Actual source code: plexsfc.c

  1: #include <petsc/private/dmpleximpl.h>
  2: #include <petscsf.h>
  3: #include <petsc/private/hashset.h>

  5: typedef uint64_t ZCode;

  7: PETSC_HASH_SET(ZSet, ZCode, PetscHash_UInt64, PetscHashEqual)

  9: typedef struct {
 10:   PetscInt i, j, k;
 11: } Ijk;

 13: typedef struct {
 14:   Ijk         eextent;
 15:   Ijk         vextent;
 16:   PetscMPIInt comm_size;
 17:   ZCode      *zstarts;
 18: } ZLayout;

 20: static unsigned ZCodeSplit1(ZCode z)
 21: {
 22:   z = ((z & 01001001001001001) | ((z >> 2) & 02002002002002002) | ((z >> 4) & 04004004004004004));
 23:   z = (z | (z >> 6) | (z >> 12)) & 0000000777000000777;
 24:   z = (z | (z >> 18)) & 0777777;
 25:   return (unsigned)z;
 26: }

 28: static ZCode ZEncode1(unsigned t)
 29: {
 30:   ZCode z = t;
 31:   z       = (z | (z << 18)) & 0777000000777;
 32:   z       = (z | (z << 6) | (z << 12)) & 07007007007007007;
 33:   z       = (z | (z << 2) | (z << 4)) & 0111111111111111111;
 34:   return z;
 35: }

 37: static Ijk ZCodeSplit(ZCode z)
 38: {
 39:   Ijk c;
 40:   c.i = ZCodeSplit1(z >> 2);
 41:   c.j = ZCodeSplit1(z >> 1);
 42:   c.k = ZCodeSplit1(z >> 0);
 43:   return c;
 44: }

 46: static ZCode ZEncode(Ijk c)
 47: {
 48:   ZCode z = (ZEncode1(c.i) << 2) | (ZEncode1(c.j) << 1) | ZEncode1(c.k);
 49:   return z;
 50: }

 52: static PetscBool IjkActive(Ijk extent, Ijk l)
 53: {
 54:   if (l.i < extent.i && l.j < extent.j && l.k < extent.k) return PETSC_TRUE;
 55:   return PETSC_FALSE;
 56: }

 58: // If z is not the base of an octet (last 3 bits 0), return 0.
 59: //
 60: // If z is the base of an octet, we recursively grow to the biggest structured octet. This is typically useful when a z
 61: // is outside the domain and we wish to skip a (possibly recursively large) octet to find our next interesting point.
 62: static ZCode ZStepOct(ZCode z)
 63: {
 64:   if (PetscUnlikely(z == 0)) return 0; // Infinite loop below if z == 0
 65:   ZCode step = 07;
 66:   for (; (z & step) == 0; step = (step << 3) | 07) { }
 67:   return step >> 3;
 68: }

 70: // Since element/vertex box extents are typically not equal powers of 2, Z codes that lie within the domain are not contiguous.
 71: static PetscErrorCode ZLayoutCreate(PetscMPIInt size, const PetscInt eextent[3], const PetscInt vextent[3], ZLayout *layout)
 72: {
 73:   PetscFunctionBegin;
 74:   layout->eextent.i = eextent[0];
 75:   layout->eextent.j = eextent[1];
 76:   layout->eextent.k = eextent[2];
 77:   layout->vextent.i = vextent[0];
 78:   layout->vextent.j = vextent[1];
 79:   layout->vextent.k = vextent[2];
 80:   layout->comm_size = size;
 81:   layout->zstarts   = NULL;
 82:   PetscCall(PetscMalloc1(size + 1, &layout->zstarts));

 84:   PetscInt total_elems = eextent[0] * eextent[1] * eextent[2];
 85:   ZCode    z           = 0;
 86:   layout->zstarts[0]   = 0;
 87:   // This loop traverses all vertices in the global domain, so is worth making fast. We use ZStepBound
 88:   for (PetscMPIInt r = 0; r < size; r++) {
 89:     PetscInt elems_needed = (total_elems / size) + (total_elems % size > r), count;
 90:     for (count = 0; count < elems_needed; z++) {
 91:       ZCode skip = ZStepOct(z); // optimistically attempt a longer step
 92:       for (ZCode s = skip;; s >>= 3) {
 93:         Ijk trial = ZCodeSplit(z + s);
 94:         if (IjkActive(layout->eextent, trial)) {
 95:           while (count + s + 1 > (ZCode)elems_needed) s >>= 3; // Shrink the octet
 96:           count += s + 1;
 97:           z += s;
 98:           break;
 99:         }
100:         if (s == 0) { // the whole skip octet is inactive
101:           z += skip;
102:           break;
103:         }
104:       }
105:     }
106:     // Pick up any extra vertices in the Z ordering before the next rank's first owned element.
107:     //
108:     // This leads to poorly balanced vertices when eextent is a power of 2, since all the fringe vertices end up
109:     // on the last rank. A possible solution is to balance the Z-order vertices independently from the cells, which will
110:     // result in a lot of element closures being remote. We could finish marking boundary conditions, then do a round of
111:     // vertex ownership smoothing (which would reorder and redistribute vertices without touching element distribution).
112:     // Another would be to have an analytic ownership criteria for vertices in the fringe veextent - eextent. This would
113:     // complicate the job of identifying an owner and its offset.
114:     //
115:     // The current recommended approach is to let `-dm_distribute 1` (default) resolve vertex ownership. This is
116:     // *mandatory* with isoperiodicity (except in special cases) to remove standed vertices from local spaces. Here's
117:     // the issue:
118:     //
119:     // Consider this partition on rank 0 (left) and rank 1.
120:     //
121:     //    4 --------  5 -- 14 --10 -- 21 --11
122:     //                |          |          |
123:     // 7 -- 16 --  8  |          |          |
124:     // |           |  3 -------  7 -------  9
125:     // |           |             |          |
126:     // 4 --------  6 ------ 10   |          |
127:     // |           |         |   6 -- 16 -- 8
128:     // |           |         |
129:     // 3 ---11---  5 --18--  9
130:     //
131:     // The periodic face SF looks like
132:     // [0] Number of roots=21, leaves=1, remote ranks=1
133:     // [0] 16 <- (0,11)
134:     // [1] Number of roots=22, leaves=2, remote ranks=2
135:     // [1] 14 <- (0,18)
136:     // [1] 21 <- (1,16)
137:     //
138:     // In handling face (0,16), rank 0 learns that (0,7) and (0,8) map to (0,3) and (0,5) respectively, thus we won't use
139:     // the point SF links to (1,4) and (1,5). Rank 1 learns about the periodic mapping of (1,5) while handling face
140:     // (1,14), but never learns that vertex (1,4) has been mapped to (0,3) by face (0,16).
141:     //
142:     // We can relatively easily inform vertex (1,4) of this mapping, but it stays in rank 1's local space despite not
143:     // being in the closure and thus not being contributed to. This would be mostly harmless except that some viewer
144:     // routines expect all local points to be somehow significant. It is not easy to analytically remove the (1,4)
145:     // vertex because the point SF and isoperiodic face SF would need to be updated to account for removal of the
146:     // stranded vertices.
147:     for (; z <= ZEncode(layout->vextent); z++) {
148:       Ijk loc = ZCodeSplit(z);
149:       if (IjkActive(layout->eextent, loc)) break;
150:       z += ZStepOct(z);
151:     }
152:     layout->zstarts[r + 1] = z;
153:   }
154:   layout->zstarts[size] = ZEncode(layout->vextent);
155:   PetscFunctionReturn(PETSC_SUCCESS);
156: }

158: static PetscInt ZLayoutElementsOnRank(const ZLayout *layout, PetscMPIInt rank)
159: {
160:   PetscInt remote_elem = 0;
161:   for (ZCode rz = layout->zstarts[rank]; rz < layout->zstarts[rank + 1]; rz++) {
162:     Ijk loc = ZCodeSplit(rz);
163:     if (IjkActive(layout->eextent, loc)) remote_elem++;
164:     else rz += ZStepOct(rz);
165:   }
166:   return remote_elem;
167: }

169: static PetscInt ZCodeFind(ZCode key, PetscInt n, const ZCode X[])
170: {
171:   PetscInt lo = 0, hi = n;

173:   if (n == 0) return -1;
174:   while (hi - lo > 1) {
175:     PetscInt mid = lo + (hi - lo) / 2;
176:     if (key < X[mid]) hi = mid;
177:     else lo = mid;
178:   }
179:   return key == X[lo] ? lo : -(lo + (key > X[lo]) + 1);
180: }

182: static PetscErrorCode DMPlexCreateBoxMesh_Tensor_SFC_Periodicity_Private(DM dm, const ZLayout *layout, const ZCode *vert_z, PetscSegBuffer per_faces[3], const PetscReal *lower, const PetscReal *upper, const DMBoundaryType *periodicity, PetscSegBuffer donor_face_closure[3], PetscSegBuffer my_donor_faces[3])
183: {
184:   MPI_Comm    comm;
185:   PetscInt    dim, vStart, vEnd;
186:   PetscMPIInt size;
187:   PetscSF     face_sfs[3];
188:   PetscScalar transforms[3][4][4] = {{{0}}};

190:   PetscFunctionBegin;
191:   PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
192:   PetscCallMPI(MPI_Comm_size(comm, &size));
193:   PetscCall(DMGetDimension(dm, &dim));
194:   const PetscInt csize = PetscPowInt(2, dim - 1);
195:   PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));

197:   PetscInt num_directions = 0;
198:   for (PetscInt direction = 0; direction < dim; direction++) {
199:     size_t       num_faces;
200:     PetscInt    *faces;
201:     ZCode       *donor_verts, *donor_minz;
202:     PetscSFNode *leaf;

204:     if (periodicity[direction] != DM_BOUNDARY_PERIODIC) continue;
205:     PetscCall(PetscSegBufferGetSize(per_faces[direction], &num_faces));
206:     PetscCall(PetscSegBufferExtractInPlace(per_faces[direction], &faces));
207:     PetscCall(PetscSegBufferExtractInPlace(donor_face_closure[direction], &donor_verts));
208:     PetscCall(PetscMalloc1(num_faces, &donor_minz));
209:     PetscCall(PetscMalloc1(num_faces, &leaf));
210:     for (PetscInt i = 0; i < (PetscInt)num_faces; i++) {
211:       ZCode minz = donor_verts[i * csize];
212:       for (PetscInt j = 1; j < csize; j++) minz = PetscMin(minz, donor_verts[i * csize + j]);
213:       donor_minz[i] = minz;
214:     }
215:     {
216:       PetscBool sorted;
217:       PetscCall(PetscSortedInt64(num_faces, (const PetscInt64 *)donor_minz, &sorted));
218:       // If a donor vertex were chosen to broker multiple faces, we would have a logic error.
219:       // Checking for sorting is a cheap check that there are no duplicates.
220:       PetscCheck(sorted, PETSC_COMM_SELF, PETSC_ERR_PLIB, "minz not sorted; possible duplicates not checked");
221:     }
222:     for (PetscInt i = 0; i < (PetscInt)num_faces;) {
223:       ZCode    z           = donor_minz[i];
224:       PetscInt remote_rank = ZCodeFind(z, size + 1, layout->zstarts), remote_count = 0;
225:       if (remote_rank < 0) remote_rank = -(remote_rank + 1) - 1;
226:       // Process all the vertices on this rank
227:       for (ZCode rz = layout->zstarts[remote_rank]; rz < layout->zstarts[remote_rank + 1]; rz++) {
228:         Ijk loc = ZCodeSplit(rz);
229:         if (rz == z) {
230:           leaf[i].rank  = remote_rank;
231:           leaf[i].index = remote_count;
232:           i++;
233:           if (i == (PetscInt)num_faces) break;
234:           z = donor_minz[i];
235:         }
236:         if (IjkActive(layout->vextent, loc)) remote_count++;
237:       }
238:     }
239:     PetscCall(PetscFree(donor_minz));
240:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)dm), &face_sfs[num_directions]));
241:     PetscCall(PetscSFSetGraph(face_sfs[num_directions], vEnd - vStart, num_faces, NULL, PETSC_USE_POINTER, leaf, PETSC_USE_POINTER));
242:     const PetscInt *my_donor_degree;
243:     PetscCall(PetscSFComputeDegreeBegin(face_sfs[num_directions], &my_donor_degree));
244:     PetscCall(PetscSFComputeDegreeEnd(face_sfs[num_directions], &my_donor_degree));
245:     PetscInt num_multiroots = 0;
246:     for (PetscInt i = 0; i < vEnd - vStart; i++) {
247:       num_multiroots += my_donor_degree[i];
248:       if (my_donor_degree[i] == 0) continue;
249:       PetscAssert(my_donor_degree[i] == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Local vertex has multiple faces");
250:     }
251:     PetscInt *my_donors, *donor_indices, *my_donor_indices;
252:     size_t    num_my_donors;
253:     PetscCall(PetscSegBufferGetSize(my_donor_faces[direction], &num_my_donors));
254:     PetscCheck((PetscInt)num_my_donors == num_multiroots, PETSC_COMM_SELF, PETSC_ERR_SUP, "Donor request does not match expected donors");
255:     PetscCall(PetscSegBufferExtractInPlace(my_donor_faces[direction], &my_donors));
256:     PetscCall(PetscMalloc1(vEnd - vStart, &my_donor_indices));
257:     for (PetscInt i = 0; i < (PetscInt)num_my_donors; i++) {
258:       PetscInt f = my_donors[i];
259:       PetscInt num_points, *points = NULL, minv = PETSC_MAX_INT;
260:       PetscCall(DMPlexGetTransitiveClosure(dm, f, PETSC_TRUE, &num_points, &points));
261:       for (PetscInt j = 0; j < num_points; j++) {
262:         PetscInt p = points[2 * j];
263:         if (p < vStart || vEnd <= p) continue;
264:         minv = PetscMin(minv, p);
265:       }
266:       PetscCall(DMPlexRestoreTransitiveClosure(dm, f, PETSC_TRUE, &num_points, &points));
267:       PetscAssert(my_donor_degree[minv - vStart] == 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "Local vertex not requested");
268:       my_donor_indices[minv - vStart] = f;
269:     }
270:     PetscCall(PetscMalloc1(num_faces, &donor_indices));
271:     PetscCall(PetscSFBcastBegin(face_sfs[num_directions], MPIU_INT, my_donor_indices, donor_indices, MPI_REPLACE));
272:     PetscCall(PetscSFBcastEnd(face_sfs[num_directions], MPIU_INT, my_donor_indices, donor_indices, MPI_REPLACE));
273:     PetscCall(PetscFree(my_donor_indices));
274:     // Modify our leafs so they point to donor faces instead of donor minz. Additionally, give them indices as faces.
275:     for (PetscInt i = 0; i < (PetscInt)num_faces; i++) leaf[i].index = donor_indices[i];
276:     PetscCall(PetscFree(donor_indices));
277:     PetscInt pStart, pEnd;
278:     PetscCall(DMPlexGetChart(dm, &pStart, &pEnd));
279:     PetscCall(PetscSFSetGraph(face_sfs[num_directions], pEnd - pStart, num_faces, faces, PETSC_COPY_VALUES, leaf, PETSC_OWN_POINTER));
280:     {
281:       char face_sf_name[PETSC_MAX_PATH_LEN];
282:       PetscCall(PetscSNPrintf(face_sf_name, sizeof face_sf_name, "Z-order Isoperiodic Faces #%" PetscInt_FMT, num_directions));
283:       PetscCall(PetscObjectSetName((PetscObject)face_sfs[num_directions], face_sf_name));
284:     }

286:     transforms[num_directions][0][0]         = 1;
287:     transforms[num_directions][1][1]         = 1;
288:     transforms[num_directions][2][2]         = 1;
289:     transforms[num_directions][3][3]         = 1;
290:     transforms[num_directions][direction][3] = upper[direction] - lower[direction];
291:     num_directions++;
292:   }

294:   PetscCall(DMPlexSetIsoperiodicFaceSF(dm, num_directions, face_sfs));
295:   PetscCall(DMPlexSetIsoperiodicFaceTransform(dm, num_directions, (PetscScalar *)transforms));

297:   for (PetscInt i = 0; i < num_directions; i++) PetscCall(PetscSFDestroy(&face_sfs[i]));
298:   PetscFunctionReturn(PETSC_SUCCESS);
299: }

301: // This is a DMGlobalToLocalHook that applies the affine offsets. When extended for rotated periodicity, it'll need to
302: // apply a rotatonal transform and similar operations will be needed for fields (e.g., to rotate a velocity vector).
303: // We use this crude approach here so we don't have to write new GPU kernels yet.
304: static PetscErrorCode DMCoordAddPeriodicOffsets_Private(DM dm, Vec g, InsertMode mode, Vec l, void *ctx)
305: {
306:   PetscFunctionBegin;
307:   // These `VecScatter`s should be merged to improve efficiency; the scatters cannot be overlapped.
308:   for (PetscInt i = 0; i < dm->periodic.num_affines; i++) {
309:     PetscCall(VecScatterBegin(dm->periodic.affine_to_local[i], dm->periodic.affine[i], l, ADD_VALUES, SCATTER_FORWARD));
310:     PetscCall(VecScatterEnd(dm->periodic.affine_to_local[i], dm->periodic.affine[i], l, ADD_VALUES, SCATTER_FORWARD));
311:   }
312:   PetscFunctionReturn(PETSC_SUCCESS);
313: }

315: // Start with an SF for a positive depth (e.g., faces) and create a new SF for matched closure. The caller must ensure
316: // that both the donor (root) face and the periodic (leaf) face have consistent orientation, meaning that their closures
317: // are isomorphic. It may be useful/necessary for this restriction to be loosened.
318: //
319: // Output Arguments:
320: //
321: // + closure_sf - augmented point SF (see `DMGetPointSF()`) that includes the faces and all points in its closure. This
322: //   can be used to create a global section and section SF.
323: // - is_points - array of index sets for just the points in the closure of `face_sf`. These may be used to apply an affine
324: //   transformation to periodic dofs; see DMPeriodicCoordinateSetUp_Internal().
325: //
326: static PetscErrorCode DMPlexCreateIsoperiodicPointSF_Private(DM dm, PetscInt num_face_sfs, PetscSF *face_sfs, PetscSF *closure_sf, IS **is_points)
327: {
328:   MPI_Comm           comm;
329:   PetscMPIInt        rank;
330:   PetscSF            point_sf;
331:   PetscInt           nroots, nleaves;
332:   const PetscInt    *filocal;
333:   const PetscSFNode *firemote;

335:   PetscFunctionBegin;
336:   PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
337:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
338:   PetscCall(DMGetPointSF(dm, &point_sf)); // Point SF has remote points
339:   PetscCall(PetscMalloc1(num_face_sfs, is_points));

341:   for (PetscInt f = 0; f < num_face_sfs; f++) {
342:     PetscSF   face_sf = face_sfs[f];
343:     PetscInt *rootdata, *leafdata;

345:     PetscCall(PetscSFGetGraph(face_sf, &nroots, &nleaves, &filocal, &firemote));
346:     PetscCall(PetscCalloc2(2 * nroots, &rootdata, 2 * nroots, &leafdata));
347:     for (PetscInt i = 0; i < nleaves; i++) {
348:       PetscInt point = filocal[i], cl_size, *closure = NULL;
349:       PetscCall(DMPlexGetTransitiveClosure(dm, point, PETSC_TRUE, &cl_size, &closure));
350:       leafdata[point] = cl_size - 1;
351:       PetscCall(DMPlexRestoreTransitiveClosure(dm, point, PETSC_TRUE, &cl_size, &closure));
352:     }
353:     PetscCall(PetscSFReduceBegin(face_sf, MPIU_INT, leafdata, rootdata + nroots, MPIU_SUM));
354:     PetscCall(PetscSFReduceEnd(face_sf, MPIU_INT, leafdata, rootdata + nroots, MPIU_SUM));

356:     PetscInt root_offset = 0;
357:     for (PetscInt p = 0; p < nroots; p++) {
358:       const PetscInt *donor_dof = rootdata + nroots;
359:       if (donor_dof[p] == 0) {
360:         rootdata[2 * p]     = -1;
361:         rootdata[2 * p + 1] = -1;
362:         continue;
363:       }
364:       PetscInt  cl_size;
365:       PetscInt *closure = NULL;
366:       PetscCall(DMPlexGetTransitiveClosure(dm, p, PETSC_TRUE, &cl_size, &closure));
367:       // cl_size - 1 = points not including self
368:       PetscAssert(donor_dof[p] == cl_size - 1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Reduced leaf cone sizes do not match root cone sizes");
369:       rootdata[2 * p]     = root_offset;
370:       rootdata[2 * p + 1] = cl_size - 1;
371:       root_offset += cl_size - 1;
372:       PetscCall(DMPlexRestoreTransitiveClosure(dm, p, PETSC_TRUE, &cl_size, &closure));
373:     }
374:     PetscCall(PetscSFBcastBegin(face_sf, MPIU_2INT, rootdata, leafdata, MPI_REPLACE));
375:     PetscCall(PetscSFBcastEnd(face_sf, MPIU_2INT, rootdata, leafdata, MPI_REPLACE));
376:     // Count how many leaves we need to communicate the closures
377:     PetscInt leaf_offset = 0;
378:     for (PetscInt i = 0; i < nleaves; i++) {
379:       PetscInt point = filocal[i];
380:       if (leafdata[2 * point + 1] < 0) continue;
381:       leaf_offset += leafdata[2 * point + 1];
382:     }

384:     PetscSFNode *closure_leaf;
385:     PetscCall(PetscMalloc1(leaf_offset, &closure_leaf));
386:     leaf_offset = 0;
387:     for (PetscInt i = 0; i < nleaves; i++) {
388:       PetscInt point   = filocal[i];
389:       PetscInt cl_size = leafdata[2 * point + 1];
390:       if (cl_size < 0) continue;
391:       for (PetscInt j = 0; j < cl_size; j++) {
392:         closure_leaf[leaf_offset].rank  = firemote[i].rank;
393:         closure_leaf[leaf_offset].index = leafdata[2 * point] + j;
394:         leaf_offset++;
395:       }
396:     }

398:     PetscSF sf_closure;
399:     PetscCall(PetscSFCreate(comm, &sf_closure));
400:     PetscCall(PetscSFSetGraph(sf_closure, root_offset, leaf_offset, NULL, PETSC_USE_POINTER, closure_leaf, PETSC_OWN_POINTER));

402:     PetscSFNode *leaf_donor_closure;
403:     { // Pack root buffer with owner for every point in the root cones
404:       PetscSFNode       *donor_closure;
405:       const PetscInt    *pilocal;
406:       const PetscSFNode *piremote;
407:       PetscInt           npoints;

409:       PetscCall(PetscSFGetGraph(point_sf, NULL, &npoints, &pilocal, &piremote));
410:       PetscCall(PetscCalloc1(root_offset, &donor_closure));
411:       root_offset = 0;
412:       for (PetscInt p = 0; p < nroots; p++) {
413:         if (rootdata[2 * p] < 0) continue;
414:         PetscInt  cl_size;
415:         PetscInt *closure = NULL;
416:         PetscCall(DMPlexGetTransitiveClosure(dm, p, PETSC_TRUE, &cl_size, &closure));
417:         for (PetscInt j = 1; j < cl_size; j++) {
418:           PetscInt c = closure[2 * j];
419:           if (pilocal) {
420:             PetscInt found = -1;
421:             if (npoints > 0) PetscCall(PetscFindInt(c, npoints, pilocal, &found));
422:             if (found >= 0) {
423:               donor_closure[root_offset++] = piremote[found];
424:               continue;
425:             }
426:           }
427:           // we own c
428:           donor_closure[root_offset].rank  = rank;
429:           donor_closure[root_offset].index = c;
430:           root_offset++;
431:         }
432:         PetscCall(DMPlexRestoreTransitiveClosure(dm, p, PETSC_TRUE, &cl_size, &closure));
433:       }

435:       PetscCall(PetscMalloc1(leaf_offset, &leaf_donor_closure));
436:       PetscCall(PetscSFBcastBegin(sf_closure, MPIU_2INT, donor_closure, leaf_donor_closure, MPI_REPLACE));
437:       PetscCall(PetscSFBcastEnd(sf_closure, MPIU_2INT, donor_closure, leaf_donor_closure, MPI_REPLACE));
438:       PetscCall(PetscSFDestroy(&sf_closure));
439:       PetscCall(PetscFree(donor_closure));
440:     }

442:     PetscSFNode *new_iremote;
443:     PetscCall(PetscCalloc1(nroots, &new_iremote));
444:     for (PetscInt i = 0; i < nroots; i++) new_iremote[i].rank = -1;
445:     // Walk leaves and match vertices
446:     leaf_offset = 0;
447:     for (PetscInt i = 0; i < nleaves; i++) {
448:       PetscInt  point   = filocal[i], cl_size;
449:       PetscInt *closure = NULL;
450:       PetscCall(DMPlexGetTransitiveClosure(dm, point, PETSC_TRUE, &cl_size, &closure));
451:       for (PetscInt j = 1; j < cl_size; j++) { // TODO: should we send donor edge orientations so we can flip for consistency?
452:         PetscInt    c  = closure[2 * j];
453:         PetscSFNode lc = leaf_donor_closure[leaf_offset];
454:         // printf("[%d] face %d.%d: %d ?-- (%d,%d)\n", rank, point, j, c, lc.rank, lc.index);
455:         if (new_iremote[c].rank == -1) {
456:           new_iremote[c] = lc;
457:         } else PetscCheck(new_iremote[c].rank == lc.rank && new_iremote[c].index == lc.index, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Mismatched cone ordering between faces");
458:         leaf_offset++;
459:       }
460:       PetscCall(DMPlexRestoreTransitiveClosure(dm, point, PETSC_TRUE, &cl_size, &closure));
461:     }
462:     PetscCall(PetscFree(leaf_donor_closure));

464:     // Include face points in closure SF
465:     for (PetscInt i = 0; i < nleaves; i++) new_iremote[filocal[i]] = firemote[i];
466:     // consolidate leaves
467:     PetscInt num_new_leaves = 0;
468:     for (PetscInt i = 0; i < nroots; i++) {
469:       if (new_iremote[i].rank == -1) continue;
470:       new_iremote[num_new_leaves] = new_iremote[i];
471:       leafdata[num_new_leaves]    = i;
472:       num_new_leaves++;
473:     }
474:     PetscCall(ISCreateGeneral(PETSC_COMM_SELF, num_new_leaves, leafdata, PETSC_COPY_VALUES, &(*is_points)[f]));

476:     PetscSF csf;
477:     PetscCall(PetscSFCreate(comm, &csf));
478:     PetscCall(PetscSFSetGraph(csf, nroots, num_new_leaves, leafdata, PETSC_COPY_VALUES, new_iremote, PETSC_COPY_VALUES));
479:     PetscCall(PetscFree(new_iremote)); // copy and delete because new_iremote is longer than it needs to be
480:     PetscCall(PetscFree2(rootdata, leafdata));

482:     PetscInt npoints;
483:     PetscCall(PetscSFGetGraph(point_sf, NULL, &npoints, NULL, NULL));
484:     if (npoints < 0) { // empty point_sf
485:       *closure_sf = csf;
486:     } else {
487:       PetscCall(PetscSFMerge(point_sf, csf, closure_sf));
488:       PetscCall(PetscSFDestroy(&csf));
489:     }
490:     if (f > 0) PetscCall(PetscSFDestroy(&point_sf)); // Only destroy if point_sf is from previous calls to PetscSFMerge
491:     point_sf = *closure_sf;                          // Use combined point + isoperiodic SF to define point ownership for further face_sf
492:   }
493:   PetscCall(PetscObjectSetName((PetscObject)*closure_sf, "Composed Periodic Points"));
494:   PetscFunctionReturn(PETSC_SUCCESS);
495: }

497: static PetscErrorCode DMGetIsoperiodicPointSF_Plex(DM dm, PetscSF *sf)
498: {
499:   DM_Plex *plex = (DM_Plex *)dm->data;

501:   PetscFunctionBegin;
502:   if (!plex->periodic.composed_sf) PetscCall(DMPlexCreateIsoperiodicPointSF_Private(dm, plex->periodic.num_face_sfs, plex->periodic.face_sfs, &plex->periodic.composed_sf, &plex->periodic.periodic_points));
503:   if (sf) *sf = plex->periodic.composed_sf;
504:   PetscFunctionReturn(PETSC_SUCCESS);
505: }

507: PetscErrorCode DMPlexMigrateIsoperiodicFaceSF_Internal(DM old_dm, DM dm, PetscSF sf_migration)
508: {
509:   DM_Plex    *plex = (DM_Plex *)old_dm->data;
510:   PetscSF     sf_point, *new_face_sfs;
511:   PetscMPIInt rank;

513:   PetscFunctionBegin;
514:   if (!plex->periodic.face_sfs) PetscFunctionReturn(PETSC_SUCCESS);
515:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)dm), &rank));
516:   PetscCall(DMGetPointSF(dm, &sf_point));
517:   PetscCall(PetscMalloc1(plex->periodic.num_face_sfs, &new_face_sfs));

519:   for (PetscInt f = 0; f < plex->periodic.num_face_sfs; f++) {
520:     PetscInt           old_npoints, new_npoints, old_nleaf, new_nleaf, point_nleaf;
521:     PetscSFNode       *new_leafdata, *rootdata, *leafdata;
522:     const PetscInt    *old_local, *point_local;
523:     const PetscSFNode *old_remote, *point_remote;
524:     PetscCall(PetscSFGetGraph(plex->periodic.face_sfs[f], &old_npoints, &old_nleaf, &old_local, &old_remote));
525:     PetscCall(PetscSFGetGraph(sf_migration, NULL, &new_nleaf, NULL, NULL));
526:     PetscCall(PetscSFGetGraph(sf_point, &new_npoints, &point_nleaf, &point_local, &point_remote));
527:     PetscAssert(new_nleaf == new_npoints, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Expected migration leaf space to match new point root space");
528:     PetscCall(PetscMalloc3(old_npoints, &rootdata, old_npoints, &leafdata, new_npoints, &new_leafdata));

530:     // Fill new_leafdata with new owners of all points
531:     for (PetscInt i = 0; i < new_npoints; i++) {
532:       new_leafdata[i].rank  = rank;
533:       new_leafdata[i].index = i;
534:     }
535:     for (PetscInt i = 0; i < point_nleaf; i++) {
536:       PetscInt j      = point_local[i];
537:       new_leafdata[j] = point_remote[i];
538:     }
539:     // REPLACE is okay because every leaf agrees about the new owners
540:     PetscCall(PetscSFReduceBegin(sf_migration, MPIU_2INT, new_leafdata, rootdata, MPI_REPLACE));
541:     PetscCall(PetscSFReduceEnd(sf_migration, MPIU_2INT, new_leafdata, rootdata, MPI_REPLACE));
542:     // rootdata now contains the new owners

544:     // Send to leaves of old space
545:     for (PetscInt i = 0; i < old_npoints; i++) {
546:       leafdata[i].rank  = -1;
547:       leafdata[i].index = -1;
548:     }
549:     PetscCall(PetscSFBcastBegin(plex->periodic.face_sfs[f], MPIU_2INT, rootdata, leafdata, MPI_REPLACE));
550:     PetscCall(PetscSFBcastEnd(plex->periodic.face_sfs[f], MPIU_2INT, rootdata, leafdata, MPI_REPLACE));

552:     // Send to new leaf space
553:     PetscCall(PetscSFBcastBegin(sf_migration, MPIU_2INT, leafdata, new_leafdata, MPI_REPLACE));
554:     PetscCall(PetscSFBcastEnd(sf_migration, MPIU_2INT, leafdata, new_leafdata, MPI_REPLACE));

556:     PetscInt     nface = 0, *new_local;
557:     PetscSFNode *new_remote;
558:     for (PetscInt i = 0; i < new_npoints; i++) nface += (new_leafdata[i].rank >= 0);
559:     PetscCall(PetscMalloc1(nface, &new_local));
560:     PetscCall(PetscMalloc1(nface, &new_remote));
561:     nface = 0;
562:     for (PetscInt i = 0; i < new_npoints; i++) {
563:       if (new_leafdata[i].rank == -1) continue;
564:       new_local[nface]  = i;
565:       new_remote[nface] = new_leafdata[i];
566:       nface++;
567:     }
568:     PetscCall(PetscFree3(rootdata, leafdata, new_leafdata));
569:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)dm), &new_face_sfs[f]));
570:     PetscCall(PetscSFSetGraph(new_face_sfs[f], new_npoints, nface, new_local, PETSC_OWN_POINTER, new_remote, PETSC_OWN_POINTER));
571:     {
572:       char new_face_sf_name[PETSC_MAX_PATH_LEN];
573:       PetscCall(PetscSNPrintf(new_face_sf_name, sizeof new_face_sf_name, "Migrated Isoperiodic Faces #%" PetscInt_FMT, f));
574:       PetscCall(PetscObjectSetName((PetscObject)new_face_sfs[f], new_face_sf_name));
575:     }
576:   }

578:   PetscCall(DMPlexSetIsoperiodicFaceSF(dm, plex->periodic.num_face_sfs, new_face_sfs));
579:   PetscCall(DMPlexSetIsoperiodicFaceTransform(dm, plex->periodic.num_face_sfs, (PetscScalar *)plex->periodic.transform));
580:   for (PetscInt f = 0; f < plex->periodic.num_face_sfs; f++) PetscCall(PetscSFDestroy(&new_face_sfs[f]));
581:   PetscCall(PetscFree(new_face_sfs));
582:   PetscFunctionReturn(PETSC_SUCCESS);
583: }

585: PetscErrorCode DMPeriodicCoordinateSetUp_Internal(DM dm)
586: {
587:   DM_Plex *plex = (DM_Plex *)dm->data;
588:   size_t   count;
589:   IS       isdof;
590:   PetscInt dim;

592:   PetscFunctionBegin;
593:   if (!plex->periodic.face_sfs) PetscFunctionReturn(PETSC_SUCCESS);
594:   PetscCall(DMGetIsoperiodicPointSF_Plex(dm, NULL));
595:   PetscCall(PetscObjectComposeFunction((PetscObject)dm, "DMGetIsoperiodicPointSF_C", DMGetIsoperiodicPointSF_Plex));

597:   PetscCall(DMGetDimension(dm, &dim));
598:   dm->periodic.num_affines = plex->periodic.num_face_sfs;
599:   PetscCall(PetscMalloc2(dm->periodic.num_affines, &dm->periodic.affine_to_local, dm->periodic.num_affines, &dm->periodic.affine));

601:   for (PetscInt f = 0; f < plex->periodic.num_face_sfs; f++) {
602:     {
603:       PetscInt        npoints;
604:       const PetscInt *points;
605:       IS              is = plex->periodic.periodic_points[f];
606:       PetscSegBuffer  seg;
607:       PetscSection    section;
608:       PetscCall(DMGetLocalSection(dm, &section));
609:       PetscCall(PetscSegBufferCreate(sizeof(PetscInt), 32, &seg));
610:       PetscCall(ISGetSize(is, &npoints));
611:       PetscCall(ISGetIndices(is, &points));
612:       for (PetscInt i = 0; i < npoints; i++) {
613:         PetscInt point = points[i], off, dof;
614:         PetscCall(PetscSectionGetOffset(section, point, &off));
615:         PetscCall(PetscSectionGetDof(section, point, &dof));
616:         PetscAssert(dof % dim == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unexpected dof %" PetscInt_FMT " not divisible by dimension %" PetscInt_FMT, dof, dim);
617:         for (PetscInt j = 0; j < dof / dim; j++) {
618:           PetscInt *slot;
619:           PetscCall(PetscSegBufferGetInts(seg, 1, &slot));
620:           *slot = off / dim + j;
621:         }
622:       }
623:       PetscInt *ind;
624:       PetscCall(PetscSegBufferGetSize(seg, &count));
625:       PetscCall(PetscSegBufferExtractAlloc(seg, &ind));
626:       PetscCall(PetscSegBufferDestroy(&seg));
627:       PetscCall(ISCreateBlock(PETSC_COMM_SELF, dim, count, ind, PETSC_OWN_POINTER, &isdof));
628:     }
629:     Vec        L, P;
630:     VecType    vec_type;
631:     VecScatter scatter;
632:     PetscCall(DMGetLocalVector(dm, &L));
633:     PetscCall(VecCreate(PETSC_COMM_SELF, &P));
634:     PetscCall(VecSetSizes(P, count * dim, count * dim));
635:     PetscCall(VecGetType(L, &vec_type));
636:     PetscCall(VecSetType(P, vec_type));
637:     PetscCall(VecScatterCreate(P, NULL, L, isdof, &scatter));
638:     PetscCall(DMRestoreLocalVector(dm, &L));
639:     PetscCall(ISDestroy(&isdof));

641:     {
642:       PetscScalar *x;
643:       PetscCall(VecGetArrayWrite(P, &x));
644:       for (PetscInt i = 0; i < (PetscInt)count; i++) {
645:         for (PetscInt j = 0; j < dim; j++) x[i * dim + j] = plex->periodic.transform[f][j][3];
646:       }
647:       PetscCall(VecRestoreArrayWrite(P, &x));
648:     }

650:     dm->periodic.affine_to_local[f] = scatter;
651:     dm->periodic.affine[f]          = P;
652:   }
653:   PetscCall(DMGlobalToLocalHookAdd(dm, NULL, DMCoordAddPeriodicOffsets_Private, NULL));
654:   PetscFunctionReturn(PETSC_SUCCESS);
655: }

657: // We'll just orient all the edges, though only periodic boundary edges need orientation
658: static PetscErrorCode DMPlexOrientPositiveEdges_Private(DM dm)
659: {
660:   PetscInt dim, eStart, eEnd;

662:   PetscFunctionBegin;
663:   PetscCall(DMGetDimension(dm, &dim));
664:   if (dim < 3) PetscFunctionReturn(PETSC_SUCCESS); // not necessary
665:   PetscCall(DMPlexGetDepthStratum(dm, 1, &eStart, &eEnd));
666:   for (PetscInt e = eStart; e < eEnd; e++) {
667:     const PetscInt *cone;
668:     PetscCall(DMPlexGetCone(dm, e, &cone));
669:     if (cone[0] > cone[1]) PetscCall(DMPlexOrientPoint(dm, e, -1));
670:   }
671:   PetscFunctionReturn(PETSC_SUCCESS);
672: }

674: PetscErrorCode DMPlexCreateBoxMesh_Tensor_SFC_Internal(DM dm, PetscInt dim, const PetscInt faces[], const PetscReal lower[], const PetscReal upper[], const DMBoundaryType periodicity[], PetscBool interpolate)
675: {
676:   PetscInt  eextent[3] = {1, 1, 1}, vextent[3] = {1, 1, 1};
677:   const Ijk closure_1[] = {
678:     {0, 0, 0},
679:     {1, 0, 0},
680:   };
681:   const Ijk closure_2[] = {
682:     {0, 0, 0},
683:     {1, 0, 0},
684:     {1, 1, 0},
685:     {0, 1, 0},
686:   };
687:   const Ijk closure_3[] = {
688:     {0, 0, 0},
689:     {0, 1, 0},
690:     {1, 1, 0},
691:     {1, 0, 0},
692:     {0, 0, 1},
693:     {1, 0, 1},
694:     {1, 1, 1},
695:     {0, 1, 1},
696:   };
697:   const Ijk *const closure_dim[] = {NULL, closure_1, closure_2, closure_3};
698:   // This must be kept consistent with DMPlexCreateCubeMesh_Internal
699:   const PetscInt        face_marker_1[]   = {1, 2};
700:   const PetscInt        face_marker_2[]   = {4, 2, 1, 3};
701:   const PetscInt        face_marker_3[]   = {6, 5, 3, 4, 1, 2};
702:   const PetscInt *const face_marker_dim[] = {NULL, face_marker_1, face_marker_2, face_marker_3};
703:   // Orient faces so the normal is in the positive axis and the first vertex is the one closest to zero.
704:   // These orientations can be determined by examining cones of a reference quad and hex element.
705:   const PetscInt        face_orient_1[]   = {0, 0};
706:   const PetscInt        face_orient_2[]   = {-1, 0, 0, -1};
707:   const PetscInt        face_orient_3[]   = {-2, 0, -2, 1, -2, 0};
708:   const PetscInt *const face_orient_dim[] = {NULL, face_orient_1, face_orient_2, face_orient_3};

710:   PetscFunctionBegin;
711:   PetscAssertPointer(dm, 1);
713:   PetscCall(DMSetDimension(dm, dim));
714:   PetscMPIInt rank, size;
715:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)dm), &size));
716:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)dm), &rank));
717:   for (PetscInt i = 0; i < dim; i++) {
718:     eextent[i] = faces[i];
719:     vextent[i] = faces[i] + 1;
720:   }
721:   ZLayout layout;
722:   PetscCall(ZLayoutCreate(size, eextent, vextent, &layout));
723:   PetscZSet vset; // set of all vertices in the closure of the owned elements
724:   PetscCall(PetscZSetCreate(&vset));
725:   PetscInt local_elems = 0;
726:   for (ZCode z = layout.zstarts[rank]; z < layout.zstarts[rank + 1]; z++) {
727:     Ijk loc = ZCodeSplit(z);
728:     if (IjkActive(layout.vextent, loc)) PetscCall(PetscZSetAdd(vset, z));
729:     else {
730:       z += ZStepOct(z);
731:       continue;
732:     }
733:     if (IjkActive(layout.eextent, loc)) {
734:       local_elems++;
735:       // Add all neighboring vertices to set
736:       for (PetscInt n = 0; n < PetscPowInt(2, dim); n++) {
737:         Ijk   inc  = closure_dim[dim][n];
738:         Ijk   nloc = {loc.i + inc.i, loc.j + inc.j, loc.k + inc.k};
739:         ZCode v    = ZEncode(nloc);
740:         PetscCall(PetscZSetAdd(vset, v));
741:       }
742:     }
743:   }
744:   PetscInt local_verts, off = 0;
745:   ZCode   *vert_z;
746:   PetscCall(PetscZSetGetSize(vset, &local_verts));
747:   PetscCall(PetscMalloc1(local_verts, &vert_z));
748:   PetscCall(PetscZSetGetElems(vset, &off, vert_z));
749:   PetscCall(PetscZSetDestroy(&vset));
750:   // ZCode is unsigned for bitwise convenience, but highest bit should never be set, so can interpret as signed
751:   PetscCall(PetscSortInt64(local_verts, (PetscInt64 *)vert_z));

753:   PetscCall(DMPlexSetChart(dm, 0, local_elems + local_verts));
754:   for (PetscInt e = 0; e < local_elems; e++) PetscCall(DMPlexSetConeSize(dm, e, PetscPowInt(2, dim)));
755:   PetscCall(DMSetUp(dm));
756:   {
757:     PetscInt e = 0;
758:     for (ZCode z = layout.zstarts[rank]; z < layout.zstarts[rank + 1]; z++) {
759:       Ijk loc = ZCodeSplit(z);
760:       if (!IjkActive(layout.eextent, loc)) {
761:         z += ZStepOct(z);
762:         continue;
763:       }
764:       PetscInt cone[8], orient[8] = {0};
765:       for (PetscInt n = 0; n < PetscPowInt(2, dim); n++) {
766:         Ijk      inc  = closure_dim[dim][n];
767:         Ijk      nloc = {loc.i + inc.i, loc.j + inc.j, loc.k + inc.k};
768:         ZCode    v    = ZEncode(nloc);
769:         PetscInt ci   = ZCodeFind(v, local_verts, vert_z);
770:         PetscAssert(ci >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Did not find neighbor vertex in set");
771:         cone[n] = local_elems + ci;
772:       }
773:       PetscCall(DMPlexSetCone(dm, e, cone));
774:       PetscCall(DMPlexSetConeOrientation(dm, e, orient));
775:       e++;
776:     }
777:   }

779:   PetscCall(DMPlexSymmetrize(dm));
780:   PetscCall(DMPlexStratify(dm));

782:   { // Create point SF
783:     PetscSF sf;
784:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)dm), &sf));
785:     PetscInt owned_verts = ZCodeFind(layout.zstarts[rank + 1], local_verts, vert_z);
786:     if (owned_verts < 0) owned_verts = -(owned_verts + 1); // We don't care whether the key was found
787:     PetscInt     num_ghosts = local_verts - owned_verts;   // Due to sorting, owned vertices always come first
788:     PetscInt    *local_ghosts;
789:     PetscSFNode *ghosts;
790:     PetscCall(PetscMalloc1(num_ghosts, &local_ghosts));
791:     PetscCall(PetscMalloc1(num_ghosts, &ghosts));
792:     for (PetscInt i = 0; i < num_ghosts;) {
793:       ZCode    z           = vert_z[owned_verts + i];
794:       PetscInt remote_rank = ZCodeFind(z, size + 1, layout.zstarts), remote_count = 0;
795:       if (remote_rank < 0) remote_rank = -(remote_rank + 1) - 1;
796:       // We have a new remote rank; find all the ghost indices (which are contiguous in vert_z)

798:       // Count the elements on remote_rank
799:       PetscInt remote_elem = ZLayoutElementsOnRank(&layout, remote_rank);

801:       // Traverse vertices and make ghost links
802:       for (ZCode rz = layout.zstarts[remote_rank]; rz < layout.zstarts[remote_rank + 1]; rz++) {
803:         Ijk loc = ZCodeSplit(rz);
804:         if (rz == z) {
805:           local_ghosts[i] = local_elems + owned_verts + i;
806:           ghosts[i].rank  = remote_rank;
807:           ghosts[i].index = remote_elem + remote_count;
808:           i++;
809:           if (i == num_ghosts) break;
810:           z = vert_z[owned_verts + i];
811:         }
812:         if (IjkActive(layout.vextent, loc)) remote_count++;
813:         else rz += ZStepOct(rz);
814:       }
815:     }
816:     PetscCall(PetscSFSetGraph(sf, local_elems + local_verts, num_ghosts, local_ghosts, PETSC_OWN_POINTER, ghosts, PETSC_OWN_POINTER));
817:     PetscCall(PetscObjectSetName((PetscObject)sf, "SFC Point SF"));
818:     PetscCall(DMSetPointSF(dm, sf));
819:     PetscCall(PetscSFDestroy(&sf));
820:   }
821:   {
822:     Vec          coordinates;
823:     PetscScalar *coords;
824:     PetscSection coord_section;
825:     PetscInt     coord_size;
826:     PetscCall(DMGetCoordinateSection(dm, &coord_section));
827:     PetscCall(PetscSectionSetNumFields(coord_section, 1));
828:     PetscCall(PetscSectionSetFieldComponents(coord_section, 0, dim));
829:     PetscCall(PetscSectionSetChart(coord_section, local_elems, local_elems + local_verts));
830:     for (PetscInt v = 0; v < local_verts; v++) {
831:       PetscInt point = local_elems + v;
832:       PetscCall(PetscSectionSetDof(coord_section, point, dim));
833:       PetscCall(PetscSectionSetFieldDof(coord_section, point, 0, dim));
834:     }
835:     PetscCall(PetscSectionSetUp(coord_section));
836:     PetscCall(PetscSectionGetStorageSize(coord_section, &coord_size));
837:     PetscCall(VecCreate(PETSC_COMM_SELF, &coordinates));
838:     PetscCall(PetscObjectSetName((PetscObject)coordinates, "coordinates"));
839:     PetscCall(VecSetSizes(coordinates, coord_size, PETSC_DETERMINE));
840:     PetscCall(VecSetBlockSize(coordinates, dim));
841:     PetscCall(VecSetType(coordinates, VECSTANDARD));
842:     PetscCall(VecGetArray(coordinates, &coords));
843:     for (PetscInt v = 0; v < local_verts; v++) {
844:       Ijk loc             = ZCodeSplit(vert_z[v]);
845:       coords[v * dim + 0] = lower[0] + loc.i * (upper[0] - lower[0]) / layout.eextent.i;
846:       if (dim > 1) coords[v * dim + 1] = lower[1] + loc.j * (upper[1] - lower[1]) / layout.eextent.j;
847:       if (dim > 2) coords[v * dim + 2] = lower[2] + loc.k * (upper[2] - lower[2]) / layout.eextent.k;
848:     }
849:     PetscCall(VecRestoreArray(coordinates, &coords));
850:     PetscCall(DMSetCoordinatesLocal(dm, coordinates));
851:     PetscCall(VecDestroy(&coordinates));
852:   }
853:   if (interpolate) {
854:     PetscCall(DMPlexInterpolateInPlace_Internal(dm));
855:     // It's currently necessary to orient the donor and periodic edges consistently. An easy way to ensure that is ot
856:     // give all edges positive orientation. Since vertices are created in Z-order, all ranks will agree about the
857:     // ordering cone[0] < cone[1]. This is overkill and it would be nice to remove this preparation and make
858:     // DMPlexCreateIsoperiodicClosureSF_Private() more resilient, so it fixes any inconsistent orientations. That might
859:     // be needed in a general CGNS reader, for example.
860:     PetscCall(DMPlexOrientPositiveEdges_Private(dm));

862:     DMLabel label;
863:     PetscCall(DMCreateLabel(dm, "Face Sets"));
864:     PetscCall(DMGetLabel(dm, "Face Sets", &label));
865:     PetscSegBuffer per_faces[3], donor_face_closure[3], my_donor_faces[3];
866:     for (PetscInt i = 0; i < 3; i++) {
867:       PetscCall(PetscSegBufferCreate(sizeof(PetscInt), 64, &per_faces[i]));
868:       PetscCall(PetscSegBufferCreate(sizeof(PetscInt), 64, &my_donor_faces[i]));
869:       PetscCall(PetscSegBufferCreate(sizeof(ZCode), 64 * PetscPowInt(2, dim), &donor_face_closure[i]));
870:     }
871:     PetscInt fStart, fEnd, vStart, vEnd;
872:     PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
873:     PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
874:     for (PetscInt f = fStart; f < fEnd; f++) {
875:       PetscInt npoints, *points = NULL, num_fverts = 0, fverts[8];
876:       PetscCall(DMPlexGetTransitiveClosure(dm, f, PETSC_TRUE, &npoints, &points));
877:       PetscInt bc_count[6] = {0};
878:       for (PetscInt i = 0; i < npoints; i++) {
879:         PetscInt p = points[2 * i];
880:         if (p < vStart || vEnd <= p) continue;
881:         fverts[num_fverts++] = p;
882:         Ijk loc              = ZCodeSplit(vert_z[p - vStart]);
883:         // Convention here matches DMPlexCreateCubeMesh_Internal
884:         bc_count[0] += loc.i == 0;
885:         bc_count[1] += loc.i == layout.vextent.i - 1;
886:         bc_count[2] += loc.j == 0;
887:         bc_count[3] += loc.j == layout.vextent.j - 1;
888:         bc_count[4] += loc.k == 0;
889:         bc_count[5] += loc.k == layout.vextent.k - 1;
890:       }
891:       PetscCall(DMPlexRestoreTransitiveClosure(dm, f, PETSC_TRUE, &npoints, &points));
892:       for (PetscInt bc = 0, bc_match = 0; bc < 2 * dim; bc++) {
893:         if (bc_count[bc] == PetscPowInt(2, dim - 1)) {
894:           PetscCall(DMPlexOrientPoint(dm, f, face_orient_dim[dim][bc]));
895:           if (periodicity[bc / 2] == DM_BOUNDARY_PERIODIC) {
896:             PetscInt *put;
897:             if (bc % 2 == 0) { // donor face; no label
898:               PetscCall(PetscSegBufferGet(my_donor_faces[bc / 2], 1, &put));
899:               *put = f;
900:             } else { // periodic face
901:               PetscCall(PetscSegBufferGet(per_faces[bc / 2], 1, &put));
902:               *put = f;
903:               ZCode *zput;
904:               PetscCall(PetscSegBufferGet(donor_face_closure[bc / 2], num_fverts, &zput));
905:               for (PetscInt i = 0; i < num_fverts; i++) {
906:                 Ijk loc = ZCodeSplit(vert_z[fverts[i] - vStart]);
907:                 switch (bc / 2) {
908:                 case 0:
909:                   loc.i = 0;
910:                   break;
911:                 case 1:
912:                   loc.j = 0;
913:                   break;
914:                 case 2:
915:                   loc.k = 0;
916:                   break;
917:                 }
918:                 *zput++ = ZEncode(loc);
919:               }
920:             }
921:             continue;
922:           }
923:           PetscAssert(bc_match == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face matches multiple face sets");
924:           PetscCall(DMLabelSetValue(label, f, face_marker_dim[dim][bc]));
925:           bc_match++;
926:         }
927:       }
928:     }
929:     // Ensure that the Coordinate DM has our new boundary labels
930:     DM cdm;
931:     PetscCall(DMGetCoordinateDM(dm, &cdm));
932:     PetscCall(DMCopyLabels(dm, cdm, PETSC_COPY_VALUES, PETSC_FALSE, DM_COPY_LABELS_FAIL));
933:     if (periodicity[0] == DM_BOUNDARY_PERIODIC || (dim > 1 && periodicity[1] == DM_BOUNDARY_PERIODIC) || (dim > 2 && periodicity[2] == DM_BOUNDARY_PERIODIC)) {
934:       PetscCall(DMPlexCreateBoxMesh_Tensor_SFC_Periodicity_Private(dm, &layout, vert_z, per_faces, lower, upper, periodicity, donor_face_closure, my_donor_faces));
935:     }
936:     for (PetscInt i = 0; i < 3; i++) {
937:       PetscCall(PetscSegBufferDestroy(&per_faces[i]));
938:       PetscCall(PetscSegBufferDestroy(&donor_face_closure[i]));
939:       PetscCall(PetscSegBufferDestroy(&my_donor_faces[i]));
940:     }
941:   }
942:   PetscCall(PetscFree(layout.zstarts));
943:   PetscCall(PetscFree(vert_z));
944:   PetscFunctionReturn(PETSC_SUCCESS);
945: }

947: /*@
948:   DMPlexSetIsoperiodicFaceSF - Express periodicity from an existing mesh

950:   Logically Collective

952:   Input Parameters:
953: + dm           - The `DMPLEX` on which to set periodicity
954: . num_face_sfs - Number of `PetscSF`s in `face_sfs`
955: - face_sfs     - Array of `PetscSF` in which roots are (owned) donor faces and leaves are faces that must be matched to a (possibly remote) donor face.

957:   Level: advanced

959:   Note:
960:   One can use `-dm_plex_shape zbox` to use this mode of periodicity, wherein the periodic points are distinct both globally
961:   and locally, but are paired when creating a global dof space.

963: .seealso: [](ch_unstructured), `DMPLEX`, `DMGetGlobalSection()`, `DMPlexGetIsoperiodicFaceSF()`
964: @*/
965: PetscErrorCode DMPlexSetIsoperiodicFaceSF(DM dm, PetscInt num_face_sfs, PetscSF *face_sfs)
966: {
967:   DM_Plex *plex = (DM_Plex *)dm->data;

969:   PetscFunctionBegin;
971:   if (face_sfs) PetscCall(PetscObjectComposeFunction((PetscObject)dm, "DMGetIsoperiodicPointSF_C", DMGetIsoperiodicPointSF_Plex));
972:   if (face_sfs == plex->periodic.face_sfs && num_face_sfs == plex->periodic.num_face_sfs) PetscFunctionReturn(PETSC_SUCCESS);

974:   for (PetscInt i = 0; i < num_face_sfs; i++) PetscCall(PetscObjectReference((PetscObject)face_sfs[i]));

976:   if (plex->periodic.num_face_sfs > 0) {
977:     for (PetscInt i = 0; i < plex->periodic.num_face_sfs; i++) PetscCall(PetscSFDestroy(&plex->periodic.face_sfs[i]));
978:     PetscCall(PetscFree(plex->periodic.face_sfs));
979:   }

981:   plex->periodic.num_face_sfs = num_face_sfs;
982:   PetscCall(PetscCalloc1(num_face_sfs, &plex->periodic.face_sfs));
983:   for (PetscInt i = 0; i < num_face_sfs; i++) plex->periodic.face_sfs[i] = face_sfs[i];

985:   DM cdm = dm->coordinates[0].dm; // Can't DMGetCoordinateDM because it automatically creates one
986:   if (cdm) {
987:     PetscCall(DMPlexSetIsoperiodicFaceSF(cdm, num_face_sfs, face_sfs));
988:     if (face_sfs) cdm->periodic.setup = DMPeriodicCoordinateSetUp_Internal;
989:   }
990:   PetscFunctionReturn(PETSC_SUCCESS);
991: }

993: /*@C
994:   DMPlexGetIsoperiodicFaceSF - Obtain periodicity for a mesh

996:   Logically Collective

998:   Input Parameter:
999: . dm - The `DMPLEX` for which to obtain periodic relation

1001:   Output Parameters:
1002: + num_face_sfs - Number of `PetscSF`s in the array
1003: - face_sfs     - Array of `PetscSF` in which roots are (owned) donor faces and leaves are faces that must be matched to a (possibly remote) donor face.

1005:   Level: advanced

1007: .seealso: [](ch_unstructured), `DMPLEX`, `DMGetGlobalSection()`, `DMPlexSetIsoperiodicFaceSF()`
1008: @*/
1009: PetscErrorCode DMPlexGetIsoperiodicFaceSF(DM dm, PetscInt *num_face_sfs, const PetscSF **face_sfs)
1010: {
1011:   DM_Plex *plex = (DM_Plex *)dm->data;

1013:   PetscFunctionBegin;
1015:   *face_sfs     = plex->periodic.face_sfs;
1016:   *num_face_sfs = plex->periodic.num_face_sfs;
1017:   PetscFunctionReturn(PETSC_SUCCESS);
1018: }

1020: /*@C
1021:   DMPlexSetIsoperiodicFaceTransform - set geometric transform from donor to periodic points

1023:   Logically Collective

1025:   Input Parameters:
1026: + dm - `DMPLEX` that has been configured with `DMPlexSetIsoperiodicFaceSF()`
1027: . n  - Number of transforms in array
1028: - t  - Array of 4x4 affine transformation basis.

1030:   Level: advanced

1032:   Notes:
1033:   Affine transforms are 4x4 matrices in which the leading 3x3 block expresses a rotation (or identity for no rotation),
1034:   the last column contains a translation vector, and the bottom row is all zero except the last entry, which must always
1035:   be 1. This representation is common in geometric modeling and allows affine transformations to be composed using
1036:   simple matrix multiplication.

1038:   Although the interface accepts a general affine transform, only affine translation is supported at present.

1040:   Developer Notes:
1041:   This interface should be replaced by making BasisTransform public, expanding it to support affine representations, and
1042:   adding GPU implementations to apply the G2L/L2G transforms.

1044: .seealso: [](ch_unstructured), `DMPLEX`, `DMGetGlobalSection()`, `DMPlexSetIsoperiodicFaceSF()`
1045: @*/
1046: PetscErrorCode DMPlexSetIsoperiodicFaceTransform(DM dm, PetscInt n, const PetscScalar *t)
1047: {
1048:   DM_Plex *plex = (DM_Plex *)dm->data;

1050:   PetscFunctionBegin;
1052:   PetscCheck(n == plex->periodic.num_face_sfs, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Number of transforms (%" PetscInt_FMT ") must equal number of isoperiodc face SFs (%" PetscInt_FMT ")", n, plex->periodic.num_face_sfs);

1054:   PetscCall(PetscMalloc1(n, &plex->periodic.transform));
1055:   for (PetscInt i = 0; i < n; i++) {
1056:     for (PetscInt j = 0; j < 4; j++) {
1057:       for (PetscInt k = 0; k < 4; k++) {
1058:         PetscCheck(j != k || t[i * 16 + j * 4 + k] == 1., PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Rotated transforms not supported");
1059:         plex->periodic.transform[i][j][k] = t[i * 16 + j * 4 + k];
1060:       }
1061:     }
1062:   }
1063:   PetscFunctionReturn(PETSC_SUCCESS);
1064: }