbf; ++b) {
2292: for (c = 0; c < Ncf; ++c) {
2293: const PetscInt cidx = b * Ncf + c;
2295: u[fOffset + c] += Bq[cidx] * coefficients[dOffset + b];
2296: for (d = 0; d < cdim; ++d) u_x[(fOffset + c) * dE + d] += Dq[cidx * cdim + d] * coefficients[dOffset + b];
2297: }
2298: }
2299: if (k > 1) {
2300: for (g = 0; g < Nf; ++g) hOffset += T[g]->Nc * dE;
2301: for (d = 0; d < dE * dE * Ncf; ++d) u_x[hOffset + fOffset * dE * dE + d] = 0.0;
2302: for (b = 0; b < Nbf; ++b) {
2303: for (c = 0; c < Ncf; ++c) {
2304: const PetscInt cidx = b * Ncf + c;
2306: for (d = 0; d < cdim * cdim; ++d) u_x[hOffset + (fOffset + c) * dE * dE + d] += Hq[cidx * cdim * cdim + d] * coefficients[dOffset + b];
2307: }
2308: }
2309: PetscCall(PetscFEPushforwardHessian(fe, fegeom, 1, &u_x[hOffset + fOffset * dE * dE]));
2310: }
2311: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u[fOffset]));
2312: PetscCall(PetscFEPushforwardGradient(fe, fegeom, 1, &u_x[fOffset * dE]));
2313: if (u_t) {
2314: for (c = 0; c < Ncf; ++c) u_t[fOffset + c] = 0.0;
2315: for (b = 0; b < Nbf; ++b) {
2316: for (c = 0; c < Ncf; ++c) {
2317: const PetscInt cidx = b * Ncf + c;
2319: u_t[fOffset + c] += Bq[cidx] * coefficients_t[dOffset + b];
2320: }
2321: }
2322: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]));
2323: }
2324: fOffset += Ncf;
2325: dOffset += Nbf;
2326: }
2327: return PETSC_SUCCESS;
2328: }
2330: PetscErrorCode PetscFEEvaluateFieldJets_Hybrid_Internal(PetscDS ds, PetscInt Nf, PetscInt rc, PetscInt qc, PetscTabulation Tab[], const PetscInt rf[], const PetscInt qf[], PetscTabulation Tabf[], PetscFEGeom *fegeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2331: {
2332: PetscInt dOffset = 0, fOffset = 0, f, g;
2334: /* f is the field number in the DS, g is the field number in u[] */
2335: for (f = 0, g = 0; f < Nf; ++f) {
2336: PetscBool isCohesive;
2337: PetscInt Ns, s;
2339: if (!Tab[f]) continue;
2340: PetscCall(PetscDSGetCohesive(ds, f, &isCohesive));
2341: Ns = isCohesive ? 1 : 2;
2342: {
2343: PetscTabulation T = isCohesive ? Tab[f] : Tabf[f];
2344: PetscFE fe = (PetscFE)ds->disc[f];
2345: const PetscInt dEt = T->cdim;
2346: const PetscInt dE = fegeom->dimEmbed;
2347: const PetscInt Nq = T->Np;
2348: const PetscInt Nbf = T->Nb;
2349: const PetscInt Ncf = T->Nc;
2351: for (s = 0; s < Ns; ++s, ++g) {
2352: const PetscInt r = isCohesive ? rc : rf[s];
2353: const PetscInt q = isCohesive ? qc : qf[s];
2354: const PetscReal *Bq = &T->T[0][(r * Nq + q) * Nbf * Ncf];
2355: const PetscReal *Dq = &T->T[1][(r * Nq + q) * Nbf * Ncf * dEt];
2356: PetscInt b, c, d;
2358: PetscCheck(r < T->Nr, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " Side %" PetscInt_FMT " Replica number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", f, s, r, T->Nr);
2359: PetscCheck(q < T->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " Side %" PetscInt_FMT " Point number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", f, s, q, T->Np);
2360: for (c = 0; c < Ncf; ++c) u[fOffset + c] = 0.0;
2361: for (d = 0; d < dE * Ncf; ++d) u_x[fOffset * dE + d] = 0.0;
2362: for (b = 0; b < Nbf; ++b) {
2363: for (c = 0; c < Ncf; ++c) {
2364: const PetscInt cidx = b * Ncf + c;
2366: u[fOffset + c] += Bq[cidx] * coefficients[dOffset + b];
2367: for (d = 0; d < dEt; ++d) u_x[(fOffset + c) * dE + d] += Dq[cidx * dEt + d] * coefficients[dOffset + b];
2368: }
2369: }
2370: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u[fOffset]));
2371: PetscCall(PetscFEPushforwardGradient(fe, fegeom, 1, &u_x[fOffset * dE]));
2372: if (u_t) {
2373: for (c = 0; c < Ncf; ++c) u_t[fOffset + c] = 0.0;
2374: for (b = 0; b < Nbf; ++b) {
2375: for (c = 0; c < Ncf; ++c) {
2376: const PetscInt cidx = b * Ncf + c;
2378: u_t[fOffset + c] += Bq[cidx] * coefficients_t[dOffset + b];
2379: }
2380: }
2381: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]));
2382: }
2383: fOffset += Ncf;
2384: dOffset += Nbf;
2385: }
2386: }
2387: }
2388: return PETSC_SUCCESS;
2389: }
2391: PetscErrorCode PetscFEEvaluateFaceFields_Internal(PetscDS prob, PetscInt field, PetscInt faceLoc, const PetscScalar coefficients[], PetscScalar u[])
2392: {
2393: PetscFE fe;
2394: PetscTabulation Tc;
2395: PetscInt b, c;
2397: if (!prob) return PETSC_SUCCESS;
2398: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
2399: PetscCall(PetscFEGetFaceCentroidTabulation(fe, &Tc));
2400: {
2401: const PetscReal *faceBasis = Tc->T[0];
2402: const PetscInt Nb = Tc->Nb;
2403: const PetscInt Nc = Tc->Nc;
2405: for (c = 0; c < Nc; ++c) u[c] = 0.0;
2406: for (b = 0; b < Nb; ++b) {
2407: for (c = 0; c < Nc; ++c) u[c] += coefficients[b] * faceBasis[(faceLoc * Nb + b) * Nc + c];
2408: }
2409: }
2410: return PETSC_SUCCESS;
2411: }
2413: PetscErrorCode PetscFEUpdateElementVec_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscInt e, PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2414: {
2415: PetscFEGeom pgeom;
2416: const PetscInt dEt = T->cdim;
2417: const PetscInt dE = fegeom->dimEmbed;
2418: const PetscInt Nq = T->Np;
2419: const PetscInt Nb = T->Nb;
2420: const PetscInt Nc = T->Nc;
2421: const PetscReal *basis = &T->T[0][r * Nq * Nb * Nc];
2422: const PetscReal *basisDer = &T->T[1][r * Nq * Nb * Nc * dEt];
2423: PetscInt q, b, c, d;
2425: for (q = 0; q < Nq; ++q) {
2426: for (b = 0; b < Nb; ++b) {
2427: for (c = 0; c < Nc; ++c) {
2428: const PetscInt bcidx = b * Nc + c;
2430: tmpBasis[bcidx] = basis[q * Nb * Nc + bcidx];
2431: for (d = 0; d < dEt; ++d) tmpBasisDer[bcidx * dE + d] = basisDer[q * Nb * Nc * dEt + bcidx * dEt + d];
2432: for (d = dEt; d < dE; ++d) tmpBasisDer[bcidx * dE + d] = 0.0;
2433: }
2434: }
2435: PetscCall(PetscFEGeomGetCellPoint(fegeom, e, q, &pgeom));
2436: PetscCall(PetscFEPushforward(fe, &pgeom, Nb, tmpBasis));
2437: PetscCall(PetscFEPushforwardGradient(fe, &pgeom, Nb, tmpBasisDer));
2438: for (b = 0; b < Nb; ++b) {
2439: for (c = 0; c < Nc; ++c) {
2440: const PetscInt bcidx = b * Nc + c;
2441: const PetscInt qcidx = q * Nc + c;
2443: elemVec[b] += tmpBasis[bcidx] * f0[qcidx];
2444: for (d = 0; d < dE; ++d) elemVec[b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2445: }
2446: }
2447: }
2448: return PETSC_SUCCESS;
2449: }
2451: PetscErrorCode PetscFEUpdateElementVec_Hybrid_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscInt side, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2452: {
2453: const PetscInt dE = T->cdim;
2454: const PetscInt Nq = T->Np;
2455: const PetscInt Nb = T->Nb;
2456: const PetscInt Nc = T->Nc;
2457: const PetscReal *basis = &T->T[0][r * Nq * Nb * Nc];
2458: const PetscReal *basisDer = &T->T[1][r * Nq * Nb * Nc * dE];
2460: for (PetscInt q = 0; q < Nq; ++q) {
2461: for (PetscInt b = 0; b < Nb; ++b) {
2462: for (PetscInt c = 0; c < Nc; ++c) {
2463: const PetscInt bcidx = b * Nc + c;
2465: tmpBasis[bcidx] = basis[q * Nb * Nc + bcidx];
2466: for (PetscInt d = 0; d < dE; ++d) tmpBasisDer[bcidx * dE + d] = basisDer[q * Nb * Nc * dE + bcidx * dE + d];
2467: }
2468: }
2469: PetscCall(PetscFEPushforward(fe, fegeom, Nb, tmpBasis));
2470: // TODO This is currently broken since we do not pull the geometry down to the lower dimension
2471: // PetscCall(PetscFEPushforwardGradient(fe, fegeom, Nb, tmpBasisDer));
2472: if (side == 2) {
2473: // Integrating over whole cohesive cell, so insert for both sides
2474: for (PetscInt s = 0; s < 2; ++s) {
2475: for (PetscInt b = 0; b < Nb; ++b) {
2476: for (PetscInt c = 0; c < Nc; ++c) {
2477: const PetscInt bcidx = b * Nc + c;
2478: const PetscInt qcidx = (q * 2 + s) * Nc + c;
2480: elemVec[Nb * s + b] += tmpBasis[bcidx] * f0[qcidx];
2481: for (PetscInt d = 0; d < dE; ++d) elemVec[Nb * s + b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2482: }
2483: }
2484: }
2485: } else {
2486: // Integrating over endcaps of cohesive cell, so insert for correct side
2487: for (PetscInt b = 0; b < Nb; ++b) {
2488: for (PetscInt c = 0; c < Nc; ++c) {
2489: const PetscInt bcidx = b * Nc + c;
2490: const PetscInt qcidx = q * Nc + c;
2492: elemVec[Nb * side + b] += tmpBasis[bcidx] * f0[qcidx];
2493: for (PetscInt d = 0; d < dE; ++d) elemVec[Nb * side + b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2494: }
2495: }
2496: }
2497: }
2498: return PETSC_SUCCESS;
2499: }
2501: #define petsc_elemmat_kernel_g1(_NbI, _NcI, _NbJ, _NcJ, _dE) \
2502: do { \
2503: for (PetscInt fc = 0; fc < (_NcI); ++fc) { \
2504: for (PetscInt gc = 0; gc < (_NcJ); ++gc) { \
2505: const PetscScalar *G = g1 + (fc * (_NcJ) + gc) * _dE; \
2506: for (PetscInt f = 0; f < (_NbI); ++f) { \
2507: const PetscScalar tBIv = tmpBasisI[f * (_NcI) + fc]; \
2508: for (PetscInt g = 0; g < (_NbJ); ++g) { \
2509: const PetscScalar *tBDJ = tmpBasisDerJ + (g * (_NcJ) + gc) * (_dE); \
2510: PetscScalar s = 0.0; \
2511: for (PetscInt df = 0; df < _dE; ++df) { s += G[df] * tBDJ[df]; } \
2512: elemMat[(offsetI + f) * totDim + (offsetJ + g)] += s * tBIv; \
2513: } \
2514: } \
2515: } \
2516: } \
2517: } while (0)
2519: #define petsc_elemmat_kernel_g2(_NbI, _NcI, _NbJ, _NcJ, _dE) \
2520: do { \
2521: for (PetscInt gc = 0; gc < (_NcJ); ++gc) { \
2522: for (PetscInt fc = 0; fc < (_NcI); ++fc) { \
2523: const PetscScalar *G = g2 + (fc * (_NcJ) + gc) * _dE; \
2524: for (PetscInt g = 0; g < (_NbJ); ++g) { \
2525: const PetscScalar tBJv = tmpBasisJ[g * (_NcJ) + gc]; \
2526: for (PetscInt f = 0; f < (_NbI); ++f) { \
2527: const PetscScalar *tBDI = tmpBasisDerI + (f * (_NcI) + fc) * (_dE); \
2528: PetscScalar s = 0.0; \
2529: for (PetscInt df = 0; df < _dE; ++df) { s += tBDI[df] * G[df]; } \
2530: elemMat[(offsetI + f) * totDim + (offsetJ + g)] += s * tBJv; \
2531: } \
2532: } \
2533: } \
2534: } \
2535: } while (0)
2537: #define petsc_elemmat_kernel_g3(_NbI, _NcI, _NbJ, _NcJ, _dE) \
2538: do { \
2539: for (PetscInt fc = 0; fc < (_NcI); ++fc) { \
2540: for (PetscInt gc = 0; gc < (_NcJ); ++gc) { \
2541: const PetscScalar *G = g3 + (fc * (_NcJ) + gc) * (_dE) * (_dE); \
2542: for (PetscInt f = 0; f < (_NbI); ++f) { \
2543: const PetscScalar *tBDI = tmpBasisDerI + (f * (_NcI) + fc) * (_dE); \
2544: for (PetscInt g = 0; g < (_NbJ); ++g) { \
2545: PetscScalar s = 0.0; \
2546: const PetscScalar *tBDJ = tmpBasisDerJ + (g * (_NcJ) + gc) * (_dE); \
2547: for (PetscInt df = 0; df < (_dE); ++df) { \
2548: for (PetscInt dg = 0; dg < (_dE); ++dg) { s += tBDI[df] * G[df * (_dE) + dg] * tBDJ[dg]; } \
2549: } \
2550: elemMat[(offsetI + f) * totDim + (offsetJ + g)] += s; \
2551: } \
2552: } \
2553: } \
2554: } \
2555: } while (0)
2557: PetscErrorCode PetscFEUpdateElementMat_Internal(PetscFE feI, PetscFE feJ, PetscInt r, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2558: {
2559: const PetscInt cdim = TI->cdim;
2560: const PetscInt dE = fegeom->dimEmbed;
2561: const PetscInt NqI = TI->Np;
2562: const PetscInt NbI = TI->Nb;
2563: const PetscInt NcI = TI->Nc;
2564: const PetscReal *basisI = &TI->T[0][(r * NqI + q) * NbI * NcI];
2565: const PetscReal *basisDerI = &TI->T[1][(r * NqI + q) * NbI * NcI * cdim];
2566: const PetscInt NqJ = TJ->Np;
2567: const PetscInt NbJ = TJ->Nb;
2568: const PetscInt NcJ = TJ->Nc;
2569: const PetscReal *basisJ = &TJ->T[0][(r * NqJ + q) * NbJ * NcJ];
2570: const PetscReal *basisDerJ = &TJ->T[1][(r * NqJ + q) * NbJ * NcJ * cdim];
2572: for (PetscInt f = 0; f < NbI; ++f) {
2573: for (PetscInt fc = 0; fc < NcI; ++fc) {
2574: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2576: tmpBasisI[fidx] = basisI[fidx];
2577: for (PetscInt df = 0; df < cdim; ++df) tmpBasisDerI[fidx * dE + df] = basisDerI[fidx * cdim + df];
2578: }
2579: }
2580: PetscCall(PetscFEPushforward(feI, fegeom, NbI, tmpBasisI));
2581: PetscCall(PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI));
2582: if (feI != feJ) {
2583: for (PetscInt g = 0; g < NbJ; ++g) {
2584: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2585: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2587: tmpBasisJ[gidx] = basisJ[gidx];
2588: for (PetscInt dg = 0; dg < cdim; ++dg) tmpBasisDerJ[gidx * dE + dg] = basisDerJ[gidx * cdim + dg];
2589: }
2590: }
2591: PetscCall(PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ));
2592: PetscCall(PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ));
2593: } else {
2594: tmpBasisJ = tmpBasisI;
2595: tmpBasisDerJ = tmpBasisDerI;
2596: }
2597: if (PetscUnlikely(g0)) {
2598: for (PetscInt f = 0; f < NbI; ++f) {
2599: const PetscInt i = offsetI + f; /* Element matrix row */
2601: for (PetscInt fc = 0; fc < NcI; ++fc) {
2602: const PetscScalar bI = tmpBasisI[f * NcI + fc]; /* Test function basis value */
2604: for (PetscInt g = 0; g < NbJ; ++g) {
2605: const PetscInt j = offsetJ + g; /* Element matrix column */
2606: const PetscInt fOff = i * totDim + j;
2608: for (PetscInt gc = 0; gc < NcJ; ++gc) { elemMat[fOff] += bI * g0[fc * NcJ + gc] * tmpBasisJ[g * NcJ + gc]; }
2609: }
2610: }
2611: }
2612: }
2613: if (PetscUnlikely(g1)) {
2614: #if 1
2615: if (dE == 2) {
2616: petsc_elemmat_kernel_g1(NbI, NcI, NbJ, NcJ, 2);
2617: } else if (dE == 3) {
2618: petsc_elemmat_kernel_g1(NbI, NcI, NbJ, NcJ, 3);
2619: } else {
2620: petsc_elemmat_kernel_g1(NbI, NcI, NbJ, NcJ, dE);
2621: }
2622: #else
2623: for (PetscInt f = 0; f < NbI; ++f) {
2624: const PetscInt i = offsetI + f; /* Element matrix row */
2626: for (PetscInt fc = 0; fc < NcI; ++fc) {
2627: const PetscScalar bI = tmpBasisI[f * NcI + fc]; /* Test function basis value */
2629: for (PetscInt g = 0; g < NbJ; ++g) {
2630: const PetscInt j = offsetJ + g; /* Element matrix column */
2631: const PetscInt fOff = i * totDim + j;
2633: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2634: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2636: for (PetscInt df = 0; df < dE; ++df) { elemMat[fOff] += bI * g1[(fc * NcJ + gc) * dE + df] * tmpBasisDerJ[gidx * dE + df]; }
2637: }
2638: }
2639: }
2640: }
2641: #endif
2642: }
2643: if (PetscUnlikely(g2)) {
2644: #if 1
2645: if (dE == 2) {
2646: petsc_elemmat_kernel_g2(NbI, NcI, NbJ, NcJ, 2);
2647: } else if (dE == 3) {
2648: petsc_elemmat_kernel_g2(NbI, NcI, NbJ, NcJ, 3);
2649: } else {
2650: petsc_elemmat_kernel_g2(NbI, NcI, NbJ, NcJ, dE);
2651: }
2652: #else
2653: for (PetscInt g = 0; g < NbJ; ++g) {
2654: const PetscInt j = offsetJ + g; /* Element matrix column */
2656: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2657: const PetscScalar bJ = tmpBasisJ[g * NcJ + gc]; /* Trial function basis value */
2659: for (PetscInt f = 0; f < NbI; ++f) {
2660: const PetscInt i = offsetI + f; /* Element matrix row */
2661: const PetscInt fOff = i * totDim + j;
2663: for (PetscInt fc = 0; fc < NcI; ++fc) {
2664: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2666: for (PetscInt df = 0; df < dE; ++df) { elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g2[(fc * NcJ + gc) * dE + df] * bJ; }
2667: }
2668: }
2669: }
2670: }
2671: #endif
2672: }
2673: if (PetscUnlikely(g3)) {
2674: #if 1
2675: if (dE == 2) {
2676: petsc_elemmat_kernel_g3(NbI, NcI, NbJ, NcJ, 2);
2677: } else if (dE == 3) {
2678: petsc_elemmat_kernel_g3(NbI, NcI, NbJ, NcJ, 3);
2679: } else {
2680: petsc_elemmat_kernel_g3(NbI, NcI, NbJ, NcJ, dE);
2681: }
2682: #else
2683: for (PetscInt f = 0; f < NbI; ++f) {
2684: const PetscInt i = offsetI + f; /* Element matrix row */
2686: for (PetscInt fc = 0; fc < NcI; ++fc) {
2687: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2689: for (PetscInt g = 0; g < NbJ; ++g) {
2690: const PetscInt j = offsetJ + g; /* Element matrix column */
2691: const PetscInt fOff = i * totDim + j;
2693: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2694: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2696: for (PetscInt df = 0; df < dE; ++df) {
2697: for (PetscInt dg = 0; dg < dE; ++dg) { elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g3[((fc * NcJ + gc) * dE + df) * dE + dg] * tmpBasisDerJ[gidx * dE + dg]; }
2698: }
2699: }
2700: }
2701: }
2702: }
2703: #endif
2704: }
2705: return PETSC_SUCCESS;
2706: }
2708: #undef petsc_elemmat_kernel_g1
2709: #undef petsc_elemmat_kernel_g2
2710: #undef petsc_elemmat_kernel_g3
2712: PetscErrorCode PetscFEUpdateElementMat_Hybrid_Internal(PetscFE feI, PetscBool isHybridI, PetscFE feJ, PetscBool isHybridJ, PetscInt r, PetscInt s, PetscInt t, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt eOffset, PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2713: {
2714: const PetscInt dE = TI->cdim;
2715: const PetscInt NqI = TI->Np;
2716: const PetscInt NbI = TI->Nb;
2717: const PetscInt NcI = TI->Nc;
2718: const PetscReal *basisI = &TI->T[0][(r * NqI + q) * NbI * NcI];
2719: const PetscReal *basisDerI = &TI->T[1][(r * NqI + q) * NbI * NcI * dE];
2720: const PetscInt NqJ = TJ->Np;
2721: const PetscInt NbJ = TJ->Nb;
2722: const PetscInt NcJ = TJ->Nc;
2723: const PetscReal *basisJ = &TJ->T[0][(r * NqJ + q) * NbJ * NcJ];
2724: const PetscReal *basisDerJ = &TJ->T[1][(r * NqJ + q) * NbJ * NcJ * dE];
2725: const PetscInt so = isHybridI ? 0 : s;
2726: const PetscInt to = isHybridJ ? 0 : t;
2727: PetscInt f, fc, g, gc, df, dg;
2729: for (f = 0; f < NbI; ++f) {
2730: for (fc = 0; fc < NcI; ++fc) {
2731: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2733: tmpBasisI[fidx] = basisI[fidx];
2734: for (df = 0; df < dE; ++df) tmpBasisDerI[fidx * dE + df] = basisDerI[fidx * dE + df];
2735: }
2736: }
2737: PetscCall(PetscFEPushforward(feI, fegeom, NbI, tmpBasisI));
2738: PetscCall(PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI));
2739: for (g = 0; g < NbJ; ++g) {
2740: for (gc = 0; gc < NcJ; ++gc) {
2741: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2743: tmpBasisJ[gidx] = basisJ[gidx];
2744: for (dg = 0; dg < dE; ++dg) tmpBasisDerJ[gidx * dE + dg] = basisDerJ[gidx * dE + dg];
2745: }
2746: }
2747: PetscCall(PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ));
2748: // TODO This is currently broken since we do not pull the geometry down to the lower dimension
2749: // PetscCall(PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ));
2750: for (f = 0; f < NbI; ++f) {
2751: for (fc = 0; fc < NcI; ++fc) {
2752: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2753: const PetscInt i = offsetI + NbI * so + f; /* Element matrix row */
2754: for (g = 0; g < NbJ; ++g) {
2755: for (gc = 0; gc < NcJ; ++gc) {
2756: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2757: const PetscInt j = offsetJ + NbJ * to + g; /* Element matrix column */
2758: const PetscInt fOff = eOffset + i * totDim + j;
2760: elemMat[fOff] += tmpBasisI[fidx] * g0[fc * NcJ + gc] * tmpBasisJ[gidx];
2761: for (df = 0; df < dE; ++df) {
2762: elemMat[fOff] += tmpBasisI[fidx] * g1[(fc * NcJ + gc) * dE + df] * tmpBasisDerJ[gidx * dE + df];
2763: elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g2[(fc * NcJ + gc) * dE + df] * tmpBasisJ[gidx];
2764: for (dg = 0; dg < dE; ++dg) elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g3[((fc * NcJ + gc) * dE + df) * dE + dg] * tmpBasisDerJ[gidx * dE + dg];
2765: }
2766: }
2767: }
2768: }
2769: }
2770: return PETSC_SUCCESS;
2771: }
2773: PetscErrorCode PetscFECreateCellGeometry(PetscFE fe, PetscQuadrature quad, PetscFEGeom *cgeom)
2774: {
2775: PetscDualSpace dsp;
2776: DM dm;
2777: PetscQuadrature quadDef;
2778: PetscInt dim, cdim, Nq;
2780: PetscFunctionBegin;
2781: PetscCall(PetscFEGetDualSpace(fe, &dsp));
2782: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
2783: PetscCall(DMGetDimension(dm, &dim));
2784: PetscCall(DMGetCoordinateDim(dm, &cdim));
2785: PetscCall(PetscFEGetQuadrature(fe, &quadDef));
2786: quad = quad ? quad : quadDef;
2787: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
2788: PetscCall(PetscMalloc1(Nq * cdim, &cgeom->v));
2789: PetscCall(PetscMalloc1(Nq * cdim * cdim, &cgeom->J));
2790: PetscCall(PetscMalloc1(Nq * cdim * cdim, &cgeom->invJ));
2791: PetscCall(PetscMalloc1(Nq, &cgeom->detJ));
2792: cgeom->dim = dim;
2793: cgeom->dimEmbed = cdim;
2794: cgeom->numCells = 1;
2795: cgeom->numPoints = Nq;
2796: PetscCall(DMPlexComputeCellGeometryFEM(dm, 0, quad, cgeom->v, cgeom->J, cgeom->invJ, cgeom->detJ));
2797: PetscFunctionReturn(PETSC_SUCCESS);
2798: }
2800: PetscErrorCode PetscFEDestroyCellGeometry(PetscFE fe, PetscFEGeom *cgeom)
2801: {
2802: PetscFunctionBegin;
2803: PetscCall(PetscFree(cgeom->v));
2804: PetscCall(PetscFree(cgeom->J));
2805: PetscCall(PetscFree(cgeom->invJ));
2806: PetscCall(PetscFree(cgeom->detJ));
2807: PetscFunctionReturn(PETSC_SUCCESS);
2808: }
2810: #if 0
2811: PetscErrorCode PetscFEUpdateElementMat_Internal_SparseIndices(PetscTabulation TI, PetscTabulation TJ, PetscInt dimEmbed, const PetscInt g0[], const PetscInt g1[], const PetscInt g2[], const PetscInt g3[], PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscInt *n_g0, PetscInt **g0_idxs_out, PetscInt *n_g1, PetscInt **g1_idxs_out, PetscInt *n_g2, PetscInt **g2_idxs_out, PetscInt *n_g3, PetscInt **g3_idxs_out)
2812: {
2813: const PetscInt dE = dimEmbed;
2814: const PetscInt NbI = TI->Nb;
2815: const PetscInt NcI = TI->Nc;
2816: const PetscInt NbJ = TJ->Nb;
2817: const PetscInt NcJ = TJ->Nc;
2818: PetscBool has_g0 = g0 ? PETSC_TRUE : PETSC_FALSE;
2819: PetscBool has_g1 = g1 ? PETSC_TRUE : PETSC_FALSE;
2820: PetscBool has_g2 = g2 ? PETSC_TRUE : PETSC_FALSE;
2821: PetscBool has_g3 = g3 ? PETSC_TRUE : PETSC_FALSE;
2822: PetscInt *g0_idxs = NULL, *g1_idxs = NULL, *g2_idxs = NULL, *g3_idxs = NULL;
2823: PetscInt g0_i, g1_i, g2_i, g3_i;
2825: PetscFunctionBegin;
2826: g0_i = g1_i = g2_i = g3_i = 0;
2827: if (has_g0)
2828: for (PetscInt i = 0; i < NcI * NcJ; i++)
2829: if (g0[i]) g0_i += NbI * NbJ;
2830: if (has_g1)
2831: for (PetscInt i = 0; i < NcI * NcJ * dE; i++)
2832: if (g1[i]) g1_i += NbI * NbJ;
2833: if (has_g2)
2834: for (PetscInt i = 0; i < NcI * NcJ * dE; i++)
2835: if (g2[i]) g2_i += NbI * NbJ;
2836: if (has_g3)
2837: for (PetscInt i = 0; i < NcI * NcJ * dE * dE; i++)
2838: if (g3[i]) g3_i += NbI * NbJ;
2839: if (g0_i == NbI * NbJ * NcI * NcJ) g0_i = 0;
2840: if (g1_i == NbI * NbJ * NcI * NcJ * dE) g1_i = 0;
2841: if (g2_i == NbI * NbJ * NcI * NcJ * dE) g2_i = 0;
2842: if (g3_i == NbI * NbJ * NcI * NcJ * dE * dE) g3_i = 0;
2843: has_g0 = g0_i ? PETSC_TRUE : PETSC_FALSE;
2844: has_g1 = g1_i ? PETSC_TRUE : PETSC_FALSE;
2845: has_g2 = g2_i ? PETSC_TRUE : PETSC_FALSE;
2846: has_g3 = g3_i ? PETSC_TRUE : PETSC_FALSE;
2847: if (has_g0) PetscCall(PetscMalloc1(4 * g0_i, &g0_idxs));
2848: if (has_g1) PetscCall(PetscMalloc1(4 * g1_i, &g1_idxs));
2849: if (has_g2) PetscCall(PetscMalloc1(4 * g2_i, &g2_idxs));
2850: if (has_g3) PetscCall(PetscMalloc1(4 * g3_i, &g3_idxs));
2851: g0_i = g1_i = g2_i = g3_i = 0;
2853: for (PetscInt f = 0; f < NbI; ++f) {
2854: const PetscInt i = offsetI + f; /* Element matrix row */
2855: for (PetscInt fc = 0; fc < NcI; ++fc) {
2856: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2858: for (PetscInt g = 0; g < NbJ; ++g) {
2859: const PetscInt j = offsetJ + g; /* Element matrix column */
2860: const PetscInt fOff = i * totDim + j;
2861: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2862: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2864: if (has_g0) {
2865: if (g0[fc * NcJ + gc]) {
2866: g0_idxs[4 * g0_i + 0] = fidx;
2867: g0_idxs[4 * g0_i + 1] = fc * NcJ + gc;
2868: g0_idxs[4 * g0_i + 2] = gidx;
2869: g0_idxs[4 * g0_i + 3] = fOff;
2870: g0_i++;
2871: }
2872: }
2874: for (PetscInt df = 0; df < dE; ++df) {
2875: if (has_g1) {
2876: if (g1[(fc * NcJ + gc) * dE + df]) {
2877: g1_idxs[4 * g1_i + 0] = fidx;
2878: g1_idxs[4 * g1_i + 1] = (fc * NcJ + gc) * dE + df;
2879: g1_idxs[4 * g1_i + 2] = gidx * dE + df;
2880: g1_idxs[4 * g1_i + 3] = fOff;
2881: g1_i++;
2882: }
2883: }
2884: if (has_g2) {
2885: if (g2[(fc * NcJ + gc) * dE + df]) {
2886: g2_idxs[4 * g2_i + 0] = fidx * dE + df;
2887: g2_idxs[4 * g2_i + 1] = (fc * NcJ + gc) * dE + df;
2888: g2_idxs[4 * g2_i + 2] = gidx;
2889: g2_idxs[4 * g2_i + 3] = fOff;
2890: g2_i++;
2891: }
2892: }
2893: if (has_g3) {
2894: for (PetscInt dg = 0; dg < dE; ++dg) {
2895: if (g3[((fc * NcJ + gc) * dE + df) * dE + dg]) {
2896: g3_idxs[4 * g3_i + 0] = fidx * dE + df;
2897: g3_idxs[4 * g3_i + 1] = ((fc * NcJ + gc) * dE + df) * dE + dg;
2898: g3_idxs[4 * g3_i + 2] = gidx * dE + dg;
2899: g3_idxs[4 * g3_i + 3] = fOff;
2900: g3_i++;
2901: }
2902: }
2903: }
2904: }
2905: }
2906: }
2907: }
2908: }
2909: *n_g0 = g0_i;
2910: *n_g1 = g1_i;
2911: *n_g2 = g2_i;
2912: *n_g3 = g3_i;
2914: *g0_idxs_out = g0_idxs;
2915: *g1_idxs_out = g1_idxs;
2916: *g2_idxs_out = g2_idxs;
2917: *g3_idxs_out = g3_idxs;
2918: PetscFunctionReturn(PETSC_SUCCESS);
2919: }
2921: //example HOW TO USE
2922: for (PetscInt i = 0; i < g0_sparse_n; i++) {
2923: PetscInt bM = g0_sparse_idxs[4 * i + 0];
2924: PetscInt bN = g0_sparse_idxs[4 * i + 1];
2925: PetscInt bK = g0_sparse_idxs[4 * i + 2];
2926: PetscInt bO = g0_sparse_idxs[4 * i + 3];
2927: elemMat[bO] += tmpBasisI[bM] * g0[bN] * tmpBasisJ[bK];
2928: }
2929: #endif