Actual source code: aij.c

  1: /*
  2:     Defines the basic matrix operations for the AIJ (compressed row)
  3:   matrix storage format.
  4: */

  6: #include <../src/mat/impls/aij/seq/aij.h>
  7: #include <petscblaslapack.h>
  8: #include <petscbt.h>
  9: #include <petsc/private/kernels/blocktranspose.h>

 11: /* defines MatSetValues_Seq_Hash(), MatAssemblyEnd_Seq_Hash(), MatSetUp_Seq_Hash() */
 12: #define TYPE AIJ
 13: #define TYPE_BS
 14: #include "../src/mat/impls/aij/seq/seqhashmatsetvalues.h"
 15: #include "../src/mat/impls/aij/seq/seqhashmat.h"
 16: #undef TYPE
 17: #undef TYPE_BS

 19: static PetscErrorCode MatSeqAIJSetTypeFromOptions(Mat A)
 20: {
 21:   PetscBool flg;
 22:   char      type[256];

 24:   PetscFunctionBegin;
 25:   PetscObjectOptionsBegin((PetscObject)A);
 26:   PetscCall(PetscOptionsFList("-mat_seqaij_type", "Matrix SeqAIJ type", "MatSeqAIJSetType", MatSeqAIJList, "seqaij", type, 256, &flg));
 27:   if (flg) PetscCall(MatSeqAIJSetType(A, type));
 28:   PetscOptionsEnd();
 29:   PetscFunctionReturn(PETSC_SUCCESS);
 30: }

 32: static PetscErrorCode MatGetColumnReductions_SeqAIJ(Mat A, PetscInt type, PetscReal *reductions)
 33: {
 34:   PetscInt    i, m, n;
 35:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

 37:   PetscFunctionBegin;
 38:   PetscCall(MatGetSize(A, &m, &n));
 39:   PetscCall(PetscArrayzero(reductions, n));
 40:   if (type == NORM_2) {
 41:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i] * aij->a[i]);
 42:   } else if (type == NORM_1) {
 43:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscAbsScalar(aij->a[i]);
 44:   } else if (type == NORM_INFINITY) {
 45:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] = PetscMax(PetscAbsScalar(aij->a[i]), reductions[aij->j[i]]);
 46:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
 47:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscRealPart(aij->a[i]);
 48:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 49:     for (i = 0; i < aij->i[m]; i++) reductions[aij->j[i]] += PetscImaginaryPart(aij->a[i]);
 50:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");

 52:   if (type == NORM_2) {
 53:     for (i = 0; i < n; i++) reductions[i] = PetscSqrtReal(reductions[i]);
 54:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
 55:     for (i = 0; i < n; i++) reductions[i] /= m;
 56:   }
 57:   PetscFunctionReturn(PETSC_SUCCESS);
 58: }

 60: static PetscErrorCode MatFindOffBlockDiagonalEntries_SeqAIJ(Mat A, IS *is)
 61: {
 62:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
 63:   PetscInt        i, m = A->rmap->n, cnt = 0, bs = A->rmap->bs;
 64:   const PetscInt *jj = a->j, *ii = a->i;
 65:   PetscInt       *rows;

 67:   PetscFunctionBegin;
 68:   for (i = 0; i < m; i++) {
 69:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) cnt++;
 70:   }
 71:   PetscCall(PetscMalloc1(cnt, &rows));
 72:   cnt = 0;
 73:   for (i = 0; i < m; i++) {
 74:     if ((ii[i] != ii[i + 1]) && ((jj[ii[i]] < bs * (i / bs)) || (jj[ii[i + 1] - 1] > bs * ((i + bs) / bs) - 1))) {
 75:       rows[cnt] = i;
 76:       cnt++;
 77:     }
 78:   }
 79:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, is));
 80:   PetscFunctionReturn(PETSC_SUCCESS);
 81: }

 83: PetscErrorCode MatFindZeroDiagonals_SeqAIJ_Private(Mat A, PetscInt *nrows, PetscInt **zrows)
 84: {
 85:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
 86:   const MatScalar *aa;
 87:   PetscInt         i, m = A->rmap->n, cnt = 0;
 88:   const PetscInt  *ii = a->i, *jj = a->j, *diag;
 89:   PetscInt        *rows;

 91:   PetscFunctionBegin;
 92:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
 93:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
 94:   diag = a->diag;
 95:   for (i = 0; i < m; i++) {
 96:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) cnt++;
 97:   }
 98:   PetscCall(PetscMalloc1(cnt, &rows));
 99:   cnt = 0;
100:   for (i = 0; i < m; i++) {
101:     if ((diag[i] >= ii[i + 1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) rows[cnt++] = i;
102:   }
103:   *nrows = cnt;
104:   *zrows = rows;
105:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
106:   PetscFunctionReturn(PETSC_SUCCESS);
107: }

109: static PetscErrorCode MatFindZeroDiagonals_SeqAIJ(Mat A, IS *zrows)
110: {
111:   PetscInt nrows, *rows;

113:   PetscFunctionBegin;
114:   *zrows = NULL;
115:   PetscCall(MatFindZeroDiagonals_SeqAIJ_Private(A, &nrows, &rows));
116:   PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)A), nrows, rows, PETSC_OWN_POINTER, zrows));
117:   PetscFunctionReturn(PETSC_SUCCESS);
118: }

120: static PetscErrorCode MatFindNonzeroRows_SeqAIJ(Mat A, IS *keptrows)
121: {
122:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
123:   const MatScalar *aa;
124:   PetscInt         m = A->rmap->n, cnt = 0;
125:   const PetscInt  *ii;
126:   PetscInt         n, i, j, *rows;

128:   PetscFunctionBegin;
129:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
130:   *keptrows = NULL;
131:   ii        = a->i;
132:   for (i = 0; i < m; i++) {
133:     n = ii[i + 1] - ii[i];
134:     if (!n) {
135:       cnt++;
136:       goto ok1;
137:     }
138:     for (j = ii[i]; j < ii[i + 1]; j++) {
139:       if (aa[j] != 0.0) goto ok1;
140:     }
141:     cnt++;
142:   ok1:;
143:   }
144:   if (!cnt) {
145:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
146:     PetscFunctionReturn(PETSC_SUCCESS);
147:   }
148:   PetscCall(PetscMalloc1(A->rmap->n - cnt, &rows));
149:   cnt = 0;
150:   for (i = 0; i < m; i++) {
151:     n = ii[i + 1] - ii[i];
152:     if (!n) continue;
153:     for (j = ii[i]; j < ii[i + 1]; j++) {
154:       if (aa[j] != 0.0) {
155:         rows[cnt++] = i;
156:         break;
157:       }
158:     }
159:   }
160:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
161:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, cnt, rows, PETSC_OWN_POINTER, keptrows));
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: PetscErrorCode MatDiagonalSet_SeqAIJ(Mat Y, Vec D, InsertMode is)
166: {
167:   Mat_SeqAIJ        *aij = (Mat_SeqAIJ *)Y->data;
168:   PetscInt           i, m = Y->rmap->n;
169:   const PetscInt    *diag;
170:   MatScalar         *aa;
171:   const PetscScalar *v;
172:   PetscBool          missing;

174:   PetscFunctionBegin;
175:   if (Y->assembled) {
176:     PetscCall(MatMissingDiagonal_SeqAIJ(Y, &missing, NULL));
177:     if (!missing) {
178:       diag = aij->diag;
179:       PetscCall(VecGetArrayRead(D, &v));
180:       PetscCall(MatSeqAIJGetArray(Y, &aa));
181:       if (is == INSERT_VALUES) {
182:         for (i = 0; i < m; i++) aa[diag[i]] = v[i];
183:       } else {
184:         for (i = 0; i < m; i++) aa[diag[i]] += v[i];
185:       }
186:       PetscCall(MatSeqAIJRestoreArray(Y, &aa));
187:       PetscCall(VecRestoreArrayRead(D, &v));
188:       PetscFunctionReturn(PETSC_SUCCESS);
189:     }
190:     PetscCall(MatSeqAIJInvalidateDiagonal(Y));
191:   }
192:   PetscCall(MatDiagonalSet_Default(Y, D, is));
193:   PetscFunctionReturn(PETSC_SUCCESS);
194: }

196: PetscErrorCode MatGetRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *m, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
197: {
198:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
199:   PetscInt    i, ishift;

201:   PetscFunctionBegin;
202:   if (m) *m = A->rmap->n;
203:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
204:   ishift = 0;
205:   if (symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) {
206:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, ishift, oshift, (PetscInt **)ia, (PetscInt **)ja));
207:   } else if (oshift == 1) {
208:     PetscInt *tia;
209:     PetscInt  nz = a->i[A->rmap->n];
210:     /* malloc space and  add 1 to i and j indices */
211:     PetscCall(PetscMalloc1(A->rmap->n + 1, &tia));
212:     for (i = 0; i < A->rmap->n + 1; i++) tia[i] = a->i[i] + 1;
213:     *ia = tia;
214:     if (ja) {
215:       PetscInt *tja;
216:       PetscCall(PetscMalloc1(nz + 1, &tja));
217:       for (i = 0; i < nz; i++) tja[i] = a->j[i] + 1;
218:       *ja = tja;
219:     }
220:   } else {
221:     *ia = a->i;
222:     if (ja) *ja = a->j;
223:   }
224:   PetscFunctionReturn(PETSC_SUCCESS);
225: }

227: PetscErrorCode MatRestoreRowIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
228: {
229:   PetscFunctionBegin;
230:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
231:   if ((symmetric && A->structurally_symmetric != PETSC_BOOL3_TRUE) || oshift == 1) {
232:     PetscCall(PetscFree(*ia));
233:     if (ja) PetscCall(PetscFree(*ja));
234:   }
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: PetscErrorCode MatGetColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
239: {
240:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
241:   PetscInt    i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
242:   PetscInt    nz = a->i[m], row, *jj, mr, col;

244:   PetscFunctionBegin;
245:   *nn = n;
246:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);
247:   if (symmetric) {
248:     PetscCall(MatToSymmetricIJ_SeqAIJ(A->rmap->n, a->i, a->j, PETSC_TRUE, 0, oshift, (PetscInt **)ia, (PetscInt **)ja));
249:   } else {
250:     PetscCall(PetscCalloc1(n, &collengths));
251:     PetscCall(PetscMalloc1(n + 1, &cia));
252:     PetscCall(PetscMalloc1(nz, &cja));
253:     jj = a->j;
254:     for (i = 0; i < nz; i++) collengths[jj[i]]++;
255:     cia[0] = oshift;
256:     for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
257:     PetscCall(PetscArrayzero(collengths, n));
258:     jj = a->j;
259:     for (row = 0; row < m; row++) {
260:       mr = a->i[row + 1] - a->i[row];
261:       for (i = 0; i < mr; i++) {
262:         col = *jj++;

264:         cja[cia[col] + collengths[col]++ - oshift] = row + oshift;
265:       }
266:     }
267:     PetscCall(PetscFree(collengths));
268:     *ia = cia;
269:     *ja = cja;
270:   }
271:   PetscFunctionReturn(PETSC_SUCCESS);
272: }

274: PetscErrorCode MatRestoreColumnIJ_SeqAIJ(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscBool *done)
275: {
276:   PetscFunctionBegin;
277:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

279:   PetscCall(PetscFree(*ia));
280:   PetscCall(PetscFree(*ja));
281:   PetscFunctionReturn(PETSC_SUCCESS);
282: }

284: /*
285:  MatGetColumnIJ_SeqAIJ_Color() and MatRestoreColumnIJ_SeqAIJ_Color() are customized from
286:  MatGetColumnIJ_SeqAIJ() and MatRestoreColumnIJ_SeqAIJ() by adding an output
287:  spidx[], index of a->a, to be used in MatTransposeColoringCreate_SeqAIJ() and MatFDColoringCreate_SeqXAIJ()
288: */
289: PetscErrorCode MatGetColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *nn, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
290: {
291:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
292:   PetscInt        i, *collengths, *cia, *cja, n = A->cmap->n, m = A->rmap->n;
293:   PetscInt        nz = a->i[m], row, mr, col, tmp;
294:   PetscInt       *cspidx;
295:   const PetscInt *jj;

297:   PetscFunctionBegin;
298:   *nn = n;
299:   if (!ia) PetscFunctionReturn(PETSC_SUCCESS);

301:   PetscCall(PetscCalloc1(n, &collengths));
302:   PetscCall(PetscMalloc1(n + 1, &cia));
303:   PetscCall(PetscMalloc1(nz, &cja));
304:   PetscCall(PetscMalloc1(nz, &cspidx));
305:   jj = a->j;
306:   for (i = 0; i < nz; i++) collengths[jj[i]]++;
307:   cia[0] = oshift;
308:   for (i = 0; i < n; i++) cia[i + 1] = cia[i] + collengths[i];
309:   PetscCall(PetscArrayzero(collengths, n));
310:   jj = a->j;
311:   for (row = 0; row < m; row++) {
312:     mr = a->i[row + 1] - a->i[row];
313:     for (i = 0; i < mr; i++) {
314:       col         = *jj++;
315:       tmp         = cia[col] + collengths[col]++ - oshift;
316:       cspidx[tmp] = a->i[row] + i; /* index of a->j */
317:       cja[tmp]    = row + oshift;
318:     }
319:   }
320:   PetscCall(PetscFree(collengths));
321:   *ia    = cia;
322:   *ja    = cja;
323:   *spidx = cspidx;
324:   PetscFunctionReturn(PETSC_SUCCESS);
325: }

327: PetscErrorCode MatRestoreColumnIJ_SeqAIJ_Color(Mat A, PetscInt oshift, PetscBool symmetric, PetscBool inodecompressed, PetscInt *n, const PetscInt *ia[], const PetscInt *ja[], PetscInt *spidx[], PetscBool *done)
328: {
329:   PetscFunctionBegin;
330:   PetscCall(MatRestoreColumnIJ_SeqAIJ(A, oshift, symmetric, inodecompressed, n, ia, ja, done));
331:   PetscCall(PetscFree(*spidx));
332:   PetscFunctionReturn(PETSC_SUCCESS);
333: }

335: static PetscErrorCode MatSetValuesRow_SeqAIJ(Mat A, PetscInt row, const PetscScalar v[])
336: {
337:   Mat_SeqAIJ  *a  = (Mat_SeqAIJ *)A->data;
338:   PetscInt    *ai = a->i;
339:   PetscScalar *aa;

341:   PetscFunctionBegin;
342:   PetscCall(MatSeqAIJGetArray(A, &aa));
343:   PetscCall(PetscArraycpy(aa + ai[row], v, ai[row + 1] - ai[row]));
344:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
345:   PetscFunctionReturn(PETSC_SUCCESS);
346: }

348: /*
349:     MatSeqAIJSetValuesLocalFast - An optimized version of MatSetValuesLocal() for SeqAIJ matrices with several assumptions

351:       -   a single row of values is set with each call
352:       -   no row or column indices are negative or (in error) larger than the number of rows or columns
353:       -   the values are always added to the matrix, not set
354:       -   no new locations are introduced in the nonzero structure of the matrix

356:      This does NOT assume the global column indices are sorted

358: */

360: #include <petsc/private/isimpl.h>
361: PetscErrorCode MatSeqAIJSetValuesLocalFast(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
362: {
363:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
364:   PetscInt        low, high, t, row, nrow, i, col, l;
365:   const PetscInt *rp, *ai = a->i, *ailen = a->ilen, *aj = a->j;
366:   PetscInt        lastcol = -1;
367:   MatScalar      *ap, value, *aa;
368:   const PetscInt *ridx = A->rmap->mapping->indices, *cidx = A->cmap->mapping->indices;

370:   PetscFunctionBegin;
371:   PetscCall(MatSeqAIJGetArray(A, &aa));
372:   row  = ridx[im[0]];
373:   rp   = aj + ai[row];
374:   ap   = aa + ai[row];
375:   nrow = ailen[row];
376:   low  = 0;
377:   high = nrow;
378:   for (l = 0; l < n; l++) { /* loop over added columns */
379:     col   = cidx[in[l]];
380:     value = v[l];

382:     if (col <= lastcol) low = 0;
383:     else high = nrow;
384:     lastcol = col;
385:     while (high - low > 5) {
386:       t = (low + high) / 2;
387:       if (rp[t] > col) high = t;
388:       else low = t;
389:     }
390:     for (i = low; i < high; i++) {
391:       if (rp[i] == col) {
392:         ap[i] += value;
393:         low = i + 1;
394:         break;
395:       }
396:     }
397:   }
398:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
399:   return PETSC_SUCCESS;
400: }

402: PetscErrorCode MatSetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
403: {
404:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
405:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
406:   PetscInt   *imax = a->imax, *ai = a->i, *ailen = a->ilen;
407:   PetscInt   *aj = a->j, nonew = a->nonew, lastcol = -1;
408:   MatScalar  *ap = NULL, value = 0.0, *aa;
409:   PetscBool   ignorezeroentries = a->ignorezeroentries;
410:   PetscBool   roworiented       = a->roworiented;

412:   PetscFunctionBegin;
413:   PetscCall(MatSeqAIJGetArray(A, &aa));
414:   for (k = 0; k < m; k++) { /* loop over added rows */
415:     row = im[k];
416:     if (row < 0) continue;
417:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
418:     rp = PetscSafePointerPlusOffset(aj, ai[row]);
419:     if (!A->structure_only) ap = PetscSafePointerPlusOffset(aa, ai[row]);
420:     rmax = imax[row];
421:     nrow = ailen[row];
422:     low  = 0;
423:     high = nrow;
424:     for (l = 0; l < n; l++) { /* loop over added columns */
425:       if (in[l] < 0) continue;
426:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
427:       col = in[l];
428:       if (v && !A->structure_only) value = roworiented ? v[l + k * n] : v[k + l * m];
429:       if (!A->structure_only && value == 0.0 && ignorezeroentries && is == ADD_VALUES && row != col) continue;

431:       if (col <= lastcol) low = 0;
432:       else high = nrow;
433:       lastcol = col;
434:       while (high - low > 5) {
435:         t = (low + high) / 2;
436:         if (rp[t] > col) high = t;
437:         else low = t;
438:       }
439:       for (i = low; i < high; i++) {
440:         if (rp[i] > col) break;
441:         if (rp[i] == col) {
442:           if (!A->structure_only) {
443:             if (is == ADD_VALUES) {
444:               ap[i] += value;
445:               (void)PetscLogFlops(1.0);
446:             } else ap[i] = value;
447:           }
448:           low = i + 1;
449:           goto noinsert;
450:         }
451:       }
452:       if (value == 0.0 && ignorezeroentries && row != col) goto noinsert;
453:       if (nonew == 1) goto noinsert;
454:       PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at (%" PetscInt_FMT ",%" PetscInt_FMT ") in the matrix", row, col);
455:       if (A->structure_only) {
456:         MatSeqXAIJReallocateAIJ_structure_only(A, A->rmap->n, 1, nrow, row, col, rmax, ai, aj, rp, imax, nonew, MatScalar);
457:       } else {
458:         MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
459:       }
460:       N = nrow++ - 1;
461:       a->nz++;
462:       high++;
463:       /* shift up all the later entries in this row */
464:       PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
465:       rp[i] = col;
466:       if (!A->structure_only) {
467:         PetscCall(PetscArraymove(ap + i + 1, ap + i, N - i + 1));
468:         ap[i] = value;
469:       }
470:       low = i + 1;
471:     noinsert:;
472:     }
473:     ailen[row] = nrow;
474:   }
475:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
476:   PetscFunctionReturn(PETSC_SUCCESS);
477: }

479: static PetscErrorCode MatSetValues_SeqAIJ_SortedFullNoPreallocation(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
480: {
481:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
482:   PetscInt   *rp, k, row;
483:   PetscInt   *ai = a->i;
484:   PetscInt   *aj = a->j;
485:   MatScalar  *aa, *ap;

487:   PetscFunctionBegin;
488:   PetscCheck(!A->was_assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot call on assembled matrix.");
489:   PetscCheck(m * n + a->nz <= a->maxnz, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of entries in matrix will be larger than maximum nonzeros allocated for %" PetscInt_FMT " in MatSeqAIJSetTotalPreallocation()", a->maxnz);

491:   PetscCall(MatSeqAIJGetArray(A, &aa));
492:   for (k = 0; k < m; k++) { /* loop over added rows */
493:     row = im[k];
494:     rp  = aj + ai[row];
495:     ap  = PetscSafePointerPlusOffset(aa, ai[row]);

497:     PetscCall(PetscMemcpy(rp, in, n * sizeof(PetscInt)));
498:     if (!A->structure_only) {
499:       if (v) {
500:         PetscCall(PetscMemcpy(ap, v, n * sizeof(PetscScalar)));
501:         v += n;
502:       } else {
503:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
504:       }
505:     }
506:     a->ilen[row]  = n;
507:     a->imax[row]  = n;
508:     a->i[row + 1] = a->i[row] + n;
509:     a->nz += n;
510:   }
511:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
512:   PetscFunctionReturn(PETSC_SUCCESS);
513: }

515: /*@
516:   MatSeqAIJSetTotalPreallocation - Sets an upper bound on the total number of expected nonzeros in the matrix.

518:   Input Parameters:
519: + A       - the `MATSEQAIJ` matrix
520: - nztotal - bound on the number of nonzeros

522:   Level: advanced

524:   Notes:
525:   This can be called if you will be provided the matrix row by row (from row zero) with sorted column indices for each row.
526:   Simply call `MatSetValues()` after this call to provide the matrix entries in the usual manner. This matrix may be used
527:   as always with multiple matrix assemblies.

529: .seealso: [](ch_matrices), `Mat`, `MatSetOption()`, `MAT_SORTED_FULL`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`
530: @*/
531: PetscErrorCode MatSeqAIJSetTotalPreallocation(Mat A, PetscInt nztotal)
532: {
533:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

535:   PetscFunctionBegin;
536:   PetscCall(PetscLayoutSetUp(A->rmap));
537:   PetscCall(PetscLayoutSetUp(A->cmap));
538:   a->maxnz = nztotal;
539:   if (!a->imax) { PetscCall(PetscMalloc1(A->rmap->n, &a->imax)); }
540:   if (!a->ilen) {
541:     PetscCall(PetscMalloc1(A->rmap->n, &a->ilen));
542:   } else {
543:     PetscCall(PetscMemzero(a->ilen, A->rmap->n * sizeof(PetscInt)));
544:   }

546:   /* allocate the matrix space */
547:   PetscCall(PetscShmgetAllocateArray(A->rmap->n + 1, sizeof(PetscInt), (void **)&a->i));
548:   PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscInt), (void **)&a->j));
549:   a->free_ij = PETSC_TRUE;
550:   if (A->structure_only) {
551:     a->free_a = PETSC_FALSE;
552:   } else {
553:     PetscCall(PetscShmgetAllocateArray(nztotal, sizeof(PetscScalar), (void **)&a->a));
554:     a->free_a = PETSC_TRUE;
555:   }
556:   a->i[0]           = 0;
557:   A->ops->setvalues = MatSetValues_SeqAIJ_SortedFullNoPreallocation;
558:   A->preallocated   = PETSC_TRUE;
559:   PetscFunctionReturn(PETSC_SUCCESS);
560: }

562: static PetscErrorCode MatSetValues_SeqAIJ_SortedFull(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode is)
563: {
564:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
565:   PetscInt   *rp, k, row;
566:   PetscInt   *ai = a->i, *ailen = a->ilen;
567:   PetscInt   *aj = a->j;
568:   MatScalar  *aa, *ap;

570:   PetscFunctionBegin;
571:   PetscCall(MatSeqAIJGetArray(A, &aa));
572:   for (k = 0; k < m; k++) { /* loop over added rows */
573:     row = im[k];
574:     PetscCheck(n <= a->imax[row], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Preallocation for row %" PetscInt_FMT " does not match number of columns provided", n);
575:     rp = aj + ai[row];
576:     ap = aa + ai[row];
577:     if (!A->was_assembled) PetscCall(PetscMemcpy(rp, in, n * sizeof(PetscInt)));
578:     if (!A->structure_only) {
579:       if (v) {
580:         PetscCall(PetscMemcpy(ap, v, n * sizeof(PetscScalar)));
581:         v += n;
582:       } else {
583:         PetscCall(PetscMemzero(ap, n * sizeof(PetscScalar)));
584:       }
585:     }
586:     ailen[row] = n;
587:     a->nz += n;
588:   }
589:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: static PetscErrorCode MatGetValues_SeqAIJ(Mat A, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], PetscScalar v[])
594: {
595:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
596:   PetscInt        *rp, k, low, high, t, row, nrow, i, col, l, *aj = a->j;
597:   PetscInt        *ai = a->i, *ailen = a->ilen;
598:   const MatScalar *ap, *aa;

600:   PetscFunctionBegin;
601:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
602:   for (k = 0; k < m; k++) { /* loop over rows */
603:     row = im[k];
604:     if (row < 0) {
605:       v += n;
606:       continue;
607:     } /* negative row */
608:     PetscCheck(row < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, row, A->rmap->n - 1);
609:     rp   = PetscSafePointerPlusOffset(aj, ai[row]);
610:     ap   = PetscSafePointerPlusOffset(aa, ai[row]);
611:     nrow = ailen[row];
612:     for (l = 0; l < n; l++) { /* loop over columns */
613:       if (in[l] < 0) {
614:         v++;
615:         continue;
616:       } /* negative column */
617:       PetscCheck(in[l] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[l], A->cmap->n - 1);
618:       col  = in[l];
619:       high = nrow;
620:       low  = 0; /* assume unsorted */
621:       while (high - low > 5) {
622:         t = (low + high) / 2;
623:         if (rp[t] > col) high = t;
624:         else low = t;
625:       }
626:       for (i = low; i < high; i++) {
627:         if (rp[i] > col) break;
628:         if (rp[i] == col) {
629:           *v++ = ap[i];
630:           goto finished;
631:         }
632:       }
633:       *v++ = 0.0;
634:     finished:;
635:     }
636:   }
637:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
638:   PetscFunctionReturn(PETSC_SUCCESS);
639: }

641: static PetscErrorCode MatView_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
642: {
643:   Mat_SeqAIJ        *A = (Mat_SeqAIJ *)mat->data;
644:   const PetscScalar *av;
645:   PetscInt           header[4], M, N, m, nz, i;
646:   PetscInt          *rowlens;

648:   PetscFunctionBegin;
649:   PetscCall(PetscViewerSetUp(viewer));

651:   M  = mat->rmap->N;
652:   N  = mat->cmap->N;
653:   m  = mat->rmap->n;
654:   nz = A->nz;

656:   /* write matrix header */
657:   header[0] = MAT_FILE_CLASSID;
658:   header[1] = M;
659:   header[2] = N;
660:   header[3] = nz;
661:   PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

663:   /* fill in and store row lengths */
664:   PetscCall(PetscMalloc1(m, &rowlens));
665:   for (i = 0; i < m; i++) rowlens[i] = A->i[i + 1] - A->i[i];
666:   PetscCall(PetscViewerBinaryWrite(viewer, rowlens, m, PETSC_INT));
667:   PetscCall(PetscFree(rowlens));
668:   /* store column indices */
669:   PetscCall(PetscViewerBinaryWrite(viewer, A->j, nz, PETSC_INT));
670:   /* store nonzero values */
671:   PetscCall(MatSeqAIJGetArrayRead(mat, &av));
672:   PetscCall(PetscViewerBinaryWrite(viewer, av, nz, PETSC_SCALAR));
673:   PetscCall(MatSeqAIJRestoreArrayRead(mat, &av));

675:   /* write block size option to the viewer's .info file */
676:   PetscCall(MatView_Binary_BlockSizes(mat, viewer));
677:   PetscFunctionReturn(PETSC_SUCCESS);
678: }

680: static PetscErrorCode MatView_SeqAIJ_ASCII_structonly(Mat A, PetscViewer viewer)
681: {
682:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
683:   PetscInt    i, k, m = A->rmap->N;

685:   PetscFunctionBegin;
686:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
687:   for (i = 0; i < m; i++) {
688:     PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
689:     for (k = a->i[i]; k < a->i[i + 1]; k++) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ") ", a->j[k]));
690:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
691:   }
692:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
693:   PetscFunctionReturn(PETSC_SUCCESS);
694: }

696: extern PetscErrorCode MatSeqAIJFactorInfo_Matlab(Mat, PetscViewer);

698: static PetscErrorCode MatView_SeqAIJ_ASCII(Mat A, PetscViewer viewer)
699: {
700:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
701:   const PetscScalar *av;
702:   PetscInt           i, j, m = A->rmap->n;
703:   const char        *name;
704:   PetscViewerFormat  format;

706:   PetscFunctionBegin;
707:   if (A->structure_only) {
708:     PetscCall(MatView_SeqAIJ_ASCII_structonly(A, viewer));
709:     PetscFunctionReturn(PETSC_SUCCESS);
710:   }

712:   PetscCall(PetscViewerGetFormat(viewer, &format));
713:   // By petsc's rule, even PETSC_VIEWER_ASCII_INFO_DETAIL doesn't print matrix entries
714:   if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) PetscFunctionReturn(PETSC_SUCCESS);

716:   /* trigger copy to CPU if needed */
717:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
718:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
719:   if (format == PETSC_VIEWER_ASCII_MATLAB) {
720:     PetscInt nofinalvalue = 0;
721:     if (m && ((a->i[m] == a->i[m - 1]) || (a->j[a->nz - 1] != A->cmap->n - 1))) {
722:       /* Need a dummy value to ensure the dimension of the matrix. */
723:       nofinalvalue = 1;
724:     }
725:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
726:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", m, A->cmap->n));
727:     PetscCall(PetscViewerASCIIPrintf(viewer, "%% Nonzeros = %" PetscInt_FMT " \n", a->nz));
728: #if defined(PETSC_USE_COMPLEX)
729:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",4);\n", a->nz + nofinalvalue));
730: #else
731:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = zeros(%" PetscInt_FMT ",3);\n", a->nz + nofinalvalue));
732: #endif
733:     PetscCall(PetscViewerASCIIPrintf(viewer, "zzz = [\n"));

735:     for (i = 0; i < m; i++) {
736:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
737: #if defined(PETSC_USE_COMPLEX)
738:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", i + 1, a->j[j] + 1, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
739: #else
740:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", i + 1, a->j[j] + 1, (double)a->a[j]));
741: #endif
742:       }
743:     }
744:     if (nofinalvalue) {
745: #if defined(PETSC_USE_COMPLEX)
746:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e %18.16e\n", m, A->cmap->n, 0., 0.));
747: #else
748:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT "  %18.16e\n", m, A->cmap->n, 0.0));
749: #endif
750:     }
751:     PetscCall(PetscObjectGetName((PetscObject)A, &name));
752:     PetscCall(PetscViewerASCIIPrintf(viewer, "];\n %s = spconvert(zzz);\n", name));
753:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
754:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
755:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
756:     for (i = 0; i < m; i++) {
757:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
758:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
759: #if defined(PETSC_USE_COMPLEX)
760:         if (PetscImaginaryPart(a->a[j]) > 0.0 && PetscRealPart(a->a[j]) != 0.0) {
761:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
762:         } else if (PetscImaginaryPart(a->a[j]) < 0.0 && PetscRealPart(a->a[j]) != 0.0) {
763:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
764:         } else if (PetscRealPart(a->a[j]) != 0.0) {
765:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
766:         }
767: #else
768:         if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
769: #endif
770:       }
771:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
772:     }
773:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
774:   } else if (format == PETSC_VIEWER_ASCII_SYMMODU) {
775:     PetscInt nzd = 0, fshift = 1, *sptr;
776:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
777:     PetscCall(PetscMalloc1(m + 1, &sptr));
778:     for (i = 0; i < m; i++) {
779:       sptr[i] = nzd + 1;
780:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
781:         if (a->j[j] >= i) {
782: #if defined(PETSC_USE_COMPLEX)
783:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) nzd++;
784: #else
785:           if (a->a[j] != 0.0) nzd++;
786: #endif
787:         }
788:       }
789:     }
790:     sptr[m] = nzd + 1;
791:     PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n\n", m, nzd));
792:     for (i = 0; i < m + 1; i += 6) {
793:       if (i + 4 < m) {
794:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4], sptr[i + 5]));
795:       } else if (i + 3 < m) {
796:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3], sptr[i + 4]));
797:       } else if (i + 2 < m) {
798:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2], sptr[i + 3]));
799:       } else if (i + 1 < m) {
800:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1], sptr[i + 2]));
801:       } else if (i < m) {
802:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " %" PetscInt_FMT "\n", sptr[i], sptr[i + 1]));
803:       } else {
804:         PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT "\n", sptr[i]));
805:       }
806:     }
807:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
808:     PetscCall(PetscFree(sptr));
809:     for (i = 0; i < m; i++) {
810:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
811:         if (a->j[j] >= i) PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " ", a->j[j] + fshift));
812:       }
813:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
814:     }
815:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
816:     for (i = 0; i < m; i++) {
817:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
818:         if (a->j[j] >= i) {
819: #if defined(PETSC_USE_COMPLEX)
820:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e %18.16e ", (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
821: #else
822:           if (a->a[j] != 0.0) PetscCall(PetscViewerASCIIPrintf(viewer, " %18.16e ", (double)a->a[j]));
823: #endif
824:         }
825:       }
826:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
827:     }
828:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
829:   } else if (format == PETSC_VIEWER_ASCII_DENSE) {
830:     PetscInt    cnt = 0, jcnt;
831:     PetscScalar value;
832: #if defined(PETSC_USE_COMPLEX)
833:     PetscBool realonly = PETSC_TRUE;

835:     for (i = 0; i < a->i[m]; i++) {
836:       if (PetscImaginaryPart(a->a[i]) != 0.0) {
837:         realonly = PETSC_FALSE;
838:         break;
839:       }
840:     }
841: #endif

843:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
844:     for (i = 0; i < m; i++) {
845:       jcnt = 0;
846:       for (j = 0; j < A->cmap->n; j++) {
847:         if (jcnt < a->i[i + 1] - a->i[i] && j == a->j[cnt]) {
848:           value = a->a[cnt++];
849:           jcnt++;
850:         } else {
851:           value = 0.0;
852:         }
853: #if defined(PETSC_USE_COMPLEX)
854:         if (realonly) {
855:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)PetscRealPart(value)));
856:         } else {
857:           PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e+%7.5e i ", (double)PetscRealPart(value), (double)PetscImaginaryPart(value)));
858:         }
859: #else
860:         PetscCall(PetscViewerASCIIPrintf(viewer, " %7.5e ", (double)value));
861: #endif
862:       }
863:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
864:     }
865:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
866:   } else if (format == PETSC_VIEWER_ASCII_MATRIXMARKET) {
867:     PetscInt fshift = 1;
868:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
869: #if defined(PETSC_USE_COMPLEX)
870:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate complex general\n"));
871: #else
872:     PetscCall(PetscViewerASCIIPrintf(viewer, "%%%%MatrixMarket matrix coordinate real general\n"));
873: #endif
874:     PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", m, A->cmap->n, a->nz));
875:     for (i = 0; i < m; i++) {
876:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
877: #if defined(PETSC_USE_COMPLEX)
878:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g %g\n", i + fshift, a->j[j] + fshift, (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
879: #else
880:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " %" PetscInt_FMT " %g\n", i + fshift, a->j[j] + fshift, (double)a->a[j]));
881: #endif
882:       }
883:     }
884:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
885:   } else {
886:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
887:     if (A->factortype) {
888:       for (i = 0; i < m; i++) {
889:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
890:         /* L part */
891:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
892: #if defined(PETSC_USE_COMPLEX)
893:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
894:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
895:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
896:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
897:           } else {
898:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
899:           }
900: #else
901:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
902: #endif
903:         }
904:         /* diagonal */
905:         j = a->diag[i];
906: #if defined(PETSC_USE_COMPLEX)
907:         if (PetscImaginaryPart(a->a[j]) > 0.0) {
908:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(1.0 / a->a[j]), (double)PetscImaginaryPart(1.0 / a->a[j])));
909:         } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
910:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(1.0 / a->a[j]), (double)(-PetscImaginaryPart(1.0 / a->a[j]))));
911:         } else {
912:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(1.0 / a->a[j])));
913:         }
914: #else
915:         PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)(1.0 / a->a[j])));
916: #endif

918:         /* U part */
919:         for (j = a->diag[i + 1] + 1; j < a->diag[i]; j++) {
920: #if defined(PETSC_USE_COMPLEX)
921:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
922:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
923:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
924:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)(-PetscImaginaryPart(a->a[j]))));
925:           } else {
926:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
927:           }
928: #else
929:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
930: #endif
931:         }
932:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
933:       }
934:     } else {
935:       for (i = 0; i < m; i++) {
936:         PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
937:         for (j = a->i[i]; j < a->i[i + 1]; j++) {
938: #if defined(PETSC_USE_COMPLEX)
939:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
940:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)PetscImaginaryPart(a->a[j])));
941:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
942:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g - %g i)", a->j[j], (double)PetscRealPart(a->a[j]), (double)-PetscImaginaryPart(a->a[j])));
943:           } else {
944:             PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)PetscRealPart(a->a[j])));
945:           }
946: #else
947:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", a->j[j], (double)a->a[j]));
948: #endif
949:         }
950:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
951:       }
952:     }
953:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
954:   }
955:   PetscCall(PetscViewerFlush(viewer));
956:   PetscFunctionReturn(PETSC_SUCCESS);
957: }

959: #include <petscdraw.h>
960: static PetscErrorCode MatView_SeqAIJ_Draw_Zoom(PetscDraw draw, void *Aa)
961: {
962:   Mat                A = (Mat)Aa;
963:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
964:   PetscInt           i, j, m = A->rmap->n;
965:   int                color;
966:   PetscReal          xl, yl, xr, yr, x_l, x_r, y_l, y_r;
967:   PetscViewer        viewer;
968:   PetscViewerFormat  format;
969:   const PetscScalar *aa;

971:   PetscFunctionBegin;
972:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
973:   PetscCall(PetscViewerGetFormat(viewer, &format));
974:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

976:   /* loop over matrix elements drawing boxes */
977:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
978:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
979:     PetscDrawCollectiveBegin(draw);
980:     /* Blue for negative, Cyan for zero and  Red for positive */
981:     color = PETSC_DRAW_BLUE;
982:     for (i = 0; i < m; i++) {
983:       y_l = m - i - 1.0;
984:       y_r = y_l + 1.0;
985:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
986:         x_l = a->j[j];
987:         x_r = x_l + 1.0;
988:         if (PetscRealPart(aa[j]) >= 0.) continue;
989:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
990:       }
991:     }
992:     color = PETSC_DRAW_CYAN;
993:     for (i = 0; i < m; i++) {
994:       y_l = m - i - 1.0;
995:       y_r = y_l + 1.0;
996:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
997:         x_l = a->j[j];
998:         x_r = x_l + 1.0;
999:         if (aa[j] != 0.) continue;
1000:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1001:       }
1002:     }
1003:     color = PETSC_DRAW_RED;
1004:     for (i = 0; i < m; i++) {
1005:       y_l = m - i - 1.0;
1006:       y_r = y_l + 1.0;
1007:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1008:         x_l = a->j[j];
1009:         x_r = x_l + 1.0;
1010:         if (PetscRealPart(aa[j]) <= 0.) continue;
1011:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1012:       }
1013:     }
1014:     PetscDrawCollectiveEnd(draw);
1015:   } else {
1016:     /* use contour shading to indicate magnitude of values */
1017:     /* first determine max of all nonzero values */
1018:     PetscReal minv = 0.0, maxv = 0.0;
1019:     PetscInt  nz = a->nz, count = 0;
1020:     PetscDraw popup;

1022:     for (i = 0; i < nz; i++) {
1023:       if (PetscAbsScalar(aa[i]) > maxv) maxv = PetscAbsScalar(aa[i]);
1024:     }
1025:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1026:     PetscCall(PetscDrawGetPopup(draw, &popup));
1027:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1029:     PetscDrawCollectiveBegin(draw);
1030:     for (i = 0; i < m; i++) {
1031:       y_l = m - i - 1.0;
1032:       y_r = y_l + 1.0;
1033:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
1034:         x_l   = a->j[j];
1035:         x_r   = x_l + 1.0;
1036:         color = PetscDrawRealToColor(PetscAbsScalar(aa[count]), minv, maxv);
1037:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1038:         count++;
1039:       }
1040:     }
1041:     PetscDrawCollectiveEnd(draw);
1042:   }
1043:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1044:   PetscFunctionReturn(PETSC_SUCCESS);
1045: }

1047: #include <petscdraw.h>
1048: static PetscErrorCode MatView_SeqAIJ_Draw(Mat A, PetscViewer viewer)
1049: {
1050:   PetscDraw draw;
1051:   PetscReal xr, yr, xl, yl, h, w;
1052:   PetscBool isnull;

1054:   PetscFunctionBegin;
1055:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1056:   PetscCall(PetscDrawIsNull(draw, &isnull));
1057:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1059:   xr = A->cmap->n;
1060:   yr = A->rmap->n;
1061:   h  = yr / 10.0;
1062:   w  = xr / 10.0;
1063:   xr += w;
1064:   yr += h;
1065:   xl = -w;
1066:   yl = -h;
1067:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1068:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1069:   PetscCall(PetscDrawZoom(draw, MatView_SeqAIJ_Draw_Zoom, A));
1070:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1071:   PetscCall(PetscDrawSave(draw));
1072:   PetscFunctionReturn(PETSC_SUCCESS);
1073: }

1075: PetscErrorCode MatView_SeqAIJ(Mat A, PetscViewer viewer)
1076: {
1077:   PetscBool iascii, isbinary, isdraw;

1079:   PetscFunctionBegin;
1080:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1081:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1082:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1083:   if (iascii) PetscCall(MatView_SeqAIJ_ASCII(A, viewer));
1084:   else if (isbinary) PetscCall(MatView_SeqAIJ_Binary(A, viewer));
1085:   else if (isdraw) PetscCall(MatView_SeqAIJ_Draw(A, viewer));
1086:   PetscCall(MatView_SeqAIJ_Inode(A, viewer));
1087:   PetscFunctionReturn(PETSC_SUCCESS);
1088: }

1090: PetscErrorCode MatAssemblyEnd_SeqAIJ(Mat A, MatAssemblyType mode)
1091: {
1092:   Mat_SeqAIJ *a      = (Mat_SeqAIJ *)A->data;
1093:   PetscInt    fshift = 0, i, *ai = a->i, *aj = a->j, *imax = a->imax;
1094:   PetscInt    m = A->rmap->n, *ip, N, *ailen = a->ilen, rmax = 0, n;
1095:   MatScalar  *aa    = a->a, *ap;
1096:   PetscReal   ratio = 0.6;

1098:   PetscFunctionBegin;
1099:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);
1100:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1101:   if (A->was_assembled && A->ass_nonzerostate == A->nonzerostate) {
1102:     /* we need to respect users asking to use or not the inodes routine in between matrix assemblies */
1103:     PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode));
1104:     PetscFunctionReturn(PETSC_SUCCESS);
1105:   }

1107:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
1108:   for (i = 1; i < m; i++) {
1109:     /* move each row back by the amount of empty slots (fshift) before it*/
1110:     fshift += imax[i - 1] - ailen[i - 1];
1111:     rmax = PetscMax(rmax, ailen[i]);
1112:     if (fshift) {
1113:       ip = aj + ai[i];
1114:       ap = aa + ai[i];
1115:       N  = ailen[i];
1116:       PetscCall(PetscArraymove(ip - fshift, ip, N));
1117:       if (!A->structure_only) PetscCall(PetscArraymove(ap - fshift, ap, N));
1118:     }
1119:     ai[i] = ai[i - 1] + ailen[i - 1];
1120:   }
1121:   if (m) {
1122:     fshift += imax[m - 1] - ailen[m - 1];
1123:     ai[m] = ai[m - 1] + ailen[m - 1];
1124:   }
1125:   /* reset ilen and imax for each row */
1126:   a->nonzerorowcnt = 0;
1127:   if (A->structure_only) {
1128:     PetscCall(PetscFree(a->imax));
1129:     PetscCall(PetscFree(a->ilen));
1130:   } else { /* !A->structure_only */
1131:     for (i = 0; i < m; i++) {
1132:       ailen[i] = imax[i] = ai[i + 1] - ai[i];
1133:       a->nonzerorowcnt += ((ai[i + 1] - ai[i]) > 0);
1134:     }
1135:   }
1136:   a->nz = ai[m];
1137:   PetscCheck(!fshift || a->nounused != -1, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Unused space detected in matrix: %" PetscInt_FMT " X %" PetscInt_FMT ", %" PetscInt_FMT " unneeded", m, A->cmap->n, fshift);
1138:   PetscCall(MatMarkDiagonal_SeqAIJ(A)); // since diagonal info is used a lot, it is helpful to set them up at the end of assembly
1139:   a->diagonaldense = PETSC_TRUE;
1140:   n                = PetscMin(A->rmap->n, A->cmap->n);
1141:   for (i = 0; i < n; i++) {
1142:     if (a->diag[i] >= ai[i + 1]) {
1143:       a->diagonaldense = PETSC_FALSE;
1144:       break;
1145:     }
1146:   }
1147:   PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; storage space: %" PetscInt_FMT " unneeded,%" PetscInt_FMT " used\n", m, A->cmap->n, fshift, a->nz));
1148:   PetscCall(PetscInfo(A, "Number of mallocs during MatSetValues() is %" PetscInt_FMT "\n", a->reallocs));
1149:   PetscCall(PetscInfo(A, "Maximum nonzeros in any row is %" PetscInt_FMT "\n", rmax));

1151:   A->info.mallocs += a->reallocs;
1152:   a->reallocs         = 0;
1153:   A->info.nz_unneeded = (PetscReal)fshift;
1154:   a->rmax             = rmax;

1156:   if (!A->structure_only) PetscCall(MatCheckCompressedRow(A, a->nonzerorowcnt, &a->compressedrow, a->i, m, ratio));
1157:   PetscCall(MatAssemblyEnd_SeqAIJ_Inode(A, mode));
1158:   PetscFunctionReturn(PETSC_SUCCESS);
1159: }

1161: static PetscErrorCode MatRealPart_SeqAIJ(Mat A)
1162: {
1163:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1164:   PetscInt    i, nz = a->nz;
1165:   MatScalar  *aa;

1167:   PetscFunctionBegin;
1168:   PetscCall(MatSeqAIJGetArray(A, &aa));
1169:   for (i = 0; i < nz; i++) aa[i] = PetscRealPart(aa[i]);
1170:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1171:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1172:   PetscFunctionReturn(PETSC_SUCCESS);
1173: }

1175: static PetscErrorCode MatImaginaryPart_SeqAIJ(Mat A)
1176: {
1177:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1178:   PetscInt    i, nz = a->nz;
1179:   MatScalar  *aa;

1181:   PetscFunctionBegin;
1182:   PetscCall(MatSeqAIJGetArray(A, &aa));
1183:   for (i = 0; i < nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
1184:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
1185:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1186:   PetscFunctionReturn(PETSC_SUCCESS);
1187: }

1189: PetscErrorCode MatZeroEntries_SeqAIJ(Mat A)
1190: {
1191:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1192:   MatScalar  *aa;

1194:   PetscFunctionBegin;
1195:   PetscCall(MatSeqAIJGetArrayWrite(A, &aa));
1196:   PetscCall(PetscArrayzero(aa, a->i[A->rmap->n]));
1197:   PetscCall(MatSeqAIJRestoreArrayWrite(A, &aa));
1198:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
1199:   PetscFunctionReturn(PETSC_SUCCESS);
1200: }

1202: PetscErrorCode MatDestroy_SeqAIJ(Mat A)
1203: {
1204:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1206:   PetscFunctionBegin;
1207:   if (A->hash_active) {
1208:     A->ops[0] = a->cops;
1209:     PetscCall(PetscHMapIJVDestroy(&a->ht));
1210:     PetscCall(PetscFree(a->dnz));
1211:     A->hash_active = PETSC_FALSE;
1212:   }

1214:   PetscCall(PetscLogObjectState((PetscObject)A, "Rows=%" PetscInt_FMT ", Cols=%" PetscInt_FMT ", NZ=%" PetscInt_FMT, A->rmap->n, A->cmap->n, a->nz));
1215:   PetscCall(MatSeqXAIJFreeAIJ(A, &a->a, &a->j, &a->i));
1216:   PetscCall(ISDestroy(&a->row));
1217:   PetscCall(ISDestroy(&a->col));
1218:   PetscCall(PetscFree(a->diag));
1219:   PetscCall(PetscFree(a->ibdiag));
1220:   PetscCall(PetscFree(a->imax));
1221:   PetscCall(PetscFree(a->ilen));
1222:   PetscCall(PetscFree(a->ipre));
1223:   PetscCall(PetscFree3(a->idiag, a->mdiag, a->ssor_work));
1224:   PetscCall(PetscFree(a->solve_work));
1225:   PetscCall(ISDestroy(&a->icol));
1226:   PetscCall(PetscFree(a->saved_values));
1227:   PetscCall(PetscFree2(a->compressedrow.i, a->compressedrow.rindex));
1228:   PetscCall(MatDestroy_SeqAIJ_Inode(A));
1229:   PetscCall(PetscFree(A->data));

1231:   /* MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted may allocate this.
1232:      That function is so heavily used (sometimes in an hidden way through multnumeric function pointers)
1233:      that is hard to properly add this data to the MatProduct data. We free it here to avoid
1234:      users reusing the matrix object with different data to incur in obscure segmentation faults
1235:      due to different matrix sizes */
1236:   PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc__ab_dense", NULL));

1238:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, NULL));
1239:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEnginePut_C", NULL));
1240:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "PetscMatlabEngineGet_C", NULL));
1241:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetColumnIndices_C", NULL));
1242:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatStoreValues_C", NULL));
1243:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatRetrieveValues_C", NULL));
1244:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsbaij_C", NULL));
1245:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqbaij_C", NULL));
1246:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijperm_C", NULL));
1247:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijsell_C", NULL));
1248: #if defined(PETSC_HAVE_MKL_SPARSE)
1249:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijmkl_C", NULL));
1250: #endif
1251: #if defined(PETSC_HAVE_CUDA)
1252:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcusparse_C", NULL));
1253:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", NULL));
1254:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", NULL));
1255: #endif
1256: #if defined(PETSC_HAVE_HIP)
1257:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijhipsparse_C", NULL));
1258:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", NULL));
1259:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", NULL));
1260: #endif
1261: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
1262:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijkokkos_C", NULL));
1263: #endif
1264:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijcrl_C", NULL));
1265: #if defined(PETSC_HAVE_ELEMENTAL)
1266:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_elemental_C", NULL));
1267: #endif
1268: #if defined(PETSC_HAVE_SCALAPACK)
1269:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_scalapack_C", NULL));
1270: #endif
1271: #if defined(PETSC_HAVE_HYPRE)
1272:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_hypre_C", NULL));
1273:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", NULL));
1274: #endif
1275:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqdense_C", NULL));
1276:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqsell_C", NULL));
1277:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_is_C", NULL));
1278:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsTranspose_C", NULL));
1279:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatIsHermitianTranspose_C", NULL));
1280:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocation_C", NULL));
1281:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatResetPreallocation_C", NULL));
1282:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJSetPreallocationCSR_C", NULL));
1283:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatReorderForNonzeroDiagonal_C", NULL));
1284:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_is_seqaij_C", NULL));
1285:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqdense_seqaij_C", NULL));
1286:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaij_seqaij_C", NULL));
1287:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSeqAIJKron_C", NULL));
1288:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetPreallocationCOO_C", NULL));
1289:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatSetValuesCOO_C", NULL));
1290:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
1291:   /* these calls do not belong here: the subclasses Duplicate/Destroy are wrong */
1292:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijsell_seqaij_C", NULL));
1293:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaijperm_seqaij_C", NULL));
1294:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConvert_seqaij_seqaijviennacl_C", NULL));
1295:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqdense_C", NULL));
1296:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatProductSetFromOptions_seqaijviennacl_seqaij_C", NULL));
1297:   PetscFunctionReturn(PETSC_SUCCESS);
1298: }

1300: PetscErrorCode MatSetOption_SeqAIJ(Mat A, MatOption op, PetscBool flg)
1301: {
1302:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

1304:   PetscFunctionBegin;
1305:   switch (op) {
1306:   case MAT_ROW_ORIENTED:
1307:     a->roworiented = flg;
1308:     break;
1309:   case MAT_KEEP_NONZERO_PATTERN:
1310:     a->keepnonzeropattern = flg;
1311:     break;
1312:   case MAT_NEW_NONZERO_LOCATIONS:
1313:     a->nonew = (flg ? 0 : 1);
1314:     break;
1315:   case MAT_NEW_NONZERO_LOCATION_ERR:
1316:     a->nonew = (flg ? -1 : 0);
1317:     break;
1318:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1319:     a->nonew = (flg ? -2 : 0);
1320:     break;
1321:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1322:     a->nounused = (flg ? -1 : 0);
1323:     break;
1324:   case MAT_IGNORE_ZERO_ENTRIES:
1325:     a->ignorezeroentries = flg;
1326:     break;
1327:   case MAT_SPD:
1328:   case MAT_SYMMETRIC:
1329:   case MAT_STRUCTURALLY_SYMMETRIC:
1330:   case MAT_HERMITIAN:
1331:   case MAT_SYMMETRY_ETERNAL:
1332:   case MAT_STRUCTURE_ONLY:
1333:   case MAT_STRUCTURAL_SYMMETRY_ETERNAL:
1334:   case MAT_SPD_ETERNAL:
1335:     /* if the diagonal matrix is square it inherits some of the properties above */
1336:     break;
1337:   case MAT_FORCE_DIAGONAL_ENTRIES:
1338:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1339:   case MAT_USE_HASH_TABLE:
1340:     PetscCall(PetscInfo(A, "Option %s ignored\n", MatOptions[op]));
1341:     break;
1342:   case MAT_USE_INODES:
1343:     PetscCall(MatSetOption_SeqAIJ_Inode(A, MAT_USE_INODES, flg));
1344:     break;
1345:   case MAT_SUBMAT_SINGLEIS:
1346:     A->submat_singleis = flg;
1347:     break;
1348:   case MAT_SORTED_FULL:
1349:     if (flg) A->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;
1350:     else A->ops->setvalues = MatSetValues_SeqAIJ;
1351:     break;
1352:   case MAT_FORM_EXPLICIT_TRANSPOSE:
1353:     A->form_explicit_transpose = flg;
1354:     break;
1355:   default:
1356:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "unknown option %d", op);
1357:   }
1358:   PetscFunctionReturn(PETSC_SUCCESS);
1359: }

1361: static PetscErrorCode MatGetDiagonal_SeqAIJ(Mat A, Vec v)
1362: {
1363:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1364:   PetscInt           i, j, n, *ai = a->i, *aj = a->j;
1365:   PetscScalar       *x;
1366:   const PetscScalar *aa;

1368:   PetscFunctionBegin;
1369:   PetscCall(VecGetLocalSize(v, &n));
1370:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
1371:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1372:   if (A->factortype == MAT_FACTOR_ILU || A->factortype == MAT_FACTOR_LU) {
1373:     PetscInt *diag = a->diag;
1374:     PetscCall(VecGetArrayWrite(v, &x));
1375:     for (i = 0; i < n; i++) x[i] = 1.0 / aa[diag[i]];
1376:     PetscCall(VecRestoreArrayWrite(v, &x));
1377:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1378:     PetscFunctionReturn(PETSC_SUCCESS);
1379:   }

1381:   PetscCall(VecGetArrayWrite(v, &x));
1382:   for (i = 0; i < n; i++) {
1383:     x[i] = 0.0;
1384:     for (j = ai[i]; j < ai[i + 1]; j++) {
1385:       if (aj[j] == i) {
1386:         x[i] = aa[j];
1387:         break;
1388:       }
1389:     }
1390:   }
1391:   PetscCall(VecRestoreArrayWrite(v, &x));
1392:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1393:   PetscFunctionReturn(PETSC_SUCCESS);
1394: }

1396: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>
1397: PetscErrorCode MatMultTransposeAdd_SeqAIJ(Mat A, Vec xx, Vec zz, Vec yy)
1398: {
1399:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1400:   const MatScalar   *aa;
1401:   PetscScalar       *y;
1402:   const PetscScalar *x;
1403:   PetscInt           m = A->rmap->n;
1404: #if !defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1405:   const MatScalar  *v;
1406:   PetscScalar       alpha;
1407:   PetscInt          n, i, j;
1408:   const PetscInt   *idx, *ii, *ridx = NULL;
1409:   Mat_CompressedRow cprow    = a->compressedrow;
1410:   PetscBool         usecprow = cprow.use;
1411: #endif

1413:   PetscFunctionBegin;
1414:   if (zz != yy) PetscCall(VecCopy(zz, yy));
1415:   PetscCall(VecGetArrayRead(xx, &x));
1416:   PetscCall(VecGetArray(yy, &y));
1417:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));

1419: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1420:   fortranmulttransposeaddaij_(&m, x, a->i, a->j, aa, y);
1421: #else
1422:   if (usecprow) {
1423:     m    = cprow.nrows;
1424:     ii   = cprow.i;
1425:     ridx = cprow.rindex;
1426:   } else {
1427:     ii = a->i;
1428:   }
1429:   for (i = 0; i < m; i++) {
1430:     idx = a->j + ii[i];
1431:     v   = aa + ii[i];
1432:     n   = ii[i + 1] - ii[i];
1433:     if (usecprow) {
1434:       alpha = x[ridx[i]];
1435:     } else {
1436:       alpha = x[i];
1437:     }
1438:     for (j = 0; j < n; j++) y[idx[j]] += alpha * v[j];
1439:   }
1440: #endif
1441:   PetscCall(PetscLogFlops(2.0 * a->nz));
1442:   PetscCall(VecRestoreArrayRead(xx, &x));
1443:   PetscCall(VecRestoreArray(yy, &y));
1444:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1445:   PetscFunctionReturn(PETSC_SUCCESS);
1446: }

1448: PetscErrorCode MatMultTranspose_SeqAIJ(Mat A, Vec xx, Vec yy)
1449: {
1450:   PetscFunctionBegin;
1451:   PetscCall(VecSet(yy, 0.0));
1452:   PetscCall(MatMultTransposeAdd_SeqAIJ(A, xx, yy, yy));
1453:   PetscFunctionReturn(PETSC_SUCCESS);
1454: }

1456: #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>

1458: PetscErrorCode MatMult_SeqAIJ(Mat A, Vec xx, Vec yy)
1459: {
1460:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1461:   PetscScalar       *y;
1462:   const PetscScalar *x;
1463:   const MatScalar   *a_a;
1464:   PetscInt           m = A->rmap->n;
1465:   const PetscInt    *ii, *ridx = NULL;
1466:   PetscBool          usecprow = a->compressedrow.use;

1468: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1469:   #pragma disjoint(*x, *y, *aa)
1470: #endif

1472:   PetscFunctionBegin;
1473:   if (a->inode.use && a->inode.checked) {
1474:     PetscCall(MatMult_SeqAIJ_Inode(A, xx, yy));
1475:     PetscFunctionReturn(PETSC_SUCCESS);
1476:   }
1477:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1478:   PetscCall(VecGetArrayRead(xx, &x));
1479:   PetscCall(VecGetArray(yy, &y));
1480:   ii = a->i;
1481:   if (usecprow) { /* use compressed row format */
1482:     PetscCall(PetscArrayzero(y, m));
1483:     m    = a->compressedrow.nrows;
1484:     ii   = a->compressedrow.i;
1485:     ridx = a->compressedrow.rindex;
1486:     PetscPragmaUseOMPKernels(parallel for)
1487:     for (PetscInt i = 0; i < m; i++) {
1488:       PetscInt           n   = ii[i + 1] - ii[i];
1489:       const PetscInt    *aj  = a->j + ii[i];
1490:       const PetscScalar *aa  = a_a + ii[i];
1491:       PetscScalar        sum = 0.0;
1492:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1493:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1494:       y[*ridx++] = sum;
1495:     }
1496:   } else { /* do not use compressed row format */
1497: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJ)
1498:     fortranmultaij_(&m, x, ii, a->j, a_a, y);
1499: #else
1500:     PetscPragmaUseOMPKernels(parallel for)
1501:     for (PetscInt i = 0; i < m; i++) {
1502:       PetscInt           n   = ii[i + 1] - ii[i];
1503:       const PetscInt    *aj  = a->j + ii[i];
1504:       const PetscScalar *aa  = a_a + ii[i];
1505:       PetscScalar        sum = 0.0;
1506:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1507:       y[i] = sum;
1508:     }
1509: #endif
1510:   }
1511:   PetscCall(PetscLogFlops(2.0 * a->nz - a->nonzerorowcnt));
1512:   PetscCall(VecRestoreArrayRead(xx, &x));
1513:   PetscCall(VecRestoreArray(yy, &y));
1514:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1515:   PetscFunctionReturn(PETSC_SUCCESS);
1516: }

1518: // HACK!!!!! Used by src/mat/tests/ex170.c
1519: PETSC_EXTERN PetscErrorCode MatMultMax_SeqAIJ(Mat A, Vec xx, Vec yy)
1520: {
1521:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1522:   PetscScalar       *y;
1523:   const PetscScalar *x;
1524:   const MatScalar   *aa, *a_a;
1525:   PetscInt           m = A->rmap->n;
1526:   const PetscInt    *aj, *ii, *ridx   = NULL;
1527:   PetscInt           n, i, nonzerorow = 0;
1528:   PetscScalar        sum;
1529:   PetscBool          usecprow = a->compressedrow.use;

1531: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1532:   #pragma disjoint(*x, *y, *aa)
1533: #endif

1535:   PetscFunctionBegin;
1536:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1537:   PetscCall(VecGetArrayRead(xx, &x));
1538:   PetscCall(VecGetArray(yy, &y));
1539:   if (usecprow) { /* use compressed row format */
1540:     m    = a->compressedrow.nrows;
1541:     ii   = a->compressedrow.i;
1542:     ridx = a->compressedrow.rindex;
1543:     for (i = 0; i < m; i++) {
1544:       n   = ii[i + 1] - ii[i];
1545:       aj  = a->j + ii[i];
1546:       aa  = a_a + ii[i];
1547:       sum = 0.0;
1548:       nonzerorow += (n > 0);
1549:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1550:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1551:       y[*ridx++] = sum;
1552:     }
1553:   } else { /* do not use compressed row format */
1554:     ii = a->i;
1555:     for (i = 0; i < m; i++) {
1556:       n   = ii[i + 1] - ii[i];
1557:       aj  = a->j + ii[i];
1558:       aa  = a_a + ii[i];
1559:       sum = 0.0;
1560:       nonzerorow += (n > 0);
1561:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1562:       y[i] = sum;
1563:     }
1564:   }
1565:   PetscCall(PetscLogFlops(2.0 * a->nz - nonzerorow));
1566:   PetscCall(VecRestoreArrayRead(xx, &x));
1567:   PetscCall(VecRestoreArray(yy, &y));
1568:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1569:   PetscFunctionReturn(PETSC_SUCCESS);
1570: }

1572: // HACK!!!!! Used by src/mat/tests/ex170.c
1573: PETSC_EXTERN PetscErrorCode MatMultAddMax_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1574: {
1575:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1576:   PetscScalar       *y, *z;
1577:   const PetscScalar *x;
1578:   const MatScalar   *aa, *a_a;
1579:   PetscInt           m = A->rmap->n, *aj, *ii;
1580:   PetscInt           n, i, *ridx = NULL;
1581:   PetscScalar        sum;
1582:   PetscBool          usecprow = a->compressedrow.use;

1584:   PetscFunctionBegin;
1585:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1586:   PetscCall(VecGetArrayRead(xx, &x));
1587:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1588:   if (usecprow) { /* use compressed row format */
1589:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1590:     m    = a->compressedrow.nrows;
1591:     ii   = a->compressedrow.i;
1592:     ridx = a->compressedrow.rindex;
1593:     for (i = 0; i < m; i++) {
1594:       n   = ii[i + 1] - ii[i];
1595:       aj  = a->j + ii[i];
1596:       aa  = a_a + ii[i];
1597:       sum = y[*ridx];
1598:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1599:       z[*ridx++] = sum;
1600:     }
1601:   } else { /* do not use compressed row format */
1602:     ii = a->i;
1603:     for (i = 0; i < m; i++) {
1604:       n   = ii[i + 1] - ii[i];
1605:       aj  = a->j + ii[i];
1606:       aa  = a_a + ii[i];
1607:       sum = y[i];
1608:       PetscSparseDenseMaxDot(sum, x, aa, aj, n);
1609:       z[i] = sum;
1610:     }
1611:   }
1612:   PetscCall(PetscLogFlops(2.0 * a->nz));
1613:   PetscCall(VecRestoreArrayRead(xx, &x));
1614:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1615:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1616:   PetscFunctionReturn(PETSC_SUCCESS);
1617: }

1619: #include <../src/mat/impls/aij/seq/ftn-kernels/fmultadd.h>
1620: PetscErrorCode MatMultAdd_SeqAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1621: {
1622:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1623:   PetscScalar       *y, *z;
1624:   const PetscScalar *x;
1625:   const MatScalar   *a_a;
1626:   const PetscInt    *ii, *ridx = NULL;
1627:   PetscInt           m        = A->rmap->n;
1628:   PetscBool          usecprow = a->compressedrow.use;

1630:   PetscFunctionBegin;
1631:   if (a->inode.use && a->inode.checked) {
1632:     PetscCall(MatMultAdd_SeqAIJ_Inode(A, xx, yy, zz));
1633:     PetscFunctionReturn(PETSC_SUCCESS);
1634:   }
1635:   PetscCall(MatSeqAIJGetArrayRead(A, &a_a));
1636:   PetscCall(VecGetArrayRead(xx, &x));
1637:   PetscCall(VecGetArrayPair(yy, zz, &y, &z));
1638:   if (usecprow) { /* use compressed row format */
1639:     if (zz != yy) PetscCall(PetscArraycpy(z, y, m));
1640:     m    = a->compressedrow.nrows;
1641:     ii   = a->compressedrow.i;
1642:     ridx = a->compressedrow.rindex;
1643:     for (PetscInt i = 0; i < m; i++) {
1644:       PetscInt           n   = ii[i + 1] - ii[i];
1645:       const PetscInt    *aj  = a->j + ii[i];
1646:       const PetscScalar *aa  = a_a + ii[i];
1647:       PetscScalar        sum = y[*ridx];
1648:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1649:       z[*ridx++] = sum;
1650:     }
1651:   } else { /* do not use compressed row format */
1652:     ii = a->i;
1653: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJ)
1654:     fortranmultaddaij_(&m, x, ii, a->j, a_a, y, z);
1655: #else
1656:     PetscPragmaUseOMPKernels(parallel for)
1657:     for (PetscInt i = 0; i < m; i++) {
1658:       PetscInt           n   = ii[i + 1] - ii[i];
1659:       const PetscInt    *aj  = a->j + ii[i];
1660:       const PetscScalar *aa  = a_a + ii[i];
1661:       PetscScalar        sum = y[i];
1662:       PetscSparseDensePlusDot(sum, x, aa, aj, n);
1663:       z[i] = sum;
1664:     }
1665: #endif
1666:   }
1667:   PetscCall(PetscLogFlops(2.0 * a->nz));
1668:   PetscCall(VecRestoreArrayRead(xx, &x));
1669:   PetscCall(VecRestoreArrayPair(yy, zz, &y, &z));
1670:   PetscCall(MatSeqAIJRestoreArrayRead(A, &a_a));
1671:   PetscFunctionReturn(PETSC_SUCCESS);
1672: }

1674: /*
1675:      Adds diagonal pointers to sparse matrix structure.
1676: */
1677: PetscErrorCode MatMarkDiagonal_SeqAIJ(Mat A)
1678: {
1679:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1680:   PetscInt    i, j, m = A->rmap->n;
1681:   PetscBool   alreadySet = PETSC_TRUE;

1683:   PetscFunctionBegin;
1684:   if (!a->diag) {
1685:     PetscCall(PetscMalloc1(m, &a->diag));
1686:     alreadySet = PETSC_FALSE;
1687:   }
1688:   for (i = 0; i < A->rmap->n; i++) {
1689:     /* If A's diagonal is already correctly set, this fast track enables cheap and repeated MatMarkDiagonal_SeqAIJ() calls */
1690:     if (alreadySet) {
1691:       PetscInt pos = a->diag[i];
1692:       if (pos >= a->i[i] && pos < a->i[i + 1] && a->j[pos] == i) continue;
1693:     }

1695:     a->diag[i] = a->i[i + 1];
1696:     for (j = a->i[i]; j < a->i[i + 1]; j++) {
1697:       if (a->j[j] == i) {
1698:         a->diag[i] = j;
1699:         break;
1700:       }
1701:     }
1702:   }
1703:   PetscFunctionReturn(PETSC_SUCCESS);
1704: }

1706: static PetscErrorCode MatShift_SeqAIJ(Mat A, PetscScalar v)
1707: {
1708:   Mat_SeqAIJ     *a    = (Mat_SeqAIJ *)A->data;
1709:   const PetscInt *diag = (const PetscInt *)a->diag;
1710:   const PetscInt *ii   = (const PetscInt *)a->i;
1711:   PetscInt        i, *mdiag = NULL;
1712:   PetscInt        cnt = 0; /* how many diagonals are missing */

1714:   PetscFunctionBegin;
1715:   if (!A->preallocated || !a->nz) {
1716:     PetscCall(MatSeqAIJSetPreallocation(A, 1, NULL));
1717:     PetscCall(MatShift_Basic(A, v));
1718:     PetscFunctionReturn(PETSC_SUCCESS);
1719:   }

1721:   if (a->diagonaldense) {
1722:     cnt = 0;
1723:   } else {
1724:     PetscCall(PetscCalloc1(A->rmap->n, &mdiag));
1725:     for (i = 0; i < A->rmap->n; i++) {
1726:       if (i < A->cmap->n && diag[i] >= ii[i + 1]) { /* 'out of range' rows never have diagonals */
1727:         cnt++;
1728:         mdiag[i] = 1;
1729:       }
1730:     }
1731:   }
1732:   if (!cnt) {
1733:     PetscCall(MatShift_Basic(A, v));
1734:   } else {
1735:     PetscScalar       *olda = a->a; /* preserve pointers to current matrix nonzeros structure and values */
1736:     PetscInt          *oldj = a->j, *oldi = a->i;
1737:     PetscBool          free_a = a->free_a, free_ij = a->free_ij;
1738:     const PetscScalar *Aa;

1740:     PetscCall(MatSeqAIJGetArrayRead(A, &Aa)); // sync the host
1741:     PetscCall(MatSeqAIJRestoreArrayRead(A, &Aa));

1743:     a->a = NULL;
1744:     a->j = NULL;
1745:     a->i = NULL;
1746:     /* increase the values in imax for each row where a diagonal is being inserted then reallocate the matrix data structures */
1747:     for (i = 0; i < PetscMin(A->rmap->n, A->cmap->n); i++) a->imax[i] += mdiag[i];
1748:     PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(A, 0, a->imax));

1750:     /* copy old values into new matrix data structure */
1751:     for (i = 0; i < A->rmap->n; i++) {
1752:       PetscCall(MatSetValues(A, 1, &i, a->imax[i] - mdiag[i], &oldj[oldi[i]], &olda[oldi[i]], ADD_VALUES));
1753:       if (i < A->cmap->n) PetscCall(MatSetValue(A, i, i, v, ADD_VALUES));
1754:     }
1755:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1756:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1757:     if (free_a) PetscCall(PetscShmgetDeallocateArray((void **)&olda));
1758:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldj));
1759:     if (free_ij) PetscCall(PetscShmgetDeallocateArray((void **)&oldi));
1760:   }
1761:   PetscCall(PetscFree(mdiag));
1762:   a->diagonaldense = PETSC_TRUE;
1763:   PetscFunctionReturn(PETSC_SUCCESS);
1764: }

1766: /*
1767:      Checks for missing diagonals
1768: */
1769: PetscErrorCode MatMissingDiagonal_SeqAIJ(Mat A, PetscBool *missing, PetscInt *d)
1770: {
1771:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;
1772:   PetscInt   *diag, *ii = a->i, i;

1774:   PetscFunctionBegin;
1775:   *missing = PETSC_FALSE;
1776:   if (A->rmap->n > 0 && !ii) {
1777:     *missing = PETSC_TRUE;
1778:     if (d) *d = 0;
1779:     PetscCall(PetscInfo(A, "Matrix has no entries therefore is missing diagonal\n"));
1780:   } else {
1781:     PetscInt n;
1782:     n    = PetscMin(A->rmap->n, A->cmap->n);
1783:     diag = a->diag;
1784:     for (i = 0; i < n; i++) {
1785:       if (diag[i] >= ii[i + 1]) {
1786:         *missing = PETSC_TRUE;
1787:         if (d) *d = i;
1788:         PetscCall(PetscInfo(A, "Matrix is missing diagonal number %" PetscInt_FMT "\n", i));
1789:         break;
1790:       }
1791:     }
1792:   }
1793:   PetscFunctionReturn(PETSC_SUCCESS);
1794: }

1796: #include <petscblaslapack.h>
1797: #include <petsc/private/kernels/blockinvert.h>

1799: /*
1800:     Note that values is allocated externally by the PC and then passed into this routine
1801: */
1802: static PetscErrorCode MatInvertVariableBlockDiagonal_SeqAIJ(Mat A, PetscInt nblocks, const PetscInt *bsizes, PetscScalar *diag)
1803: {
1804:   PetscInt        n = A->rmap->n, i, ncnt = 0, *indx, j, bsizemax = 0, *v_pivots;
1805:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;
1806:   const PetscReal shift = 0.0;
1807:   PetscInt        ipvt[5];
1808:   PetscCount      flops = 0;
1809:   PetscScalar     work[25], *v_work;

1811:   PetscFunctionBegin;
1812:   allowzeropivot = PetscNot(A->erroriffailure);
1813:   for (i = 0; i < nblocks; i++) ncnt += bsizes[i];
1814:   PetscCheck(ncnt == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Total blocksizes %" PetscInt_FMT " doesn't match number matrix rows %" PetscInt_FMT, ncnt, n);
1815:   for (i = 0; i < nblocks; i++) bsizemax = PetscMax(bsizemax, bsizes[i]);
1816:   PetscCall(PetscMalloc1(bsizemax, &indx));
1817:   if (bsizemax > 7) PetscCall(PetscMalloc2(bsizemax, &v_work, bsizemax, &v_pivots));
1818:   ncnt = 0;
1819:   for (i = 0; i < nblocks; i++) {
1820:     for (j = 0; j < bsizes[i]; j++) indx[j] = ncnt + j;
1821:     PetscCall(MatGetValues(A, bsizes[i], indx, bsizes[i], indx, diag));
1822:     switch (bsizes[i]) {
1823:     case 1:
1824:       *diag = 1.0 / (*diag);
1825:       break;
1826:     case 2:
1827:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
1828:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1829:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
1830:       break;
1831:     case 3:
1832:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
1833:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1834:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
1835:       break;
1836:     case 4:
1837:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
1838:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1839:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
1840:       break;
1841:     case 5:
1842:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
1843:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1844:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
1845:       break;
1846:     case 6:
1847:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
1848:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1849:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
1850:       break;
1851:     case 7:
1852:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
1853:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1854:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
1855:       break;
1856:     default:
1857:       PetscCall(PetscKernel_A_gets_inverse_A(bsizes[i], diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
1858:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1859:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bsizes[i]));
1860:     }
1861:     ncnt += bsizes[i];
1862:     diag += bsizes[i] * bsizes[i];
1863:     flops += 2 * PetscPowInt64(bsizes[i], 3) / 3;
1864:   }
1865:   PetscCall(PetscLogFlops(flops));
1866:   if (bsizemax > 7) PetscCall(PetscFree2(v_work, v_pivots));
1867:   PetscCall(PetscFree(indx));
1868:   PetscFunctionReturn(PETSC_SUCCESS);
1869: }

1871: /*
1872:    Negative shift indicates do not generate an error if there is a zero diagonal, just invert it anyways
1873: */
1874: static PetscErrorCode MatInvertDiagonal_SeqAIJ(Mat A, PetscScalar omega, PetscScalar fshift)
1875: {
1876:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
1877:   PetscInt         i, *diag, m = A->rmap->n;
1878:   const MatScalar *v;
1879:   PetscScalar     *idiag, *mdiag;

1881:   PetscFunctionBegin;
1882:   if (a->idiagvalid) PetscFunctionReturn(PETSC_SUCCESS);
1883:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
1884:   diag = a->diag;
1885:   if (!a->idiag) { PetscCall(PetscMalloc3(m, &a->idiag, m, &a->mdiag, m, &a->ssor_work)); }

1887:   mdiag = a->mdiag;
1888:   idiag = a->idiag;
1889:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
1890:   if (omega == 1.0 && PetscRealPart(fshift) <= 0.0) {
1891:     for (i = 0; i < m; i++) {
1892:       mdiag[i] = v[diag[i]];
1893:       if (!PetscAbsScalar(mdiag[i])) { /* zero diagonal */
1894:         if (PetscRealPart(fshift)) {
1895:           PetscCall(PetscInfo(A, "Zero diagonal on row %" PetscInt_FMT "\n", i));
1896:           A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1897:           A->factorerror_zeropivot_value = 0.0;
1898:           A->factorerror_zeropivot_row   = i;
1899:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Zero diagonal on row %" PetscInt_FMT, i);
1900:       }
1901:       idiag[i] = 1.0 / v[diag[i]];
1902:     }
1903:     PetscCall(PetscLogFlops(m));
1904:   } else {
1905:     for (i = 0; i < m; i++) {
1906:       mdiag[i] = v[diag[i]];
1907:       idiag[i] = omega / (fshift + v[diag[i]]);
1908:     }
1909:     PetscCall(PetscLogFlops(2.0 * m));
1910:   }
1911:   a->idiagvalid = PETSC_TRUE;
1912:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
1913:   PetscFunctionReturn(PETSC_SUCCESS);
1914: }

1916: PetscErrorCode MatSOR_SeqAIJ(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
1917: {
1918:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
1919:   PetscScalar       *x, d, sum, *t, scale;
1920:   const MatScalar   *v, *idiag = NULL, *mdiag, *aa;
1921:   const PetscScalar *b, *bs, *xb, *ts;
1922:   PetscInt           n, m = A->rmap->n, i;
1923:   const PetscInt    *idx, *diag;

1925:   PetscFunctionBegin;
1926:   if (a->inode.use && a->inode.checked && omega == 1.0 && fshift == 0.0) {
1927:     PetscCall(MatSOR_SeqAIJ_Inode(A, bb, omega, flag, fshift, its, lits, xx));
1928:     PetscFunctionReturn(PETSC_SUCCESS);
1929:   }
1930:   its = its * lits;

1932:   if (fshift != a->fshift || omega != a->omega) a->idiagvalid = PETSC_FALSE; /* must recompute idiag[] */
1933:   if (!a->idiagvalid) PetscCall(MatInvertDiagonal_SeqAIJ(A, omega, fshift));
1934:   a->fshift = fshift;
1935:   a->omega  = omega;

1937:   diag  = a->diag;
1938:   t     = a->ssor_work;
1939:   idiag = a->idiag;
1940:   mdiag = a->mdiag;

1942:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
1943:   PetscCall(VecGetArray(xx, &x));
1944:   PetscCall(VecGetArrayRead(bb, &b));
1945:   /* We count flops by assuming the upper triangular and lower triangular parts have the same number of nonzeros */
1946:   if (flag == SOR_APPLY_UPPER) {
1947:     /* apply (U + D/omega) to the vector */
1948:     bs = b;
1949:     for (i = 0; i < m; i++) {
1950:       d   = fshift + mdiag[i];
1951:       n   = a->i[i + 1] - diag[i] - 1;
1952:       idx = a->j + diag[i] + 1;
1953:       v   = aa + diag[i] + 1;
1954:       sum = b[i] * d / omega;
1955:       PetscSparseDensePlusDot(sum, bs, v, idx, n);
1956:       x[i] = sum;
1957:     }
1958:     PetscCall(VecRestoreArray(xx, &x));
1959:     PetscCall(VecRestoreArrayRead(bb, &b));
1960:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
1961:     PetscCall(PetscLogFlops(a->nz));
1962:     PetscFunctionReturn(PETSC_SUCCESS);
1963:   }

1965:   PetscCheck(flag != SOR_APPLY_LOWER, PETSC_COMM_SELF, PETSC_ERR_SUP, "SOR_APPLY_LOWER is not implemented");
1966:   if (flag & SOR_EISENSTAT) {
1967:     /* Let  A = L + U + D; where L is lower triangular,
1968:     U is upper triangular, E = D/omega; This routine applies

1970:             (L + E)^{-1} A (U + E)^{-1}

1972:     to a vector efficiently using Eisenstat's trick.
1973:     */
1974:     scale = (2.0 / omega) - 1.0;

1976:     /*  x = (E + U)^{-1} b */
1977:     for (i = m - 1; i >= 0; i--) {
1978:       n   = a->i[i + 1] - diag[i] - 1;
1979:       idx = a->j + diag[i] + 1;
1980:       v   = aa + diag[i] + 1;
1981:       sum = b[i];
1982:       PetscSparseDenseMinusDot(sum, x, v, idx, n);
1983:       x[i] = sum * idiag[i];
1984:     }

1986:     /*  t = b - (2*E - D)x */
1987:     v = aa;
1988:     for (i = 0; i < m; i++) t[i] = b[i] - scale * (v[*diag++]) * x[i];

1990:     /*  t = (E + L)^{-1}t */
1991:     ts   = t;
1992:     diag = a->diag;
1993:     for (i = 0; i < m; i++) {
1994:       n   = diag[i] - a->i[i];
1995:       idx = a->j + a->i[i];
1996:       v   = aa + a->i[i];
1997:       sum = t[i];
1998:       PetscSparseDenseMinusDot(sum, ts, v, idx, n);
1999:       t[i] = sum * idiag[i];
2000:       /*  x = x + t */
2001:       x[i] += t[i];
2002:     }

2004:     PetscCall(PetscLogFlops(6.0 * m - 1 + 2.0 * a->nz));
2005:     PetscCall(VecRestoreArray(xx, &x));
2006:     PetscCall(VecRestoreArrayRead(bb, &b));
2007:     PetscFunctionReturn(PETSC_SUCCESS);
2008:   }
2009:   if (flag & SOR_ZERO_INITIAL_GUESS) {
2010:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
2011:       for (i = 0; i < m; i++) {
2012:         n   = diag[i] - a->i[i];
2013:         idx = a->j + a->i[i];
2014:         v   = aa + a->i[i];
2015:         sum = b[i];
2016:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2017:         t[i] = sum;
2018:         x[i] = sum * idiag[i];
2019:       }
2020:       xb = t;
2021:       PetscCall(PetscLogFlops(a->nz));
2022:     } else xb = b;
2023:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
2024:       for (i = m - 1; i >= 0; i--) {
2025:         n   = a->i[i + 1] - diag[i] - 1;
2026:         idx = a->j + diag[i] + 1;
2027:         v   = aa + diag[i] + 1;
2028:         sum = xb[i];
2029:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2030:         if (xb == b) {
2031:           x[i] = sum * idiag[i];
2032:         } else {
2033:           x[i] = (1 - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2034:         }
2035:       }
2036:       PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
2037:     }
2038:     its--;
2039:   }
2040:   while (its--) {
2041:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
2042:       for (i = 0; i < m; i++) {
2043:         /* lower */
2044:         n   = diag[i] - a->i[i];
2045:         idx = a->j + a->i[i];
2046:         v   = aa + a->i[i];
2047:         sum = b[i];
2048:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2049:         t[i] = sum; /* save application of the lower-triangular part */
2050:         /* upper */
2051:         n   = a->i[i + 1] - diag[i] - 1;
2052:         idx = a->j + diag[i] + 1;
2053:         v   = aa + diag[i] + 1;
2054:         PetscSparseDenseMinusDot(sum, x, v, idx, n);
2055:         x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2056:       }
2057:       xb = t;
2058:       PetscCall(PetscLogFlops(2.0 * a->nz));
2059:     } else xb = b;
2060:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
2061:       for (i = m - 1; i >= 0; i--) {
2062:         sum = xb[i];
2063:         if (xb == b) {
2064:           /* whole matrix (no checkpointing available) */
2065:           n   = a->i[i + 1] - a->i[i];
2066:           idx = a->j + a->i[i];
2067:           v   = aa + a->i[i];
2068:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2069:           x[i] = (1. - omega) * x[i] + (sum + mdiag[i] * x[i]) * idiag[i];
2070:         } else { /* lower-triangular part has been saved, so only apply upper-triangular */
2071:           n   = a->i[i + 1] - diag[i] - 1;
2072:           idx = a->j + diag[i] + 1;
2073:           v   = aa + diag[i] + 1;
2074:           PetscSparseDenseMinusDot(sum, x, v, idx, n);
2075:           x[i] = (1. - omega) * x[i] + sum * idiag[i]; /* omega in idiag */
2076:         }
2077:       }
2078:       if (xb == b) {
2079:         PetscCall(PetscLogFlops(2.0 * a->nz));
2080:       } else {
2081:         PetscCall(PetscLogFlops(a->nz)); /* assumes 1/2 in upper */
2082:       }
2083:     }
2084:   }
2085:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2086:   PetscCall(VecRestoreArray(xx, &x));
2087:   PetscCall(VecRestoreArrayRead(bb, &b));
2088:   PetscFunctionReturn(PETSC_SUCCESS);
2089: }

2091: static PetscErrorCode MatGetInfo_SeqAIJ(Mat A, MatInfoType flag, MatInfo *info)
2092: {
2093:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2095:   PetscFunctionBegin;
2096:   info->block_size   = 1.0;
2097:   info->nz_allocated = a->maxnz;
2098:   info->nz_used      = a->nz;
2099:   info->nz_unneeded  = (a->maxnz - a->nz);
2100:   info->assemblies   = A->num_ass;
2101:   info->mallocs      = A->info.mallocs;
2102:   info->memory       = 0; /* REVIEW ME */
2103:   if (A->factortype) {
2104:     info->fill_ratio_given  = A->info.fill_ratio_given;
2105:     info->fill_ratio_needed = A->info.fill_ratio_needed;
2106:     info->factor_mallocs    = A->info.factor_mallocs;
2107:   } else {
2108:     info->fill_ratio_given  = 0;
2109:     info->fill_ratio_needed = 0;
2110:     info->factor_mallocs    = 0;
2111:   }
2112:   PetscFunctionReturn(PETSC_SUCCESS);
2113: }

2115: static PetscErrorCode MatZeroRows_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2116: {
2117:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2118:   PetscInt           i, m = A->rmap->n - 1;
2119:   const PetscScalar *xx;
2120:   PetscScalar       *bb, *aa;
2121:   PetscInt           d = 0;

2123:   PetscFunctionBegin;
2124:   if (x && b) {
2125:     PetscCall(VecGetArrayRead(x, &xx));
2126:     PetscCall(VecGetArray(b, &bb));
2127:     for (i = 0; i < N; i++) {
2128:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2129:       if (rows[i] >= A->cmap->n) continue;
2130:       bb[rows[i]] = diag * xx[rows[i]];
2131:     }
2132:     PetscCall(VecRestoreArrayRead(x, &xx));
2133:     PetscCall(VecRestoreArray(b, &bb));
2134:   }

2136:   PetscCall(MatSeqAIJGetArray(A, &aa));
2137:   if (a->keepnonzeropattern) {
2138:     for (i = 0; i < N; i++) {
2139:       PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2140:       PetscCall(PetscArrayzero(&aa[a->i[rows[i]]], a->ilen[rows[i]]));
2141:     }
2142:     if (diag != 0.0) {
2143:       for (i = 0; i < N; i++) {
2144:         d = rows[i];
2145:         if (rows[i] >= A->cmap->n) continue;
2146:         PetscCheck(a->diag[d] < a->i[d + 1], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in the zeroed row %" PetscInt_FMT, d);
2147:       }
2148:       for (i = 0; i < N; i++) {
2149:         if (rows[i] >= A->cmap->n) continue;
2150:         aa[a->diag[rows[i]]] = diag;
2151:       }
2152:     }
2153:   } else {
2154:     if (diag != 0.0) {
2155:       for (i = 0; i < N; i++) {
2156:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2157:         if (a->ilen[rows[i]] > 0) {
2158:           if (rows[i] >= A->cmap->n) {
2159:             a->ilen[rows[i]] = 0;
2160:           } else {
2161:             a->ilen[rows[i]]    = 1;
2162:             aa[a->i[rows[i]]]   = diag;
2163:             a->j[a->i[rows[i]]] = rows[i];
2164:           }
2165:         } else if (rows[i] < A->cmap->n) { /* in case row was completely empty */
2166:           PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diag, INSERT_VALUES));
2167:         }
2168:       }
2169:     } else {
2170:       for (i = 0; i < N; i++) {
2171:         PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2172:         a->ilen[rows[i]] = 0;
2173:       }
2174:     }
2175:     A->nonzerostate++;
2176:   }
2177:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2178:   PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2179:   PetscFunctionReturn(PETSC_SUCCESS);
2180: }

2182: static PetscErrorCode MatZeroRowsColumns_SeqAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2183: {
2184:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2185:   PetscInt           i, j, m = A->rmap->n - 1, d = 0;
2186:   PetscBool          missing, *zeroed, vecs = PETSC_FALSE;
2187:   const PetscScalar *xx;
2188:   PetscScalar       *bb, *aa;

2190:   PetscFunctionBegin;
2191:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);
2192:   PetscCall(MatSeqAIJGetArray(A, &aa));
2193:   if (x && b) {
2194:     PetscCall(VecGetArrayRead(x, &xx));
2195:     PetscCall(VecGetArray(b, &bb));
2196:     vecs = PETSC_TRUE;
2197:   }
2198:   PetscCall(PetscCalloc1(A->rmap->n, &zeroed));
2199:   for (i = 0; i < N; i++) {
2200:     PetscCheck(rows[i] >= 0 && rows[i] <= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "row %" PetscInt_FMT " out of range", rows[i]);
2201:     PetscCall(PetscArrayzero(PetscSafePointerPlusOffset(aa, a->i[rows[i]]), a->ilen[rows[i]]));

2203:     zeroed[rows[i]] = PETSC_TRUE;
2204:   }
2205:   for (i = 0; i < A->rmap->n; i++) {
2206:     if (!zeroed[i]) {
2207:       for (j = a->i[i]; j < a->i[i + 1]; j++) {
2208:         if (a->j[j] < A->rmap->n && zeroed[a->j[j]]) {
2209:           if (vecs) bb[i] -= aa[j] * xx[a->j[j]];
2210:           aa[j] = 0.0;
2211:         }
2212:       }
2213:     } else if (vecs && i < A->cmap->N) bb[i] = diag * xx[i];
2214:   }
2215:   if (x && b) {
2216:     PetscCall(VecRestoreArrayRead(x, &xx));
2217:     PetscCall(VecRestoreArray(b, &bb));
2218:   }
2219:   PetscCall(PetscFree(zeroed));
2220:   if (diag != 0.0) {
2221:     PetscCall(MatMissingDiagonal_SeqAIJ(A, &missing, &d));
2222:     if (missing) {
2223:       for (i = 0; i < N; i++) {
2224:         if (rows[i] >= A->cmap->N) continue;
2225:         PetscCheck(!a->nonew || rows[i] < d, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix is missing diagonal entry in row %" PetscInt_FMT " (%" PetscInt_FMT ")", d, rows[i]);
2226:         PetscCall(MatSetValues_SeqAIJ(A, 1, &rows[i], 1, &rows[i], &diag, INSERT_VALUES));
2227:       }
2228:     } else {
2229:       for (i = 0; i < N; i++) aa[a->diag[rows[i]]] = diag;
2230:     }
2231:   }
2232:   PetscCall(MatSeqAIJRestoreArray(A, &aa));
2233:   PetscUseTypeMethod(A, assemblyend, MAT_FINAL_ASSEMBLY);
2234:   PetscFunctionReturn(PETSC_SUCCESS);
2235: }

2237: PetscErrorCode MatGetRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2238: {
2239:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2240:   const PetscScalar *aa;

2242:   PetscFunctionBegin;
2243:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2244:   *nz = a->i[row + 1] - a->i[row];
2245:   if (v) *v = PetscSafePointerPlusOffset((PetscScalar *)aa, a->i[row]);
2246:   if (idx) {
2247:     if (*nz && a->j) *idx = a->j + a->i[row];
2248:     else *idx = NULL;
2249:   }
2250:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2251:   PetscFunctionReturn(PETSC_SUCCESS);
2252: }

2254: PetscErrorCode MatRestoreRow_SeqAIJ(Mat A, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
2255: {
2256:   PetscFunctionBegin;
2257:   PetscFunctionReturn(PETSC_SUCCESS);
2258: }

2260: static PetscErrorCode MatNorm_SeqAIJ(Mat A, NormType type, PetscReal *nrm)
2261: {
2262:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
2263:   const MatScalar *v;
2264:   PetscReal        sum = 0.0;
2265:   PetscInt         i, j;

2267:   PetscFunctionBegin;
2268:   PetscCall(MatSeqAIJGetArrayRead(A, &v));
2269:   if (type == NORM_FROBENIUS) {
2270: #if defined(PETSC_USE_REAL___FP16)
2271:     PetscBLASInt one = 1, nz = a->nz;
2272:     PetscCallBLAS("BLASnrm2", *nrm = BLASnrm2_(&nz, v, &one));
2273: #else
2274:     for (i = 0; i < a->nz; i++) {
2275:       sum += PetscRealPart(PetscConj(*v) * (*v));
2276:       v++;
2277:     }
2278:     *nrm = PetscSqrtReal(sum);
2279: #endif
2280:     PetscCall(PetscLogFlops(2.0 * a->nz));
2281:   } else if (type == NORM_1) {
2282:     PetscReal *tmp;
2283:     PetscInt  *jj = a->j;
2284:     PetscCall(PetscCalloc1(A->cmap->n + 1, &tmp));
2285:     *nrm = 0.0;
2286:     for (j = 0; j < a->nz; j++) {
2287:       tmp[*jj++] += PetscAbsScalar(*v);
2288:       v++;
2289:     }
2290:     for (j = 0; j < A->cmap->n; j++) {
2291:       if (tmp[j] > *nrm) *nrm = tmp[j];
2292:     }
2293:     PetscCall(PetscFree(tmp));
2294:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2295:   } else if (type == NORM_INFINITY) {
2296:     *nrm = 0.0;
2297:     for (j = 0; j < A->rmap->n; j++) {
2298:       const PetscScalar *v2 = PetscSafePointerPlusOffset(v, a->i[j]);
2299:       sum                   = 0.0;
2300:       for (i = 0; i < a->i[j + 1] - a->i[j]; i++) {
2301:         sum += PetscAbsScalar(*v2);
2302:         v2++;
2303:       }
2304:       if (sum > *nrm) *nrm = sum;
2305:     }
2306:     PetscCall(PetscLogFlops(PetscMax(a->nz - 1, 0)));
2307:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for two norm");
2308:   PetscCall(MatSeqAIJRestoreArrayRead(A, &v));
2309:   PetscFunctionReturn(PETSC_SUCCESS);
2310: }

2312: static PetscErrorCode MatIsTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2313: {
2314:   Mat_SeqAIJ      *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2315:   PetscInt        *adx, *bdx, *aii, *bii, *aptr, *bptr;
2316:   const MatScalar *va, *vb;
2317:   PetscInt         ma, na, mb, nb, i;

2319:   PetscFunctionBegin;
2320:   PetscCall(MatGetSize(A, &ma, &na));
2321:   PetscCall(MatGetSize(B, &mb, &nb));
2322:   if (ma != nb || na != mb) {
2323:     *f = PETSC_FALSE;
2324:     PetscFunctionReturn(PETSC_SUCCESS);
2325:   }
2326:   PetscCall(MatSeqAIJGetArrayRead(A, &va));
2327:   PetscCall(MatSeqAIJGetArrayRead(B, &vb));
2328:   aii = aij->i;
2329:   bii = bij->i;
2330:   adx = aij->j;
2331:   bdx = bij->j;
2332:   PetscCall(PetscMalloc1(ma, &aptr));
2333:   PetscCall(PetscMalloc1(mb, &bptr));
2334:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2335:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2337:   *f = PETSC_TRUE;
2338:   for (i = 0; i < ma; i++) {
2339:     while (aptr[i] < aii[i + 1]) {
2340:       PetscInt    idc, idr;
2341:       PetscScalar vc, vr;
2342:       /* column/row index/value */
2343:       idc = adx[aptr[i]];
2344:       idr = bdx[bptr[idc]];
2345:       vc  = va[aptr[i]];
2346:       vr  = vb[bptr[idc]];
2347:       if (i != idr || PetscAbsScalar(vc - vr) > tol) {
2348:         *f = PETSC_FALSE;
2349:         goto done;
2350:       } else {
2351:         aptr[i]++;
2352:         if (B || i != idc) bptr[idc]++;
2353:       }
2354:     }
2355:   }
2356: done:
2357:   PetscCall(PetscFree(aptr));
2358:   PetscCall(PetscFree(bptr));
2359:   PetscCall(MatSeqAIJRestoreArrayRead(A, &va));
2360:   PetscCall(MatSeqAIJRestoreArrayRead(B, &vb));
2361:   PetscFunctionReturn(PETSC_SUCCESS);
2362: }

2364: static PetscErrorCode MatIsHermitianTranspose_SeqAIJ(Mat A, Mat B, PetscReal tol, PetscBool *f)
2365: {
2366:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data, *bij = (Mat_SeqAIJ *)B->data;
2367:   PetscInt   *adx, *bdx, *aii, *bii, *aptr, *bptr;
2368:   MatScalar  *va, *vb;
2369:   PetscInt    ma, na, mb, nb, i;

2371:   PetscFunctionBegin;
2372:   PetscCall(MatGetSize(A, &ma, &na));
2373:   PetscCall(MatGetSize(B, &mb, &nb));
2374:   if (ma != nb || na != mb) {
2375:     *f = PETSC_FALSE;
2376:     PetscFunctionReturn(PETSC_SUCCESS);
2377:   }
2378:   aii = aij->i;
2379:   bii = bij->i;
2380:   adx = aij->j;
2381:   bdx = bij->j;
2382:   va  = aij->a;
2383:   vb  = bij->a;
2384:   PetscCall(PetscMalloc1(ma, &aptr));
2385:   PetscCall(PetscMalloc1(mb, &bptr));
2386:   for (i = 0; i < ma; i++) aptr[i] = aii[i];
2387:   for (i = 0; i < mb; i++) bptr[i] = bii[i];

2389:   *f = PETSC_TRUE;
2390:   for (i = 0; i < ma; i++) {
2391:     while (aptr[i] < aii[i + 1]) {
2392:       PetscInt    idc, idr;
2393:       PetscScalar vc, vr;
2394:       /* column/row index/value */
2395:       idc = adx[aptr[i]];
2396:       idr = bdx[bptr[idc]];
2397:       vc  = va[aptr[i]];
2398:       vr  = vb[bptr[idc]];
2399:       if (i != idr || PetscAbsScalar(vc - PetscConj(vr)) > tol) {
2400:         *f = PETSC_FALSE;
2401:         goto done;
2402:       } else {
2403:         aptr[i]++;
2404:         if (B || i != idc) bptr[idc]++;
2405:       }
2406:     }
2407:   }
2408: done:
2409:   PetscCall(PetscFree(aptr));
2410:   PetscCall(PetscFree(bptr));
2411:   PetscFunctionReturn(PETSC_SUCCESS);
2412: }

2414: PetscErrorCode MatDiagonalScale_SeqAIJ(Mat A, Vec ll, Vec rr)
2415: {
2416:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2417:   const PetscScalar *l, *r;
2418:   PetscScalar        x;
2419:   MatScalar         *v;
2420:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, M, nz = a->nz;
2421:   const PetscInt    *jj;

2423:   PetscFunctionBegin;
2424:   if (ll) {
2425:     /* The local size is used so that VecMPI can be passed to this routine
2426:        by MatDiagonalScale_MPIAIJ */
2427:     PetscCall(VecGetLocalSize(ll, &m));
2428:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vector wrong length");
2429:     PetscCall(VecGetArrayRead(ll, &l));
2430:     PetscCall(MatSeqAIJGetArray(A, &v));
2431:     for (i = 0; i < m; i++) {
2432:       x = l[i];
2433:       M = a->i[i + 1] - a->i[i];
2434:       for (j = 0; j < M; j++) (*v++) *= x;
2435:     }
2436:     PetscCall(VecRestoreArrayRead(ll, &l));
2437:     PetscCall(PetscLogFlops(nz));
2438:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2439:   }
2440:   if (rr) {
2441:     PetscCall(VecGetLocalSize(rr, &n));
2442:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vector wrong length");
2443:     PetscCall(VecGetArrayRead(rr, &r));
2444:     PetscCall(MatSeqAIJGetArray(A, &v));
2445:     jj = a->j;
2446:     for (i = 0; i < nz; i++) (*v++) *= r[*jj++];
2447:     PetscCall(MatSeqAIJRestoreArray(A, &v));
2448:     PetscCall(VecRestoreArrayRead(rr, &r));
2449:     PetscCall(PetscLogFlops(nz));
2450:   }
2451:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
2452:   PetscFunctionReturn(PETSC_SUCCESS);
2453: }

2455: PetscErrorCode MatCreateSubMatrix_SeqAIJ(Mat A, IS isrow, IS iscol, PetscInt csize, MatReuse scall, Mat *B)
2456: {
2457:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *c;
2458:   PetscInt          *smap, i, k, kstart, kend, oldcols = A->cmap->n, *lens;
2459:   PetscInt           row, mat_i, *mat_j, tcol, first, step, *mat_ilen, sum, lensi;
2460:   const PetscInt    *irow, *icol;
2461:   const PetscScalar *aa;
2462:   PetscInt           nrows, ncols;
2463:   PetscInt          *starts, *j_new, *i_new, *aj = a->j, *ai = a->i, ii, *ailen = a->ilen;
2464:   MatScalar         *a_new, *mat_a, *c_a;
2465:   Mat                C;
2466:   PetscBool          stride;

2468:   PetscFunctionBegin;
2469:   PetscCall(ISGetIndices(isrow, &irow));
2470:   PetscCall(ISGetLocalSize(isrow, &nrows));
2471:   PetscCall(ISGetLocalSize(iscol, &ncols));

2473:   PetscCall(PetscObjectTypeCompare((PetscObject)iscol, ISSTRIDE, &stride));
2474:   if (stride) {
2475:     PetscCall(ISStrideGetInfo(iscol, &first, &step));
2476:   } else {
2477:     first = 0;
2478:     step  = 0;
2479:   }
2480:   if (stride && step == 1) {
2481:     /* special case of contiguous rows */
2482:     PetscCall(PetscMalloc2(nrows, &lens, nrows, &starts));
2483:     /* loop over new rows determining lens and starting points */
2484:     for (i = 0; i < nrows; i++) {
2485:       kstart    = ai[irow[i]];
2486:       kend      = kstart + ailen[irow[i]];
2487:       starts[i] = kstart;
2488:       for (k = kstart; k < kend; k++) {
2489:         if (aj[k] >= first) {
2490:           starts[i] = k;
2491:           break;
2492:         }
2493:       }
2494:       sum = 0;
2495:       while (k < kend) {
2496:         if (aj[k++] >= first + ncols) break;
2497:         sum++;
2498:       }
2499:       lens[i] = sum;
2500:     }
2501:     /* create submatrix */
2502:     if (scall == MAT_REUSE_MATRIX) {
2503:       PetscInt n_cols, n_rows;
2504:       PetscCall(MatGetSize(*B, &n_rows, &n_cols));
2505:       PetscCheck(n_rows == nrows && n_cols == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Reused submatrix wrong size");
2506:       PetscCall(MatZeroEntries(*B));
2507:       C = *B;
2508:     } else {
2509:       PetscInt rbs, cbs;
2510:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2511:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2512:       PetscCall(ISGetBlockSize(isrow, &rbs));
2513:       PetscCall(ISGetBlockSize(iscol, &cbs));
2514:       PetscCall(MatSetBlockSizes(C, rbs, cbs));
2515:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2516:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2517:     }
2518:     c = (Mat_SeqAIJ *)C->data;

2520:     /* loop over rows inserting into submatrix */
2521:     PetscCall(MatSeqAIJGetArrayWrite(C, &a_new)); // Not 'a_new = c->a-new', since that raw usage ignores offload state of C
2522:     j_new = c->j;
2523:     i_new = c->i;
2524:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2525:     for (i = 0; i < nrows; i++) {
2526:       ii    = starts[i];
2527:       lensi = lens[i];
2528:       if (lensi) {
2529:         for (k = 0; k < lensi; k++) *j_new++ = aj[ii + k] - first;
2530:         PetscCall(PetscArraycpy(a_new, aa + starts[i], lensi));
2531:         a_new += lensi;
2532:       }
2533:       i_new[i + 1] = i_new[i] + lensi;
2534:       c->ilen[i]   = lensi;
2535:     }
2536:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &a_new)); // Set C's offload state properly
2537:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2538:     PetscCall(PetscFree2(lens, starts));
2539:   } else {
2540:     PetscCall(ISGetIndices(iscol, &icol));
2541:     PetscCall(PetscCalloc1(oldcols, &smap));
2542:     PetscCall(PetscMalloc1(1 + nrows, &lens));
2543:     for (i = 0; i < ncols; i++) {
2544:       PetscCheck(icol[i] < oldcols, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Requesting column beyond largest column icol[%" PetscInt_FMT "] %" PetscInt_FMT " >= A->cmap->n %" PetscInt_FMT, i, icol[i], oldcols);
2545:       smap[icol[i]] = i + 1;
2546:     }

2548:     /* determine lens of each row */
2549:     for (i = 0; i < nrows; i++) {
2550:       kstart  = ai[irow[i]];
2551:       kend    = kstart + a->ilen[irow[i]];
2552:       lens[i] = 0;
2553:       for (k = kstart; k < kend; k++) {
2554:         if (smap[aj[k]]) lens[i]++;
2555:       }
2556:     }
2557:     /* Create and fill new matrix */
2558:     if (scall == MAT_REUSE_MATRIX) {
2559:       PetscBool equal;

2561:       c = (Mat_SeqAIJ *)((*B)->data);
2562:       PetscCheck((*B)->rmap->n == nrows && (*B)->cmap->n == ncols, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong size");
2563:       PetscCall(PetscArraycmp(c->ilen, lens, (*B)->rmap->n, &equal));
2564:       PetscCheck(equal, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong number of nonzeros");
2565:       PetscCall(PetscArrayzero(c->ilen, (*B)->rmap->n));
2566:       C = *B;
2567:     } else {
2568:       PetscInt rbs, cbs;
2569:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &C));
2570:       PetscCall(MatSetSizes(C, nrows, ncols, PETSC_DETERMINE, PETSC_DETERMINE));
2571:       PetscCall(ISGetBlockSize(isrow, &rbs));
2572:       PetscCall(ISGetBlockSize(iscol, &cbs));
2573:       if (rbs > 1 || cbs > 1) PetscCall(MatSetBlockSizes(C, rbs, cbs));
2574:       PetscCall(MatSetType(C, ((PetscObject)A)->type_name));
2575:       PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(C, 0, lens));
2576:     }
2577:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));

2579:     c = (Mat_SeqAIJ *)C->data;
2580:     PetscCall(MatSeqAIJGetArrayWrite(C, &c_a)); // Not 'c->a', since that raw usage ignores offload state of C
2581:     for (i = 0; i < nrows; i++) {
2582:       row      = irow[i];
2583:       kstart   = ai[row];
2584:       kend     = kstart + a->ilen[row];
2585:       mat_i    = c->i[i];
2586:       mat_j    = PetscSafePointerPlusOffset(c->j, mat_i);
2587:       mat_a    = PetscSafePointerPlusOffset(c_a, mat_i);
2588:       mat_ilen = c->ilen + i;
2589:       for (k = kstart; k < kend; k++) {
2590:         if ((tcol = smap[a->j[k]])) {
2591:           *mat_j++ = tcol - 1;
2592:           *mat_a++ = aa[k];
2593:           (*mat_ilen)++;
2594:         }
2595:       }
2596:     }
2597:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2598:     /* Free work space */
2599:     PetscCall(ISRestoreIndices(iscol, &icol));
2600:     PetscCall(PetscFree(smap));
2601:     PetscCall(PetscFree(lens));
2602:     /* sort */
2603:     for (i = 0; i < nrows; i++) {
2604:       PetscInt ilen;

2606:       mat_i = c->i[i];
2607:       mat_j = PetscSafePointerPlusOffset(c->j, mat_i);
2608:       mat_a = PetscSafePointerPlusOffset(c_a, mat_i);
2609:       ilen  = c->ilen[i];
2610:       PetscCall(PetscSortIntWithScalarArray(ilen, mat_j, mat_a));
2611:     }
2612:     PetscCall(MatSeqAIJRestoreArrayWrite(C, &c_a));
2613:   }
2614: #if defined(PETSC_HAVE_DEVICE)
2615:   PetscCall(MatBindToCPU(C, A->boundtocpu));
2616: #endif
2617:   PetscCall(MatAssemblyBegin(C, MAT_FINAL_ASSEMBLY));
2618:   PetscCall(MatAssemblyEnd(C, MAT_FINAL_ASSEMBLY));

2620:   PetscCall(ISRestoreIndices(isrow, &irow));
2621:   *B = C;
2622:   PetscFunctionReturn(PETSC_SUCCESS);
2623: }

2625: static PetscErrorCode MatGetMultiProcBlock_SeqAIJ(Mat mat, MPI_Comm subComm, MatReuse scall, Mat *subMat)
2626: {
2627:   Mat B;

2629:   PetscFunctionBegin;
2630:   if (scall == MAT_INITIAL_MATRIX) {
2631:     PetscCall(MatCreate(subComm, &B));
2632:     PetscCall(MatSetSizes(B, mat->rmap->n, mat->cmap->n, mat->rmap->n, mat->cmap->n));
2633:     PetscCall(MatSetBlockSizesFromMats(B, mat, mat));
2634:     PetscCall(MatSetType(B, MATSEQAIJ));
2635:     PetscCall(MatDuplicateNoCreate_SeqAIJ(B, mat, MAT_COPY_VALUES, PETSC_TRUE));
2636:     *subMat = B;
2637:   } else {
2638:     PetscCall(MatCopy_SeqAIJ(mat, *subMat, SAME_NONZERO_PATTERN));
2639:   }
2640:   PetscFunctionReturn(PETSC_SUCCESS);
2641: }

2643: static PetscErrorCode MatILUFactor_SeqAIJ(Mat inA, IS row, IS col, const MatFactorInfo *info)
2644: {
2645:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)inA->data;
2646:   Mat         outA;
2647:   PetscBool   row_identity, col_identity;

2649:   PetscFunctionBegin;
2650:   PetscCheck(info->levels == 0, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only levels=0 supported for in-place ilu");

2652:   PetscCall(ISIdentity(row, &row_identity));
2653:   PetscCall(ISIdentity(col, &col_identity));

2655:   outA             = inA;
2656:   outA->factortype = MAT_FACTOR_LU;
2657:   PetscCall(PetscFree(inA->solvertype));
2658:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &inA->solvertype));

2660:   PetscCall(PetscObjectReference((PetscObject)row));
2661:   PetscCall(ISDestroy(&a->row));

2663:   a->row = row;

2665:   PetscCall(PetscObjectReference((PetscObject)col));
2666:   PetscCall(ISDestroy(&a->col));

2668:   a->col = col;

2670:   /* Create the inverse permutation so that it can be used in MatLUFactorNumeric() */
2671:   PetscCall(ISDestroy(&a->icol));
2672:   PetscCall(ISInvertPermutation(col, PETSC_DECIDE, &a->icol));

2674:   if (!a->solve_work) { /* this matrix may have been factored before */
2675:     PetscCall(PetscMalloc1(inA->rmap->n + 1, &a->solve_work));
2676:   }

2678:   PetscCall(MatMarkDiagonal_SeqAIJ(inA));
2679:   if (row_identity && col_identity) {
2680:     PetscCall(MatLUFactorNumeric_SeqAIJ_inplace(outA, inA, info));
2681:   } else {
2682:     PetscCall(MatLUFactorNumeric_SeqAIJ_InplaceWithPerm(outA, inA, info));
2683:   }
2684:   PetscFunctionReturn(PETSC_SUCCESS);
2685: }

2687: PetscErrorCode MatScale_SeqAIJ(Mat inA, PetscScalar alpha)
2688: {
2689:   Mat_SeqAIJ  *a = (Mat_SeqAIJ *)inA->data;
2690:   PetscScalar *v;
2691:   PetscBLASInt one = 1, bnz;

2693:   PetscFunctionBegin;
2694:   PetscCall(MatSeqAIJGetArray(inA, &v));
2695:   PetscCall(PetscBLASIntCast(a->nz, &bnz));
2696:   PetscCallBLAS("BLASscal", BLASscal_(&bnz, &alpha, v, &one));
2697:   PetscCall(PetscLogFlops(a->nz));
2698:   PetscCall(MatSeqAIJRestoreArray(inA, &v));
2699:   PetscCall(MatSeqAIJInvalidateDiagonal(inA));
2700:   PetscFunctionReturn(PETSC_SUCCESS);
2701: }

2703: PetscErrorCode MatDestroySubMatrix_Private(Mat_SubSppt *submatj)
2704: {
2705:   PetscInt i;

2707:   PetscFunctionBegin;
2708:   if (!submatj->id) { /* delete data that are linked only to submats[id=0] */
2709:     PetscCall(PetscFree4(submatj->sbuf1, submatj->ptr, submatj->tmp, submatj->ctr));

2711:     for (i = 0; i < submatj->nrqr; ++i) PetscCall(PetscFree(submatj->sbuf2[i]));
2712:     PetscCall(PetscFree3(submatj->sbuf2, submatj->req_size, submatj->req_source1));

2714:     if (submatj->rbuf1) {
2715:       PetscCall(PetscFree(submatj->rbuf1[0]));
2716:       PetscCall(PetscFree(submatj->rbuf1));
2717:     }

2719:     for (i = 0; i < submatj->nrqs; ++i) PetscCall(PetscFree(submatj->rbuf3[i]));
2720:     PetscCall(PetscFree3(submatj->req_source2, submatj->rbuf2, submatj->rbuf3));
2721:     PetscCall(PetscFree(submatj->pa));
2722:   }

2724: #if defined(PETSC_USE_CTABLE)
2725:   PetscCall(PetscHMapIDestroy(&submatj->rmap));
2726:   if (submatj->cmap_loc) PetscCall(PetscFree(submatj->cmap_loc));
2727:   PetscCall(PetscFree(submatj->rmap_loc));
2728: #else
2729:   PetscCall(PetscFree(submatj->rmap));
2730: #endif

2732:   if (!submatj->allcolumns) {
2733: #if defined(PETSC_USE_CTABLE)
2734:     PetscCall(PetscHMapIDestroy((PetscHMapI *)&submatj->cmap));
2735: #else
2736:     PetscCall(PetscFree(submatj->cmap));
2737: #endif
2738:   }
2739:   PetscCall(PetscFree(submatj->row2proc));

2741:   PetscCall(PetscFree(submatj));
2742:   PetscFunctionReturn(PETSC_SUCCESS);
2743: }

2745: PetscErrorCode MatDestroySubMatrix_SeqAIJ(Mat C)
2746: {
2747:   Mat_SeqAIJ  *c       = (Mat_SeqAIJ *)C->data;
2748:   Mat_SubSppt *submatj = c->submatis1;

2750:   PetscFunctionBegin;
2751:   PetscCall((*submatj->destroy)(C));
2752:   PetscCall(MatDestroySubMatrix_Private(submatj));
2753:   PetscFunctionReturn(PETSC_SUCCESS);
2754: }

2756: /* Note this has code duplication with MatDestroySubMatrices_SeqBAIJ() */
2757: static PetscErrorCode MatDestroySubMatrices_SeqAIJ(PetscInt n, Mat *mat[])
2758: {
2759:   PetscInt     i;
2760:   Mat          C;
2761:   Mat_SeqAIJ  *c;
2762:   Mat_SubSppt *submatj;

2764:   PetscFunctionBegin;
2765:   for (i = 0; i < n; i++) {
2766:     C       = (*mat)[i];
2767:     c       = (Mat_SeqAIJ *)C->data;
2768:     submatj = c->submatis1;
2769:     if (submatj) {
2770:       if (--((PetscObject)C)->refct <= 0) {
2771:         PetscCall(PetscFree(C->factorprefix));
2772:         PetscCall((*submatj->destroy)(C));
2773:         PetscCall(MatDestroySubMatrix_Private(submatj));
2774:         PetscCall(PetscFree(C->defaultvectype));
2775:         PetscCall(PetscFree(C->defaultrandtype));
2776:         PetscCall(PetscLayoutDestroy(&C->rmap));
2777:         PetscCall(PetscLayoutDestroy(&C->cmap));
2778:         PetscCall(PetscHeaderDestroy(&C));
2779:       }
2780:     } else {
2781:       PetscCall(MatDestroy(&C));
2782:     }
2783:   }

2785:   /* Destroy Dummy submatrices created for reuse */
2786:   PetscCall(MatDestroySubMatrices_Dummy(n, mat));

2788:   PetscCall(PetscFree(*mat));
2789:   PetscFunctionReturn(PETSC_SUCCESS);
2790: }

2792: static PetscErrorCode MatCreateSubMatrices_SeqAIJ(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
2793: {
2794:   PetscInt i;

2796:   PetscFunctionBegin;
2797:   if (scall == MAT_INITIAL_MATRIX) PetscCall(PetscCalloc1(n + 1, B));

2799:   for (i = 0; i < n; i++) PetscCall(MatCreateSubMatrix_SeqAIJ(A, irow[i], icol[i], PETSC_DECIDE, scall, &(*B)[i]));
2800:   PetscFunctionReturn(PETSC_SUCCESS);
2801: }

2803: static PetscErrorCode MatIncreaseOverlap_SeqAIJ(Mat A, PetscInt is_max, IS is[], PetscInt ov)
2804: {
2805:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2806:   PetscInt        row, i, j, k, l, ll, m, n, *nidx, isz, val;
2807:   const PetscInt *idx;
2808:   PetscInt        start, end, *ai, *aj, bs = (A->rmap->bs > 0 && A->rmap->bs == A->cmap->bs) ? A->rmap->bs : 1;
2809:   PetscBT         table;

2811:   PetscFunctionBegin;
2812:   m  = A->rmap->n / bs;
2813:   ai = a->i;
2814:   aj = a->j;

2816:   PetscCheck(ov >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "illegal negative overlap value used");

2818:   PetscCall(PetscMalloc1(m + 1, &nidx));
2819:   PetscCall(PetscBTCreate(m, &table));

2821:   for (i = 0; i < is_max; i++) {
2822:     /* Initialize the two local arrays */
2823:     isz = 0;
2824:     PetscCall(PetscBTMemzero(m, table));

2826:     /* Extract the indices, assume there can be duplicate entries */
2827:     PetscCall(ISGetIndices(is[i], &idx));
2828:     PetscCall(ISGetLocalSize(is[i], &n));

2830:     if (bs > 1) {
2831:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2832:       for (j = 0; j < n; ++j) {
2833:         if (!PetscBTLookupSet(table, idx[j] / bs)) nidx[isz++] = idx[j] / bs;
2834:       }
2835:       PetscCall(ISRestoreIndices(is[i], &idx));
2836:       PetscCall(ISDestroy(&is[i]));

2838:       k = 0;
2839:       for (j = 0; j < ov; j++) { /* for each overlap */
2840:         n = isz;
2841:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2842:           for (ll = 0; ll < bs; ll++) {
2843:             row   = bs * nidx[k] + ll;
2844:             start = ai[row];
2845:             end   = ai[row + 1];
2846:             for (l = start; l < end; l++) {
2847:               val = aj[l] / bs;
2848:               if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2849:             }
2850:           }
2851:         }
2852:       }
2853:       PetscCall(ISCreateBlock(PETSC_COMM_SELF, bs, isz, nidx, PETSC_COPY_VALUES, is + i));
2854:     } else {
2855:       /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2856:       for (j = 0; j < n; ++j) {
2857:         if (!PetscBTLookupSet(table, idx[j])) nidx[isz++] = idx[j];
2858:       }
2859:       PetscCall(ISRestoreIndices(is[i], &idx));
2860:       PetscCall(ISDestroy(&is[i]));

2862:       k = 0;
2863:       for (j = 0; j < ov; j++) { /* for each overlap */
2864:         n = isz;
2865:         for (; k < n; k++) { /* do only those rows in nidx[k], which are not done yet */
2866:           row   = nidx[k];
2867:           start = ai[row];
2868:           end   = ai[row + 1];
2869:           for (l = start; l < end; l++) {
2870:             val = aj[l];
2871:             if (!PetscBTLookupSet(table, val)) nidx[isz++] = val;
2872:           }
2873:         }
2874:       }
2875:       PetscCall(ISCreateGeneral(PETSC_COMM_SELF, isz, nidx, PETSC_COPY_VALUES, is + i));
2876:     }
2877:   }
2878:   PetscCall(PetscBTDestroy(&table));
2879:   PetscCall(PetscFree(nidx));
2880:   PetscFunctionReturn(PETSC_SUCCESS);
2881: }

2883: static PetscErrorCode MatPermute_SeqAIJ(Mat A, IS rowp, IS colp, Mat *B)
2884: {
2885:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
2886:   PetscInt        i, nz = 0, m = A->rmap->n, n = A->cmap->n;
2887:   const PetscInt *row, *col;
2888:   PetscInt       *cnew, j, *lens;
2889:   IS              icolp, irowp;
2890:   PetscInt       *cwork = NULL;
2891:   PetscScalar    *vwork = NULL;

2893:   PetscFunctionBegin;
2894:   PetscCall(ISInvertPermutation(rowp, PETSC_DECIDE, &irowp));
2895:   PetscCall(ISGetIndices(irowp, &row));
2896:   PetscCall(ISInvertPermutation(colp, PETSC_DECIDE, &icolp));
2897:   PetscCall(ISGetIndices(icolp, &col));

2899:   /* determine lengths of permuted rows */
2900:   PetscCall(PetscMalloc1(m + 1, &lens));
2901:   for (i = 0; i < m; i++) lens[row[i]] = a->i[i + 1] - a->i[i];
2902:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
2903:   PetscCall(MatSetSizes(*B, m, n, m, n));
2904:   PetscCall(MatSetBlockSizesFromMats(*B, A, A));
2905:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
2906:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*B, 0, lens));
2907:   PetscCall(PetscFree(lens));

2909:   PetscCall(PetscMalloc1(n, &cnew));
2910:   for (i = 0; i < m; i++) {
2911:     PetscCall(MatGetRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2912:     for (j = 0; j < nz; j++) cnew[j] = col[cwork[j]];
2913:     PetscCall(MatSetValues_SeqAIJ(*B, 1, &row[i], nz, cnew, vwork, INSERT_VALUES));
2914:     PetscCall(MatRestoreRow_SeqAIJ(A, i, &nz, &cwork, &vwork));
2915:   }
2916:   PetscCall(PetscFree(cnew));

2918:   (*B)->assembled = PETSC_FALSE;

2920: #if defined(PETSC_HAVE_DEVICE)
2921:   PetscCall(MatBindToCPU(*B, A->boundtocpu));
2922: #endif
2923:   PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
2924:   PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
2925:   PetscCall(ISRestoreIndices(irowp, &row));
2926:   PetscCall(ISRestoreIndices(icolp, &col));
2927:   PetscCall(ISDestroy(&irowp));
2928:   PetscCall(ISDestroy(&icolp));
2929:   if (rowp == colp) PetscCall(MatPropagateSymmetryOptions(A, *B));
2930:   PetscFunctionReturn(PETSC_SUCCESS);
2931: }

2933: PetscErrorCode MatCopy_SeqAIJ(Mat A, Mat B, MatStructure str)
2934: {
2935:   PetscFunctionBegin;
2936:   /* If the two matrices have the same copy implementation, use fast copy. */
2937:   if (str == SAME_NONZERO_PATTERN && (A->ops->copy == B->ops->copy)) {
2938:     Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
2939:     Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
2940:     const PetscScalar *aa;

2942:     PetscCall(MatSeqAIJGetArrayRead(A, &aa));
2943:     PetscCheck(a->i[A->rmap->n] == b->i[B->rmap->n], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of nonzeros in two matrices are different %" PetscInt_FMT " != %" PetscInt_FMT, a->i[A->rmap->n], b->i[B->rmap->n]);
2944:     PetscCall(PetscArraycpy(b->a, aa, a->i[A->rmap->n]));
2945:     PetscCall(PetscObjectStateIncrease((PetscObject)B));
2946:     PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
2947:   } else {
2948:     PetscCall(MatCopy_Basic(A, B, str));
2949:   }
2950:   PetscFunctionReturn(PETSC_SUCCESS);
2951: }

2953: PETSC_INTERN PetscErrorCode MatSeqAIJGetArray_SeqAIJ(Mat A, PetscScalar *array[])
2954: {
2955:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

2957:   PetscFunctionBegin;
2958:   *array = a->a;
2959:   PetscFunctionReturn(PETSC_SUCCESS);
2960: }

2962: PETSC_INTERN PetscErrorCode MatSeqAIJRestoreArray_SeqAIJ(Mat A, PetscScalar *array[])
2963: {
2964:   PetscFunctionBegin;
2965:   *array = NULL;
2966:   PetscFunctionReturn(PETSC_SUCCESS);
2967: }

2969: /*
2970:    Computes the number of nonzeros per row needed for preallocation when X and Y
2971:    have different nonzero structure.
2972: */
2973: PetscErrorCode MatAXPYGetPreallocation_SeqX_private(PetscInt m, const PetscInt *xi, const PetscInt *xj, const PetscInt *yi, const PetscInt *yj, PetscInt *nnz)
2974: {
2975:   PetscInt i, j, k, nzx, nzy;

2977:   PetscFunctionBegin;
2978:   /* Set the number of nonzeros in the new matrix */
2979:   for (i = 0; i < m; i++) {
2980:     const PetscInt *xjj = PetscSafePointerPlusOffset(xj, xi[i]), *yjj = PetscSafePointerPlusOffset(yj, yi[i]);
2981:     nzx    = xi[i + 1] - xi[i];
2982:     nzy    = yi[i + 1] - yi[i];
2983:     nnz[i] = 0;
2984:     for (j = 0, k = 0; j < nzx; j++) {                  /* Point in X */
2985:       for (; k < nzy && yjj[k] < xjj[j]; k++) nnz[i]++; /* Catch up to X */
2986:       if (k < nzy && yjj[k] == xjj[j]) k++;             /* Skip duplicate */
2987:       nnz[i]++;
2988:     }
2989:     for (; k < nzy; k++) nnz[i]++;
2990:   }
2991:   PetscFunctionReturn(PETSC_SUCCESS);
2992: }

2994: PetscErrorCode MatAXPYGetPreallocation_SeqAIJ(Mat Y, Mat X, PetscInt *nnz)
2995: {
2996:   PetscInt    m = Y->rmap->N;
2997:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data;
2998:   Mat_SeqAIJ *y = (Mat_SeqAIJ *)Y->data;

3000:   PetscFunctionBegin;
3001:   /* Set the number of nonzeros in the new matrix */
3002:   PetscCall(MatAXPYGetPreallocation_SeqX_private(m, x->i, x->j, y->i, y->j, nnz));
3003:   PetscFunctionReturn(PETSC_SUCCESS);
3004: }

3006: PetscErrorCode MatAXPY_SeqAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
3007: {
3008:   Mat_SeqAIJ *x = (Mat_SeqAIJ *)X->data, *y = (Mat_SeqAIJ *)Y->data;

3010:   PetscFunctionBegin;
3011:   if (str == UNKNOWN_NONZERO_PATTERN || (PetscDefined(USE_DEBUG) && str == SAME_NONZERO_PATTERN)) {
3012:     PetscBool e = x->nz == y->nz ? PETSC_TRUE : PETSC_FALSE;
3013:     if (e) {
3014:       PetscCall(PetscArraycmp(x->i, y->i, Y->rmap->n + 1, &e));
3015:       if (e) {
3016:         PetscCall(PetscArraycmp(x->j, y->j, y->nz, &e));
3017:         if (e) str = SAME_NONZERO_PATTERN;
3018:       }
3019:     }
3020:     if (!e) PetscCheck(str != SAME_NONZERO_PATTERN, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "MatStructure is not SAME_NONZERO_PATTERN");
3021:   }
3022:   if (str == SAME_NONZERO_PATTERN) {
3023:     const PetscScalar *xa;
3024:     PetscScalar       *ya, alpha = a;
3025:     PetscBLASInt       one = 1, bnz;

3027:     PetscCall(PetscBLASIntCast(x->nz, &bnz));
3028:     PetscCall(MatSeqAIJGetArray(Y, &ya));
3029:     PetscCall(MatSeqAIJGetArrayRead(X, &xa));
3030:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, xa, &one, ya, &one));
3031:     PetscCall(MatSeqAIJRestoreArrayRead(X, &xa));
3032:     PetscCall(MatSeqAIJRestoreArray(Y, &ya));
3033:     PetscCall(PetscLogFlops(2.0 * bnz));
3034:     PetscCall(MatSeqAIJInvalidateDiagonal(Y));
3035:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
3036:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
3037:     PetscCall(MatAXPY_Basic(Y, a, X, str));
3038:   } else {
3039:     Mat       B;
3040:     PetscInt *nnz;
3041:     PetscCall(PetscMalloc1(Y->rmap->N, &nnz));
3042:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
3043:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
3044:     PetscCall(MatSetLayouts(B, Y->rmap, Y->cmap));
3045:     PetscCall(MatSetType(B, ((PetscObject)Y)->type_name));
3046:     PetscCall(MatAXPYGetPreallocation_SeqAIJ(Y, X, nnz));
3047:     PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
3048:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
3049:     PetscCall(MatHeaderMerge(Y, &B));
3050:     PetscCall(MatSeqAIJCheckInode(Y));
3051:     PetscCall(PetscFree(nnz));
3052:   }
3053:   PetscFunctionReturn(PETSC_SUCCESS);
3054: }

3056: PETSC_INTERN PetscErrorCode MatConjugate_SeqAIJ(Mat mat)
3057: {
3058: #if defined(PETSC_USE_COMPLEX)
3059:   Mat_SeqAIJ  *aij = (Mat_SeqAIJ *)mat->data;
3060:   PetscInt     i, nz;
3061:   PetscScalar *a;

3063:   PetscFunctionBegin;
3064:   nz = aij->nz;
3065:   PetscCall(MatSeqAIJGetArray(mat, &a));
3066:   for (i = 0; i < nz; i++) a[i] = PetscConj(a[i]);
3067:   PetscCall(MatSeqAIJRestoreArray(mat, &a));
3068: #else
3069:   PetscFunctionBegin;
3070: #endif
3071:   PetscFunctionReturn(PETSC_SUCCESS);
3072: }

3074: static PetscErrorCode MatGetRowMaxAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3075: {
3076:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3077:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3078:   PetscReal        atmp;
3079:   PetscScalar     *x;
3080:   const MatScalar *aa, *av;

3082:   PetscFunctionBegin;
3083:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3084:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3085:   aa = av;
3086:   ai = a->i;
3087:   aj = a->j;

3089:   PetscCall(VecSet(v, 0.0));
3090:   PetscCall(VecGetArrayWrite(v, &x));
3091:   PetscCall(VecGetLocalSize(v, &n));
3092:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3093:   for (i = 0; i < m; i++) {
3094:     ncols = ai[1] - ai[0];
3095:     ai++;
3096:     for (j = 0; j < ncols; j++) {
3097:       atmp = PetscAbsScalar(*aa);
3098:       if (PetscAbsScalar(x[i]) < atmp) {
3099:         x[i] = atmp;
3100:         if (idx) idx[i] = *aj;
3101:       }
3102:       aa++;
3103:       aj++;
3104:     }
3105:   }
3106:   PetscCall(VecRestoreArrayWrite(v, &x));
3107:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3108:   PetscFunctionReturn(PETSC_SUCCESS);
3109: }

3111: static PetscErrorCode MatGetRowSumAbs_SeqAIJ(Mat A, Vec v)
3112: {
3113:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3114:   PetscInt         i, j, m = A->rmap->n, *ai, ncols, n;
3115:   PetscScalar     *x;
3116:   const MatScalar *aa, *av;

3118:   PetscFunctionBegin;
3119:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3120:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3121:   aa = av;
3122:   ai = a->i;

3124:   PetscCall(VecSet(v, 0.0));
3125:   PetscCall(VecGetArrayWrite(v, &x));
3126:   PetscCall(VecGetLocalSize(v, &n));
3127:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3128:   for (i = 0; i < m; i++) {
3129:     ncols = ai[1] - ai[0];
3130:     ai++;
3131:     for (j = 0; j < ncols; j++) {
3132:       x[i] += PetscAbsScalar(*aa);
3133:       aa++;
3134:     }
3135:   }
3136:   PetscCall(VecRestoreArrayWrite(v, &x));
3137:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3138:   PetscFunctionReturn(PETSC_SUCCESS);
3139: }

3141: static PetscErrorCode MatGetRowMax_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3142: {
3143:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3144:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3145:   PetscScalar     *x;
3146:   const MatScalar *aa, *av;

3148:   PetscFunctionBegin;
3149:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3150:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3151:   aa = av;
3152:   ai = a->i;
3153:   aj = a->j;

3155:   PetscCall(VecSet(v, 0.0));
3156:   PetscCall(VecGetArrayWrite(v, &x));
3157:   PetscCall(VecGetLocalSize(v, &n));
3158:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3159:   for (i = 0; i < m; i++) {
3160:     ncols = ai[1] - ai[0];
3161:     ai++;
3162:     if (ncols == A->cmap->n) { /* row is dense */
3163:       x[i] = *aa;
3164:       if (idx) idx[i] = 0;
3165:     } else { /* row is sparse so already KNOW maximum is 0.0 or higher */
3166:       x[i] = 0.0;
3167:       if (idx) {
3168:         for (j = 0; j < ncols; j++) { /* find first implicit 0.0 in the row */
3169:           if (aj[j] > j) {
3170:             idx[i] = j;
3171:             break;
3172:           }
3173:         }
3174:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3175:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3176:       }
3177:     }
3178:     for (j = 0; j < ncols; j++) {
3179:       if (PetscRealPart(x[i]) < PetscRealPart(*aa)) {
3180:         x[i] = *aa;
3181:         if (idx) idx[i] = *aj;
3182:       }
3183:       aa++;
3184:       aj++;
3185:     }
3186:   }
3187:   PetscCall(VecRestoreArrayWrite(v, &x));
3188:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3189:   PetscFunctionReturn(PETSC_SUCCESS);
3190: }

3192: static PetscErrorCode MatGetRowMinAbs_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3193: {
3194:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3195:   PetscInt         i, j, m = A->rmap->n, *ai, *aj, ncols, n;
3196:   PetscScalar     *x;
3197:   const MatScalar *aa, *av;

3199:   PetscFunctionBegin;
3200:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3201:   aa = av;
3202:   ai = a->i;
3203:   aj = a->j;

3205:   PetscCall(VecSet(v, 0.0));
3206:   PetscCall(VecGetArrayWrite(v, &x));
3207:   PetscCall(VecGetLocalSize(v, &n));
3208:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector, %" PetscInt_FMT " vs. %" PetscInt_FMT " rows", m, n);
3209:   for (i = 0; i < m; i++) {
3210:     ncols = ai[1] - ai[0];
3211:     ai++;
3212:     if (ncols == A->cmap->n) { /* row is dense */
3213:       x[i] = *aa;
3214:       if (idx) idx[i] = 0;
3215:     } else { /* row is sparse so already KNOW minimum is 0.0 or higher */
3216:       x[i] = 0.0;
3217:       if (idx) { /* find first implicit 0.0 in the row */
3218:         for (j = 0; j < ncols; j++) {
3219:           if (aj[j] > j) {
3220:             idx[i] = j;
3221:             break;
3222:           }
3223:         }
3224:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3225:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3226:       }
3227:     }
3228:     for (j = 0; j < ncols; j++) {
3229:       if (PetscAbsScalar(x[i]) > PetscAbsScalar(*aa)) {
3230:         x[i] = *aa;
3231:         if (idx) idx[i] = *aj;
3232:       }
3233:       aa++;
3234:       aj++;
3235:     }
3236:   }
3237:   PetscCall(VecRestoreArrayWrite(v, &x));
3238:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3239:   PetscFunctionReturn(PETSC_SUCCESS);
3240: }

3242: static PetscErrorCode MatGetRowMin_SeqAIJ(Mat A, Vec v, PetscInt idx[])
3243: {
3244:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
3245:   PetscInt         i, j, m = A->rmap->n, ncols, n;
3246:   const PetscInt  *ai, *aj;
3247:   PetscScalar     *x;
3248:   const MatScalar *aa, *av;

3250:   PetscFunctionBegin;
3251:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3252:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
3253:   aa = av;
3254:   ai = a->i;
3255:   aj = a->j;

3257:   PetscCall(VecSet(v, 0.0));
3258:   PetscCall(VecGetArrayWrite(v, &x));
3259:   PetscCall(VecGetLocalSize(v, &n));
3260:   PetscCheck(n == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
3261:   for (i = 0; i < m; i++) {
3262:     ncols = ai[1] - ai[0];
3263:     ai++;
3264:     if (ncols == A->cmap->n) { /* row is dense */
3265:       x[i] = *aa;
3266:       if (idx) idx[i] = 0;
3267:     } else { /* row is sparse so already KNOW minimum is 0.0 or lower */
3268:       x[i] = 0.0;
3269:       if (idx) { /* find first implicit 0.0 in the row */
3270:         for (j = 0; j < ncols; j++) {
3271:           if (aj[j] > j) {
3272:             idx[i] = j;
3273:             break;
3274:           }
3275:         }
3276:         /* in case first implicit 0.0 in the row occurs at ncols-th column */
3277:         if (j == ncols && j < A->cmap->n) idx[i] = j;
3278:       }
3279:     }
3280:     for (j = 0; j < ncols; j++) {
3281:       if (PetscRealPart(x[i]) > PetscRealPart(*aa)) {
3282:         x[i] = *aa;
3283:         if (idx) idx[i] = *aj;
3284:       }
3285:       aa++;
3286:       aj++;
3287:     }
3288:   }
3289:   PetscCall(VecRestoreArrayWrite(v, &x));
3290:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));
3291:   PetscFunctionReturn(PETSC_SUCCESS);
3292: }

3294: static PetscErrorCode MatInvertBlockDiagonal_SeqAIJ(Mat A, const PetscScalar **values)
3295: {
3296:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
3297:   PetscInt        i, bs = PetscAbs(A->rmap->bs), mbs = A->rmap->n / bs, ipvt[5], bs2 = bs * bs, *v_pivots, ij[7], *IJ, j;
3298:   MatScalar      *diag, work[25], *v_work;
3299:   const PetscReal shift = 0.0;
3300:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;

3302:   PetscFunctionBegin;
3303:   allowzeropivot = PetscNot(A->erroriffailure);
3304:   if (a->ibdiagvalid) {
3305:     if (values) *values = a->ibdiag;
3306:     PetscFunctionReturn(PETSC_SUCCESS);
3307:   }
3308:   PetscCall(MatMarkDiagonal_SeqAIJ(A));
3309:   if (!a->ibdiag) { PetscCall(PetscMalloc1(bs2 * mbs, &a->ibdiag)); }
3310:   diag = a->ibdiag;
3311:   if (values) *values = a->ibdiag;
3312:   /* factor and invert each block */
3313:   switch (bs) {
3314:   case 1:
3315:     for (i = 0; i < mbs; i++) {
3316:       PetscCall(MatGetValues(A, 1, &i, 1, &i, diag + i));
3317:       if (PetscAbsScalar(diag[i] + shift) < PETSC_MACHINE_EPSILON) {
3318:         if (allowzeropivot) {
3319:           A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3320:           A->factorerror_zeropivot_value = PetscAbsScalar(diag[i]);
3321:           A->factorerror_zeropivot_row   = i;
3322:           PetscCall(PetscInfo(A, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g\n", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON));
3323:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Zero pivot, row %" PetscInt_FMT " pivot %g tolerance %g", i, (double)PetscAbsScalar(diag[i]), (double)PETSC_MACHINE_EPSILON);
3324:       }
3325:       diag[i] = (PetscScalar)1.0 / (diag[i] + shift);
3326:     }
3327:     break;
3328:   case 2:
3329:     for (i = 0; i < mbs; i++) {
3330:       ij[0] = 2 * i;
3331:       ij[1] = 2 * i + 1;
3332:       PetscCall(MatGetValues(A, 2, ij, 2, ij, diag));
3333:       PetscCall(PetscKernel_A_gets_inverse_A_2(diag, shift, allowzeropivot, &zeropivotdetected));
3334:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3335:       PetscCall(PetscKernel_A_gets_transpose_A_2(diag));
3336:       diag += 4;
3337:     }
3338:     break;
3339:   case 3:
3340:     for (i = 0; i < mbs; i++) {
3341:       ij[0] = 3 * i;
3342:       ij[1] = 3 * i + 1;
3343:       ij[2] = 3 * i + 2;
3344:       PetscCall(MatGetValues(A, 3, ij, 3, ij, diag));
3345:       PetscCall(PetscKernel_A_gets_inverse_A_3(diag, shift, allowzeropivot, &zeropivotdetected));
3346:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3347:       PetscCall(PetscKernel_A_gets_transpose_A_3(diag));
3348:       diag += 9;
3349:     }
3350:     break;
3351:   case 4:
3352:     for (i = 0; i < mbs; i++) {
3353:       ij[0] = 4 * i;
3354:       ij[1] = 4 * i + 1;
3355:       ij[2] = 4 * i + 2;
3356:       ij[3] = 4 * i + 3;
3357:       PetscCall(MatGetValues(A, 4, ij, 4, ij, diag));
3358:       PetscCall(PetscKernel_A_gets_inverse_A_4(diag, shift, allowzeropivot, &zeropivotdetected));
3359:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3360:       PetscCall(PetscKernel_A_gets_transpose_A_4(diag));
3361:       diag += 16;
3362:     }
3363:     break;
3364:   case 5:
3365:     for (i = 0; i < mbs; i++) {
3366:       ij[0] = 5 * i;
3367:       ij[1] = 5 * i + 1;
3368:       ij[2] = 5 * i + 2;
3369:       ij[3] = 5 * i + 3;
3370:       ij[4] = 5 * i + 4;
3371:       PetscCall(MatGetValues(A, 5, ij, 5, ij, diag));
3372:       PetscCall(PetscKernel_A_gets_inverse_A_5(diag, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
3373:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3374:       PetscCall(PetscKernel_A_gets_transpose_A_5(diag));
3375:       diag += 25;
3376:     }
3377:     break;
3378:   case 6:
3379:     for (i = 0; i < mbs; i++) {
3380:       ij[0] = 6 * i;
3381:       ij[1] = 6 * i + 1;
3382:       ij[2] = 6 * i + 2;
3383:       ij[3] = 6 * i + 3;
3384:       ij[4] = 6 * i + 4;
3385:       ij[5] = 6 * i + 5;
3386:       PetscCall(MatGetValues(A, 6, ij, 6, ij, diag));
3387:       PetscCall(PetscKernel_A_gets_inverse_A_6(diag, shift, allowzeropivot, &zeropivotdetected));
3388:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3389:       PetscCall(PetscKernel_A_gets_transpose_A_6(diag));
3390:       diag += 36;
3391:     }
3392:     break;
3393:   case 7:
3394:     for (i = 0; i < mbs; i++) {
3395:       ij[0] = 7 * i;
3396:       ij[1] = 7 * i + 1;
3397:       ij[2] = 7 * i + 2;
3398:       ij[3] = 7 * i + 3;
3399:       ij[4] = 7 * i + 4;
3400:       ij[5] = 7 * i + 5;
3401:       ij[6] = 7 * i + 6;
3402:       PetscCall(MatGetValues(A, 7, ij, 7, ij, diag));
3403:       PetscCall(PetscKernel_A_gets_inverse_A_7(diag, shift, allowzeropivot, &zeropivotdetected));
3404:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3405:       PetscCall(PetscKernel_A_gets_transpose_A_7(diag));
3406:       diag += 49;
3407:     }
3408:     break;
3409:   default:
3410:     PetscCall(PetscMalloc3(bs, &v_work, bs, &v_pivots, bs, &IJ));
3411:     for (i = 0; i < mbs; i++) {
3412:       for (j = 0; j < bs; j++) IJ[j] = bs * i + j;
3413:       PetscCall(MatGetValues(A, bs, IJ, bs, IJ, diag));
3414:       PetscCall(PetscKernel_A_gets_inverse_A(bs, diag, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
3415:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3416:       PetscCall(PetscKernel_A_gets_transpose_A_N(diag, bs));
3417:       diag += bs2;
3418:     }
3419:     PetscCall(PetscFree3(v_work, v_pivots, IJ));
3420:   }
3421:   a->ibdiagvalid = PETSC_TRUE;
3422:   PetscFunctionReturn(PETSC_SUCCESS);
3423: }

3425: static PetscErrorCode MatSetRandom_SeqAIJ(Mat x, PetscRandom rctx)
3426: {
3427:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3428:   PetscScalar a, *aa;
3429:   PetscInt    m, n, i, j, col;

3431:   PetscFunctionBegin;
3432:   if (!x->assembled) {
3433:     PetscCall(MatGetSize(x, &m, &n));
3434:     for (i = 0; i < m; i++) {
3435:       for (j = 0; j < aij->imax[i]; j++) {
3436:         PetscCall(PetscRandomGetValue(rctx, &a));
3437:         col = (PetscInt)(n * PetscRealPart(a));
3438:         PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3439:       }
3440:     }
3441:   } else {
3442:     PetscCall(MatSeqAIJGetArrayWrite(x, &aa));
3443:     for (i = 0; i < aij->nz; i++) PetscCall(PetscRandomGetValue(rctx, aa + i));
3444:     PetscCall(MatSeqAIJRestoreArrayWrite(x, &aa));
3445:   }
3446:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3447:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3448:   PetscFunctionReturn(PETSC_SUCCESS);
3449: }

3451: /* Like MatSetRandom_SeqAIJ, but do not set values on columns in range of [low, high) */
3452: PetscErrorCode MatSetRandomSkipColumnRange_SeqAIJ_Private(Mat x, PetscInt low, PetscInt high, PetscRandom rctx)
3453: {
3454:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)x->data;
3455:   PetscScalar a;
3456:   PetscInt    m, n, i, j, col, nskip;

3458:   PetscFunctionBegin;
3459:   nskip = high - low;
3460:   PetscCall(MatGetSize(x, &m, &n));
3461:   n -= nskip; /* shrink number of columns where nonzeros can be set */
3462:   for (i = 0; i < m; i++) {
3463:     for (j = 0; j < aij->imax[i]; j++) {
3464:       PetscCall(PetscRandomGetValue(rctx, &a));
3465:       col = (PetscInt)(n * PetscRealPart(a));
3466:       if (col >= low) col += nskip; /* shift col rightward to skip the hole */
3467:       PetscCall(MatSetValues(x, 1, &i, 1, &col, &a, ADD_VALUES));
3468:     }
3469:   }
3470:   PetscCall(MatAssemblyBegin(x, MAT_FINAL_ASSEMBLY));
3471:   PetscCall(MatAssemblyEnd(x, MAT_FINAL_ASSEMBLY));
3472:   PetscFunctionReturn(PETSC_SUCCESS);
3473: }

3475: static struct _MatOps MatOps_Values = {MatSetValues_SeqAIJ,
3476:                                        MatGetRow_SeqAIJ,
3477:                                        MatRestoreRow_SeqAIJ,
3478:                                        MatMult_SeqAIJ,
3479:                                        /*  4*/ MatMultAdd_SeqAIJ,
3480:                                        MatMultTranspose_SeqAIJ,
3481:                                        MatMultTransposeAdd_SeqAIJ,
3482:                                        NULL,
3483:                                        NULL,
3484:                                        NULL,
3485:                                        /* 10*/ NULL,
3486:                                        MatLUFactor_SeqAIJ,
3487:                                        NULL,
3488:                                        MatSOR_SeqAIJ,
3489:                                        MatTranspose_SeqAIJ,
3490:                                        /*1 5*/ MatGetInfo_SeqAIJ,
3491:                                        MatEqual_SeqAIJ,
3492:                                        MatGetDiagonal_SeqAIJ,
3493:                                        MatDiagonalScale_SeqAIJ,
3494:                                        MatNorm_SeqAIJ,
3495:                                        /* 20*/ NULL,
3496:                                        MatAssemblyEnd_SeqAIJ,
3497:                                        MatSetOption_SeqAIJ,
3498:                                        MatZeroEntries_SeqAIJ,
3499:                                        /* 24*/ MatZeroRows_SeqAIJ,
3500:                                        NULL,
3501:                                        NULL,
3502:                                        NULL,
3503:                                        NULL,
3504:                                        /* 29*/ MatSetUp_Seq_Hash,
3505:                                        NULL,
3506:                                        NULL,
3507:                                        NULL,
3508:                                        NULL,
3509:                                        /* 34*/ MatDuplicate_SeqAIJ,
3510:                                        NULL,
3511:                                        NULL,
3512:                                        MatILUFactor_SeqAIJ,
3513:                                        NULL,
3514:                                        /* 39*/ MatAXPY_SeqAIJ,
3515:                                        MatCreateSubMatrices_SeqAIJ,
3516:                                        MatIncreaseOverlap_SeqAIJ,
3517:                                        MatGetValues_SeqAIJ,
3518:                                        MatCopy_SeqAIJ,
3519:                                        /* 44*/ MatGetRowMax_SeqAIJ,
3520:                                        MatScale_SeqAIJ,
3521:                                        MatShift_SeqAIJ,
3522:                                        MatDiagonalSet_SeqAIJ,
3523:                                        MatZeroRowsColumns_SeqAIJ,
3524:                                        /* 49*/ MatSetRandom_SeqAIJ,
3525:                                        MatGetRowIJ_SeqAIJ,
3526:                                        MatRestoreRowIJ_SeqAIJ,
3527:                                        MatGetColumnIJ_SeqAIJ,
3528:                                        MatRestoreColumnIJ_SeqAIJ,
3529:                                        /* 54*/ MatFDColoringCreate_SeqXAIJ,
3530:                                        NULL,
3531:                                        NULL,
3532:                                        MatPermute_SeqAIJ,
3533:                                        NULL,
3534:                                        /* 59*/ NULL,
3535:                                        MatDestroy_SeqAIJ,
3536:                                        MatView_SeqAIJ,
3537:                                        NULL,
3538:                                        NULL,
3539:                                        /* 64*/ NULL,
3540:                                        MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqAIJ,
3541:                                        NULL,
3542:                                        NULL,
3543:                                        NULL,
3544:                                        /* 69*/ MatGetRowMaxAbs_SeqAIJ,
3545:                                        MatGetRowMinAbs_SeqAIJ,
3546:                                        NULL,
3547:                                        NULL,
3548:                                        NULL,
3549:                                        /* 74*/ NULL,
3550:                                        MatFDColoringApply_AIJ,
3551:                                        NULL,
3552:                                        NULL,
3553:                                        NULL,
3554:                                        /* 79*/ MatFindZeroDiagonals_SeqAIJ,
3555:                                        NULL,
3556:                                        NULL,
3557:                                        NULL,
3558:                                        MatLoad_SeqAIJ,
3559:                                        /* 84*/ NULL,
3560:                                        NULL,
3561:                                        NULL,
3562:                                        NULL,
3563:                                        NULL,
3564:                                        /* 89*/ NULL,
3565:                                        NULL,
3566:                                        MatMatMultNumeric_SeqAIJ_SeqAIJ,
3567:                                        NULL,
3568:                                        NULL,
3569:                                        /* 94*/ MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy,
3570:                                        NULL,
3571:                                        NULL,
3572:                                        MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ,
3573:                                        NULL,
3574:                                        /* 99*/ MatProductSetFromOptions_SeqAIJ,
3575:                                        NULL,
3576:                                        NULL,
3577:                                        MatConjugate_SeqAIJ,
3578:                                        NULL,
3579:                                        /*104*/ MatSetValuesRow_SeqAIJ,
3580:                                        MatRealPart_SeqAIJ,
3581:                                        MatImaginaryPart_SeqAIJ,
3582:                                        NULL,
3583:                                        NULL,
3584:                                        /*109*/ MatMatSolve_SeqAIJ,
3585:                                        NULL,
3586:                                        MatGetRowMin_SeqAIJ,
3587:                                        NULL,
3588:                                        MatMissingDiagonal_SeqAIJ,
3589:                                        /*114*/ NULL,
3590:                                        NULL,
3591:                                        NULL,
3592:                                        NULL,
3593:                                        NULL,
3594:                                        /*119*/ NULL,
3595:                                        NULL,
3596:                                        NULL,
3597:                                        NULL,
3598:                                        MatGetMultiProcBlock_SeqAIJ,
3599:                                        /*124*/ MatFindNonzeroRows_SeqAIJ,
3600:                                        MatGetColumnReductions_SeqAIJ,
3601:                                        MatInvertBlockDiagonal_SeqAIJ,
3602:                                        MatInvertVariableBlockDiagonal_SeqAIJ,
3603:                                        NULL,
3604:                                        /*129*/ NULL,
3605:                                        NULL,
3606:                                        NULL,
3607:                                        MatTransposeMatMultNumeric_SeqAIJ_SeqAIJ,
3608:                                        MatTransposeColoringCreate_SeqAIJ,
3609:                                        /*134*/ MatTransColoringApplySpToDen_SeqAIJ,
3610:                                        MatTransColoringApplyDenToSp_SeqAIJ,
3611:                                        NULL,
3612:                                        NULL,
3613:                                        MatRARtNumeric_SeqAIJ_SeqAIJ,
3614:                                        /*139*/ NULL,
3615:                                        NULL,
3616:                                        NULL,
3617:                                        MatFDColoringSetUp_SeqXAIJ,
3618:                                        MatFindOffBlockDiagonalEntries_SeqAIJ,
3619:                                        MatCreateMPIMatConcatenateSeqMat_SeqAIJ,
3620:                                        /*145*/ MatDestroySubMatrices_SeqAIJ,
3621:                                        NULL,
3622:                                        NULL,
3623:                                        MatCreateGraph_Simple_AIJ,
3624:                                        NULL,
3625:                                        /*150*/ MatTransposeSymbolic_SeqAIJ,
3626:                                        MatEliminateZeros_SeqAIJ,
3627:                                        MatGetRowSumAbs_SeqAIJ,
3628:                                        NULL,
3629:                                        NULL,
3630:                                        NULL};

3632: static PetscErrorCode MatSeqAIJSetColumnIndices_SeqAIJ(Mat mat, PetscInt *indices)
3633: {
3634:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3635:   PetscInt    i, nz, n;

3637:   PetscFunctionBegin;
3638:   nz = aij->maxnz;
3639:   n  = mat->rmap->n;
3640:   for (i = 0; i < nz; i++) aij->j[i] = indices[i];
3641:   aij->nz = nz;
3642:   for (i = 0; i < n; i++) aij->ilen[i] = aij->imax[i];
3643:   PetscFunctionReturn(PETSC_SUCCESS);
3644: }

3646: /*
3647:  * Given a sparse matrix with global column indices, compact it by using a local column space.
3648:  * The result matrix helps saving memory in other algorithms, such as MatPtAPSymbolic_MPIAIJ_MPIAIJ_scalable()
3649:  */
3650: PetscErrorCode MatSeqAIJCompactOutExtraColumns_SeqAIJ(Mat mat, ISLocalToGlobalMapping *mapping)
3651: {
3652:   Mat_SeqAIJ   *aij = (Mat_SeqAIJ *)mat->data;
3653:   PetscHMapI    gid1_lid1;
3654:   PetscHashIter tpos;
3655:   PetscInt      gid, lid, i, ec, nz = aij->nz;
3656:   PetscInt     *garray, *jj = aij->j;

3658:   PetscFunctionBegin;
3660:   PetscAssertPointer(mapping, 2);
3661:   /* use a table */
3662:   PetscCall(PetscHMapICreateWithSize(mat->rmap->n, &gid1_lid1));
3663:   ec = 0;
3664:   for (i = 0; i < nz; i++) {
3665:     PetscInt data, gid1 = jj[i] + 1;
3666:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &data));
3667:     if (!data) {
3668:       /* one based table */
3669:       PetscCall(PetscHMapISet(gid1_lid1, gid1, ++ec));
3670:     }
3671:   }
3672:   /* form array of columns we need */
3673:   PetscCall(PetscMalloc1(ec, &garray));
3674:   PetscHashIterBegin(gid1_lid1, tpos);
3675:   while (!PetscHashIterAtEnd(gid1_lid1, tpos)) {
3676:     PetscHashIterGetKey(gid1_lid1, tpos, gid);
3677:     PetscHashIterGetVal(gid1_lid1, tpos, lid);
3678:     PetscHashIterNext(gid1_lid1, tpos);
3679:     gid--;
3680:     lid--;
3681:     garray[lid] = gid;
3682:   }
3683:   PetscCall(PetscSortInt(ec, garray)); /* sort, and rebuild */
3684:   PetscCall(PetscHMapIClear(gid1_lid1));
3685:   for (i = 0; i < ec; i++) PetscCall(PetscHMapISet(gid1_lid1, garray[i] + 1, i + 1));
3686:   /* compact out the extra columns in B */
3687:   for (i = 0; i < nz; i++) {
3688:     PetscInt gid1 = jj[i] + 1;
3689:     PetscCall(PetscHMapIGetWithDefault(gid1_lid1, gid1, 0, &lid));
3690:     lid--;
3691:     jj[i] = lid;
3692:   }
3693:   PetscCall(PetscLayoutDestroy(&mat->cmap));
3694:   PetscCall(PetscHMapIDestroy(&gid1_lid1));
3695:   PetscCall(PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)mat), ec, ec, 1, &mat->cmap));
3696:   PetscCall(ISLocalToGlobalMappingCreate(PETSC_COMM_SELF, mat->cmap->bs, mat->cmap->n, garray, PETSC_OWN_POINTER, mapping));
3697:   PetscCall(ISLocalToGlobalMappingSetType(*mapping, ISLOCALTOGLOBALMAPPINGHASH));
3698:   PetscFunctionReturn(PETSC_SUCCESS);
3699: }

3701: /*@
3702:   MatSeqAIJSetColumnIndices - Set the column indices for all the rows
3703:   in the matrix.

3705:   Input Parameters:
3706: + mat     - the `MATSEQAIJ` matrix
3707: - indices - the column indices

3709:   Level: advanced

3711:   Notes:
3712:   This can be called if you have precomputed the nonzero structure of the
3713:   matrix and want to provide it to the matrix object to improve the performance
3714:   of the `MatSetValues()` operation.

3716:   You MUST have set the correct numbers of nonzeros per row in the call to
3717:   `MatCreateSeqAIJ()`, and the columns indices MUST be sorted.

3719:   MUST be called before any calls to `MatSetValues()`

3721:   The indices should start with zero, not one.

3723: .seealso: [](ch_matrices), `Mat`, `MATSEQAIJ`
3724: @*/
3725: PetscErrorCode MatSeqAIJSetColumnIndices(Mat mat, PetscInt *indices)
3726: {
3727:   PetscFunctionBegin;
3729:   PetscAssertPointer(indices, 2);
3730:   PetscUseMethod(mat, "MatSeqAIJSetColumnIndices_C", (Mat, PetscInt *), (mat, indices));
3731:   PetscFunctionReturn(PETSC_SUCCESS);
3732: }

3734: static PetscErrorCode MatStoreValues_SeqAIJ(Mat mat)
3735: {
3736:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3737:   size_t      nz  = aij->i[mat->rmap->n];

3739:   PetscFunctionBegin;
3740:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

3742:   /* allocate space for values if not already there */
3743:   if (!aij->saved_values) { PetscCall(PetscMalloc1(nz + 1, &aij->saved_values)); }

3745:   /* copy values over */
3746:   PetscCall(PetscArraycpy(aij->saved_values, aij->a, nz));
3747:   PetscFunctionReturn(PETSC_SUCCESS);
3748: }

3750: /*@
3751:   MatStoreValues - Stashes a copy of the matrix values; this allows reusing of the linear part of a Jacobian, while recomputing only the
3752:   nonlinear portion.

3754:   Logically Collect

3756:   Input Parameter:
3757: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3759:   Level: advanced

3761:   Example Usage:
3762: .vb
3763:     Using SNES
3764:     Create Jacobian matrix
3765:     Set linear terms into matrix
3766:     Apply boundary conditions to matrix, at this time matrix must have
3767:       final nonzero structure (i.e. setting the nonlinear terms and applying
3768:       boundary conditions again will not change the nonzero structure
3769:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3770:     MatStoreValues(mat);
3771:     Call SNESSetJacobian() with matrix
3772:     In your Jacobian routine
3773:       MatRetrieveValues(mat);
3774:       Set nonlinear terms in matrix

3776:     Without `SNESSolve()`, i.e. when you handle nonlinear solve yourself:
3777:     // build linear portion of Jacobian
3778:     MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS, PETSC_FALSE);
3779:     MatStoreValues(mat);
3780:     loop over nonlinear iterations
3781:        MatRetrieveValues(mat);
3782:        // call MatSetValues(mat,...) to set nonliner portion of Jacobian
3783:        // call MatAssemblyBegin/End() on matrix
3784:        Solve linear system with Jacobian
3785:     endloop
3786: .ve

3788:   Notes:
3789:   Matrix must already be assembled before calling this routine
3790:   Must set the matrix option `MatSetOption`(mat,`MAT_NEW_NONZERO_LOCATIONS`,`PETSC_FALSE`); before
3791:   calling this routine.

3793:   When this is called multiple times it overwrites the previous set of stored values
3794:   and does not allocated additional space.

3796: .seealso: [](ch_matrices), `Mat`, `MatRetrieveValues()`
3797: @*/
3798: PetscErrorCode MatStoreValues(Mat mat)
3799: {
3800:   PetscFunctionBegin;
3802:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3803:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3804:   PetscUseMethod(mat, "MatStoreValues_C", (Mat), (mat));
3805:   PetscFunctionReturn(PETSC_SUCCESS);
3806: }

3808: static PetscErrorCode MatRetrieveValues_SeqAIJ(Mat mat)
3809: {
3810:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;
3811:   PetscInt    nz  = aij->i[mat->rmap->n];

3813:   PetscFunctionBegin;
3814:   PetscCheck(aij->nonew, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
3815:   PetscCheck(aij->saved_values, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Must call MatStoreValues(A);first");
3816:   /* copy values over */
3817:   PetscCall(PetscArraycpy(aij->a, aij->saved_values, nz));
3818:   PetscFunctionReturn(PETSC_SUCCESS);
3819: }

3821: /*@
3822:   MatRetrieveValues - Retrieves the copy of the matrix values that was stored with `MatStoreValues()`

3824:   Logically Collect

3826:   Input Parameter:
3827: . mat - the matrix (currently only `MATAIJ` matrices support this option)

3829:   Level: advanced

3831: .seealso: [](ch_matrices), `Mat`, `MatStoreValues()`
3832: @*/
3833: PetscErrorCode MatRetrieveValues(Mat mat)
3834: {
3835:   PetscFunctionBegin;
3837:   PetscCheck(mat->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
3838:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3839:   PetscUseMethod(mat, "MatRetrieveValues_C", (Mat), (mat));
3840:   PetscFunctionReturn(PETSC_SUCCESS);
3841: }

3843: /*@
3844:   MatCreateSeqAIJ - Creates a sparse matrix in `MATSEQAIJ` (compressed row) format
3845:   (the default parallel PETSc format).  For good matrix assembly performance
3846:   the user should preallocate the matrix storage by setting the parameter `nz`
3847:   (or the array `nnz`).

3849:   Collective

3851:   Input Parameters:
3852: + comm - MPI communicator, set to `PETSC_COMM_SELF`
3853: . m    - number of rows
3854: . n    - number of columns
3855: . nz   - number of nonzeros per row (same for all rows)
3856: - nnz  - array containing the number of nonzeros in the various rows
3857:          (possibly different for each row) or NULL

3859:   Output Parameter:
3860: . A - the matrix

3862:   Options Database Keys:
3863: + -mat_no_inode            - Do not use inodes
3864: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3866:   Level: intermediate

3868:   Notes:
3869:   It is recommend to use `MatCreateFromOptions()` instead of this routine

3871:   If `nnz` is given then `nz` is ignored

3873:   The `MATSEQAIJ` format, also called
3874:   compressed row storage, is fully compatible with standard Fortran
3875:   storage.  That is, the stored row and column indices can begin at
3876:   either one (as in Fortran) or zero.

3878:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3879:   Set `nz` = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3880:   allocation.

3882:   By default, this format uses inodes (identical nodes) when possible, to
3883:   improve numerical efficiency of matrix-vector products and solves. We
3884:   search for consecutive rows with the same nonzero structure, thereby
3885:   reusing matrix information to achieve increased efficiency.

3887: .seealso: [](ch_matrices), `Mat`, [Sparse Matrix Creation](sec_matsparse), `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`
3888: @*/
3889: PetscErrorCode MatCreateSeqAIJ(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], Mat *A)
3890: {
3891:   PetscFunctionBegin;
3892:   PetscCall(MatCreate(comm, A));
3893:   PetscCall(MatSetSizes(*A, m, n, m, n));
3894:   PetscCall(MatSetType(*A, MATSEQAIJ));
3895:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*A, nz, nnz));
3896:   PetscFunctionReturn(PETSC_SUCCESS);
3897: }

3899: /*@
3900:   MatSeqAIJSetPreallocation - For good matrix assembly performance
3901:   the user should preallocate the matrix storage by setting the parameter nz
3902:   (or the array nnz).  By setting these parameters accurately, performance
3903:   during matrix assembly can be increased by more than a factor of 50.

3905:   Collective

3907:   Input Parameters:
3908: + B   - The matrix
3909: . nz  - number of nonzeros per row (same for all rows)
3910: - nnz - array containing the number of nonzeros in the various rows
3911:          (possibly different for each row) or NULL

3913:   Options Database Keys:
3914: + -mat_no_inode            - Do not use inodes
3915: - -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3917:   Level: intermediate

3919:   Notes:
3920:   If `nnz` is given then `nz` is ignored

3922:   The `MATSEQAIJ` format also called
3923:   compressed row storage, is fully compatible with standard Fortran
3924:   storage.  That is, the stored row and column indices can begin at
3925:   either one (as in Fortran) or zero.  See the users' manual for details.

3927:   Specify the preallocated storage with either `nz` or `nnz` (not both).
3928:   Set nz = `PETSC_DEFAULT` and `nnz` = `NULL` for PETSc to control dynamic memory
3929:   allocation.

3931:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
3932:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3933:   You can also run with the option -info and look for messages with the string
3934:   malloc in them to see if additional memory allocation was needed.

3936:   Developer Notes:
3937:   Use nz of `MAT_SKIP_ALLOCATION` to not allocate any space for the matrix
3938:   entries or columns indices

3940:   By default, this format uses inodes (identical nodes) when possible, to
3941:   improve numerical efficiency of matrix-vector products and solves. We
3942:   search for consecutive rows with the same nonzero structure, thereby
3943:   reusing matrix information to achieve increased efficiency.

3945: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatSetValues()`, `MatSeqAIJSetColumnIndices()`, `MatCreateSeqAIJWithArrays()`, `MatGetInfo()`,
3946:           `MatSeqAIJSetTotalPreallocation()`
3947: @*/
3948: PetscErrorCode MatSeqAIJSetPreallocation(Mat B, PetscInt nz, const PetscInt nnz[])
3949: {
3950:   PetscFunctionBegin;
3953:   PetscTryMethod(B, "MatSeqAIJSetPreallocation_C", (Mat, PetscInt, const PetscInt[]), (B, nz, nnz));
3954:   PetscFunctionReturn(PETSC_SUCCESS);
3955: }

3957: PetscErrorCode MatSeqAIJSetPreallocation_SeqAIJ(Mat B, PetscInt nz, const PetscInt *nnz)
3958: {
3959:   Mat_SeqAIJ *b              = (Mat_SeqAIJ *)B->data;
3960:   PetscBool   skipallocation = PETSC_FALSE, realalloc = PETSC_FALSE;
3961:   PetscInt    i;

3963:   PetscFunctionBegin;
3964:   if (B->hash_active) {
3965:     B->ops[0] = b->cops;
3966:     PetscCall(PetscHMapIJVDestroy(&b->ht));
3967:     PetscCall(PetscFree(b->dnz));
3968:     B->hash_active = PETSC_FALSE;
3969:   }
3970:   if (nz >= 0 || nnz) realalloc = PETSC_TRUE;
3971:   if (nz == MAT_SKIP_ALLOCATION) {
3972:     skipallocation = PETSC_TRUE;
3973:     nz             = 0;
3974:   }
3975:   PetscCall(PetscLayoutSetUp(B->rmap));
3976:   PetscCall(PetscLayoutSetUp(B->cmap));

3978:   if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
3979:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nz cannot be less than 0: value %" PetscInt_FMT, nz);
3980:   if (nnz) {
3981:     for (i = 0; i < B->rmap->n; i++) {
3982:       PetscCheck(nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be less than 0: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, nnz[i]);
3983:       PetscCheck(nnz[i] <= B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "nnz cannot be greater than row length: local row %" PetscInt_FMT " value %" PetscInt_FMT " rowlength %" PetscInt_FMT, i, nnz[i], B->cmap->n);
3984:     }
3985:   }

3987:   B->preallocated = PETSC_TRUE;
3988:   if (!skipallocation) {
3989:     if (!b->imax) { PetscCall(PetscMalloc1(B->rmap->n, &b->imax)); }
3990:     if (!b->ilen) {
3991:       /* b->ilen will count nonzeros in each row so far. */
3992:       PetscCall(PetscCalloc1(B->rmap->n, &b->ilen));
3993:     } else {
3994:       PetscCall(PetscMemzero(b->ilen, B->rmap->n * sizeof(PetscInt)));
3995:     }
3996:     if (!b->ipre) PetscCall(PetscMalloc1(B->rmap->n, &b->ipre));
3997:     if (!nnz) {
3998:       if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 10;
3999:       else if (nz < 0) nz = 1;
4000:       nz = PetscMin(nz, B->cmap->n);
4001:       for (i = 0; i < B->rmap->n; i++) b->imax[i] = nz;
4002:       PetscCall(PetscIntMultError(nz, B->rmap->n, &nz));
4003:     } else {
4004:       PetscInt64 nz64 = 0;
4005:       for (i = 0; i < B->rmap->n; i++) {
4006:         b->imax[i] = nnz[i];
4007:         nz64 += nnz[i];
4008:       }
4009:       PetscCall(PetscIntCast(nz64, &nz));
4010:     }

4012:     /* allocate the matrix space */
4013:     PetscCall(MatSeqXAIJFreeAIJ(B, &b->a, &b->j, &b->i));
4014:     PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscInt), (void **)&b->j));
4015:     PetscCall(PetscShmgetAllocateArray(B->rmap->n + 1, sizeof(PetscInt), (void **)&b->i));
4016:     b->free_ij = PETSC_TRUE;
4017:     if (B->structure_only) {
4018:       b->free_a = PETSC_FALSE;
4019:     } else {
4020:       PetscCall(PetscShmgetAllocateArray(nz, sizeof(PetscScalar), (void **)&b->a));
4021:       b->free_a = PETSC_TRUE;
4022:     }
4023:     b->i[0] = 0;
4024:     for (i = 1; i < B->rmap->n + 1; i++) b->i[i] = b->i[i - 1] + b->imax[i - 1];
4025:   } else {
4026:     b->free_a  = PETSC_FALSE;
4027:     b->free_ij = PETSC_FALSE;
4028:   }

4030:   if (b->ipre && nnz != b->ipre && b->imax) {
4031:     /* reserve user-requested sparsity */
4032:     PetscCall(PetscArraycpy(b->ipre, b->imax, B->rmap->n));
4033:   }

4035:   b->nz               = 0;
4036:   b->maxnz            = nz;
4037:   B->info.nz_unneeded = (double)b->maxnz;
4038:   if (realalloc) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
4039:   B->was_assembled = PETSC_FALSE;
4040:   B->assembled     = PETSC_FALSE;
4041:   /* We simply deem preallocation has changed nonzero state. Updating the state
4042:      will give clients (like AIJKokkos) a chance to know something has happened.
4043:   */
4044:   B->nonzerostate++;
4045:   PetscFunctionReturn(PETSC_SUCCESS);
4046: }

4048: static PetscErrorCode MatResetPreallocation_SeqAIJ(Mat A)
4049: {
4050:   Mat_SeqAIJ *a;
4051:   PetscInt    i;
4052:   PetscBool   skipreset;

4054:   PetscFunctionBegin;

4057:   /* Check local size. If zero, then return */
4058:   if (!A->rmap->n) PetscFunctionReturn(PETSC_SUCCESS);

4060:   a = (Mat_SeqAIJ *)A->data;
4061:   /* if no saved info, we error out */
4062:   PetscCheck(a->ipre, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "No saved preallocation info ");

4064:   PetscCheck(a->i && a->imax && a->ilen, PETSC_COMM_SELF, PETSC_ERR_ARG_NULL, "Memory info is incomplete, and can not reset preallocation ");

4066:   PetscCall(PetscArraycmp(a->ipre, a->ilen, A->rmap->n, &skipreset));
4067:   if (!skipreset) {
4068:     PetscCall(PetscArraycpy(a->imax, a->ipre, A->rmap->n));
4069:     PetscCall(PetscArrayzero(a->ilen, A->rmap->n));
4070:     a->i[0] = 0;
4071:     for (i = 1; i < A->rmap->n + 1; i++) a->i[i] = a->i[i - 1] + a->imax[i - 1];
4072:     A->preallocated     = PETSC_TRUE;
4073:     a->nz               = 0;
4074:     a->maxnz            = a->i[A->rmap->n];
4075:     A->info.nz_unneeded = (double)a->maxnz;
4076:     A->was_assembled    = PETSC_FALSE;
4077:     A->assembled        = PETSC_FALSE;
4078:   }
4079:   PetscFunctionReturn(PETSC_SUCCESS);
4080: }

4082: /*@
4083:   MatSeqAIJSetPreallocationCSR - Allocates memory for a sparse sequential matrix in `MATSEQAIJ` format.

4085:   Input Parameters:
4086: + B - the matrix
4087: . i - the indices into `j` for the start of each row (indices start with zero)
4088: . j - the column indices for each row (indices start with zero) these must be sorted for each row
4089: - v - optional values in the matrix, use `NULL` if not provided

4091:   Level: developer

4093:   Notes:
4094:   The `i`,`j`,`v` values are COPIED with this routine; to avoid the copy use `MatCreateSeqAIJWithArrays()`

4096:   This routine may be called multiple times with different nonzero patterns (or the same nonzero pattern). The nonzero
4097:   structure will be the union of all the previous nonzero structures.

4099:   Developer Notes:
4100:   An optimization could be added to the implementation where it checks if the `i`, and `j` are identical to the current `i` and `j` and
4101:   then just copies the `v` values directly with `PetscMemcpy()`.

4103:   This routine could also take a `PetscCopyMode` argument to allow sharing the values instead of always copying them.

4105: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatSeqAIJSetPreallocation()`, `MATSEQAIJ`, `MatResetPreallocation()`
4106: @*/
4107: PetscErrorCode MatSeqAIJSetPreallocationCSR(Mat B, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
4108: {
4109:   PetscFunctionBegin;
4112:   PetscTryMethod(B, "MatSeqAIJSetPreallocationCSR_C", (Mat, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, i, j, v));
4113:   PetscFunctionReturn(PETSC_SUCCESS);
4114: }

4116: static PetscErrorCode MatSeqAIJSetPreallocationCSR_SeqAIJ(Mat B, const PetscInt Ii[], const PetscInt J[], const PetscScalar v[])
4117: {
4118:   PetscInt  i;
4119:   PetscInt  m, n;
4120:   PetscInt  nz;
4121:   PetscInt *nnz;

4123:   PetscFunctionBegin;
4124:   PetscCheck(Ii[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Ii[0] must be 0 it is %" PetscInt_FMT, Ii[0]);

4126:   PetscCall(PetscLayoutSetUp(B->rmap));
4127:   PetscCall(PetscLayoutSetUp(B->cmap));

4129:   PetscCall(MatGetSize(B, &m, &n));
4130:   PetscCall(PetscMalloc1(m + 1, &nnz));
4131:   for (i = 0; i < m; i++) {
4132:     nz = Ii[i + 1] - Ii[i];
4133:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
4134:     nnz[i] = nz;
4135:   }
4136:   PetscCall(MatSeqAIJSetPreallocation(B, 0, nnz));
4137:   PetscCall(PetscFree(nnz));

4139:   for (i = 0; i < m; i++) PetscCall(MatSetValues_SeqAIJ(B, 1, &i, Ii[i + 1] - Ii[i], J + Ii[i], PetscSafePointerPlusOffset(v, Ii[i]), INSERT_VALUES));

4141:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
4142:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

4144:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
4145:   PetscFunctionReturn(PETSC_SUCCESS);
4146: }

4148: /*@
4149:   MatSeqAIJKron - Computes `C`, the Kronecker product of `A` and `B`.

4151:   Input Parameters:
4152: + A     - left-hand side matrix
4153: . B     - right-hand side matrix
4154: - reuse - either `MAT_INITIAL_MATRIX` or `MAT_REUSE_MATRIX`

4156:   Output Parameter:
4157: . C - Kronecker product of `A` and `B`

4159:   Level: intermediate

4161:   Note:
4162:   `MAT_REUSE_MATRIX` can only be used when the nonzero structure of the product matrix has not changed from that last call to `MatSeqAIJKron()`.

4164: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATKAIJ`, `MatReuse`
4165: @*/
4166: PetscErrorCode MatSeqAIJKron(Mat A, Mat B, MatReuse reuse, Mat *C)
4167: {
4168:   PetscFunctionBegin;
4173:   PetscAssertPointer(C, 4);
4174:   if (reuse == MAT_REUSE_MATRIX) {
4177:   }
4178:   PetscTryMethod(A, "MatSeqAIJKron_C", (Mat, Mat, MatReuse, Mat *), (A, B, reuse, C));
4179:   PetscFunctionReturn(PETSC_SUCCESS);
4180: }

4182: static PetscErrorCode MatSeqAIJKron_SeqAIJ(Mat A, Mat B, MatReuse reuse, Mat *C)
4183: {
4184:   Mat                newmat;
4185:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data;
4186:   Mat_SeqAIJ        *b = (Mat_SeqAIJ *)B->data;
4187:   PetscScalar       *v;
4188:   const PetscScalar *aa, *ba;
4189:   PetscInt          *i, *j, m, n, p, q, nnz = 0, am = A->rmap->n, bm = B->rmap->n, an = A->cmap->n, bn = B->cmap->n;
4190:   PetscBool          flg;

4192:   PetscFunctionBegin;
4193:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4194:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4195:   PetscCheck(!B->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
4196:   PetscCheck(B->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for unassembled matrix");
4197:   PetscCall(PetscObjectTypeCompare((PetscObject)B, MATSEQAIJ, &flg));
4198:   PetscCheck(flg, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatType %s", ((PetscObject)B)->type_name);
4199:   PetscCheck(reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatReuse %d", (int)reuse);
4200:   if (reuse == MAT_INITIAL_MATRIX) {
4201:     PetscCall(PetscMalloc2(am * bm + 1, &i, a->i[am] * b->i[bm], &j));
4202:     PetscCall(MatCreate(PETSC_COMM_SELF, &newmat));
4203:     PetscCall(MatSetSizes(newmat, am * bm, an * bn, am * bm, an * bn));
4204:     PetscCall(MatSetType(newmat, MATAIJ));
4205:     i[0] = 0;
4206:     for (m = 0; m < am; ++m) {
4207:       for (p = 0; p < bm; ++p) {
4208:         i[m * bm + p + 1] = i[m * bm + p] + (a->i[m + 1] - a->i[m]) * (b->i[p + 1] - b->i[p]);
4209:         for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4210:           for (q = b->i[p]; q < b->i[p + 1]; ++q) j[nnz++] = a->j[n] * bn + b->j[q];
4211:         }
4212:       }
4213:     }
4214:     PetscCall(MatSeqAIJSetPreallocationCSR(newmat, i, j, NULL));
4215:     *C = newmat;
4216:     PetscCall(PetscFree2(i, j));
4217:     nnz = 0;
4218:   }
4219:   PetscCall(MatSeqAIJGetArray(*C, &v));
4220:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4221:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
4222:   for (m = 0; m < am; ++m) {
4223:     for (p = 0; p < bm; ++p) {
4224:       for (n = a->i[m]; n < a->i[m + 1]; ++n) {
4225:         for (q = b->i[p]; q < b->i[p + 1]; ++q) v[nnz++] = aa[n] * ba[q];
4226:       }
4227:     }
4228:   }
4229:   PetscCall(MatSeqAIJRestoreArray(*C, &v));
4230:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
4231:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
4232:   PetscFunctionReturn(PETSC_SUCCESS);
4233: }

4235: #include <../src/mat/impls/dense/seq/dense.h>
4236: #include <petsc/private/kernels/petscaxpy.h>

4238: /*
4239:     Computes (B'*A')' since computing B*A directly is untenable

4241:                n                       p                          p
4242:         [             ]       [             ]         [                 ]
4243:       m [      A      ]  *  n [       B     ]   =   m [         C       ]
4244:         [             ]       [             ]         [                 ]

4246: */
4247: PetscErrorCode MatMatMultNumeric_SeqDense_SeqAIJ(Mat A, Mat B, Mat C)
4248: {
4249:   Mat_SeqDense      *sub_a = (Mat_SeqDense *)A->data;
4250:   Mat_SeqAIJ        *sub_b = (Mat_SeqAIJ *)B->data;
4251:   Mat_SeqDense      *sub_c = (Mat_SeqDense *)C->data;
4252:   PetscInt           i, j, n, m, q, p;
4253:   const PetscInt    *ii, *idx;
4254:   const PetscScalar *b, *a, *a_q;
4255:   PetscScalar       *c, *c_q;
4256:   PetscInt           clda = sub_c->lda;
4257:   PetscInt           alda = sub_a->lda;

4259:   PetscFunctionBegin;
4260:   m = A->rmap->n;
4261:   n = A->cmap->n;
4262:   p = B->cmap->n;
4263:   a = sub_a->v;
4264:   b = sub_b->a;
4265:   c = sub_c->v;
4266:   if (clda == m) {
4267:     PetscCall(PetscArrayzero(c, m * p));
4268:   } else {
4269:     for (j = 0; j < p; j++)
4270:       for (i = 0; i < m; i++) c[j * clda + i] = 0.0;
4271:   }
4272:   ii  = sub_b->i;
4273:   idx = sub_b->j;
4274:   for (i = 0; i < n; i++) {
4275:     q = ii[i + 1] - ii[i];
4276:     while (q-- > 0) {
4277:       c_q = c + clda * (*idx);
4278:       a_q = a + alda * i;
4279:       PetscKernelAXPY(c_q, *b, a_q, m);
4280:       idx++;
4281:       b++;
4282:     }
4283:   }
4284:   PetscFunctionReturn(PETSC_SUCCESS);
4285: }

4287: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqAIJ(Mat A, Mat B, PetscReal fill, Mat C)
4288: {
4289:   PetscInt  m = A->rmap->n, n = B->cmap->n;
4290:   PetscBool cisdense;

4292:   PetscFunctionBegin;
4293:   PetscCheck(A->cmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "A->cmap->n %" PetscInt_FMT " != B->rmap->n %" PetscInt_FMT, A->cmap->n, B->rmap->n);
4294:   PetscCall(MatSetSizes(C, m, n, m, n));
4295:   PetscCall(MatSetBlockSizesFromMats(C, A, B));
4296:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, MATSEQDENSEHIP, ""));
4297:   if (!cisdense) PetscCall(MatSetType(C, MATDENSE));
4298:   PetscCall(MatSetUp(C));

4300:   C->ops->matmultnumeric = MatMatMultNumeric_SeqDense_SeqAIJ;
4301:   PetscFunctionReturn(PETSC_SUCCESS);
4302: }

4304: /*MC
4305:    MATSEQAIJ - MATSEQAIJ = "seqaij" - A matrix type to be used for sequential sparse matrices,
4306:    based on compressed sparse row format.

4308:    Options Database Key:
4309: . -mat_type seqaij - sets the matrix type to "seqaij" during a call to MatSetFromOptions()

4311:    Level: beginner

4313:    Notes:
4314:     `MatSetValues()` may be called for this matrix type with a `NULL` argument for the numerical values,
4315:     in this case the values associated with the rows and columns one passes in are set to zero
4316:     in the matrix

4318:     `MatSetOptions`(,`MAT_STRUCTURE_ONLY`,`PETSC_TRUE`) may be called for this matrix type. In this no
4319:     space is allocated for the nonzero entries and any entries passed with `MatSetValues()` are ignored

4321:   Developer Note:
4322:     It would be nice if all matrix formats supported passing `NULL` in for the numerical values

4324: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatSetFromOptions()`, `MatSetType()`, `MatCreate()`, `MatType`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4325: M*/

4327: /*MC
4328:    MATAIJ - MATAIJ = "aij" - A matrix type to be used for sparse matrices.

4330:    This matrix type is identical to `MATSEQAIJ` when constructed with a single process communicator,
4331:    and `MATMPIAIJ` otherwise.  As a result, for single process communicators,
4332:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4333:    for communicators controlling multiple processes.  It is recommended that you call both of
4334:    the above preallocation routines for simplicity.

4336:    Options Database Key:
4337: . -mat_type aij - sets the matrix type to "aij" during a call to `MatSetFromOptions()`

4339:   Level: beginner

4341:    Note:
4342:    Subclasses include `MATAIJCUSPARSE`, `MATAIJPERM`, `MATAIJSELL`, `MATAIJMKL`, `MATAIJCRL`, and also automatically switches over to use inodes when
4343:    enough exist.

4345: .seealso: [](ch_matrices), `Mat`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MATSEQAIJ`, `MATMPIAIJ`, `MATSELL`, `MATSEQSELL`, `MATMPISELL`
4346: M*/

4348: /*MC
4349:    MATAIJCRL - MATAIJCRL = "aijcrl" - A matrix type to be used for sparse matrices.

4351:    Options Database Key:
4352: . -mat_type aijcrl - sets the matrix type to "aijcrl" during a call to `MatSetFromOptions()`

4354:   Level: beginner

4356:    Note:
4357:    This matrix type is identical to `MATSEQAIJCRL` when constructed with a single process communicator,
4358:    and `MATMPIAIJCRL` otherwise.  As a result, for single process communicators,
4359:    `MatSeqAIJSetPreallocation()` is supported, and similarly `MatMPIAIJSetPreallocation()` is supported
4360:    for communicators controlling multiple processes.  It is recommended that you call both of
4361:    the above preallocation routines for simplicity.

4363: .seealso: [](ch_matrices), `Mat`, `MatCreateMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`, `MATSEQAIJCRL`, `MATMPIAIJCRL`
4364: M*/

4366: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCRL(Mat, MatType, MatReuse, Mat *);
4367: #if defined(PETSC_HAVE_ELEMENTAL)
4368: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
4369: #endif
4370: #if defined(PETSC_HAVE_SCALAPACK)
4371: PETSC_INTERN PetscErrorCode MatConvert_AIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
4372: #endif
4373: #if defined(PETSC_HAVE_HYPRE)
4374: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat A, MatType, MatReuse, Mat *);
4375: #endif

4377: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqSELL(Mat, MatType, MatReuse, Mat *);
4378: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat, MatType, MatReuse, Mat *);
4379: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_IS_XAIJ(Mat);

4381: /*@C
4382:   MatSeqAIJGetArray - gives read/write access to the array where the data for a `MATSEQAIJ` matrix is stored

4384:   Not Collective

4386:   Input Parameter:
4387: . A - a `MATSEQAIJ` matrix

4389:   Output Parameter:
4390: . array - pointer to the data

4392:   Level: intermediate

4394:   Fortran Notes:
4395:   `MatSeqAIJGetArray()` Fortran binding is deprecated (since PETSc 3.19), use `MatSeqAIJGetArrayF90()`

4397: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`, `MatSeqAIJGetArrayF90()`
4398: @*/
4399: PetscErrorCode MatSeqAIJGetArray(Mat A, PetscScalar *array[])
4400: {
4401:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4403:   PetscFunctionBegin;
4404:   if (aij->ops->getarray) {
4405:     PetscCall((*aij->ops->getarray)(A, array));
4406:   } else {
4407:     *array = aij->a;
4408:   }
4409:   PetscFunctionReturn(PETSC_SUCCESS);
4410: }

4412: /*@C
4413:   MatSeqAIJRestoreArray - returns access to the array where the data for a `MATSEQAIJ` matrix is stored obtained by `MatSeqAIJGetArray()`

4415:   Not Collective

4417:   Input Parameters:
4418: + A     - a `MATSEQAIJ` matrix
4419: - array - pointer to the data

4421:   Level: intermediate

4423:   Fortran Notes:
4424:   `MatSeqAIJRestoreArray()` Fortran binding is deprecated (since PETSc 3.19), use `MatSeqAIJRestoreArrayF90()`

4426: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayF90()`
4427: @*/
4428: PetscErrorCode MatSeqAIJRestoreArray(Mat A, PetscScalar *array[])
4429: {
4430:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4432:   PetscFunctionBegin;
4433:   if (aij->ops->restorearray) {
4434:     PetscCall((*aij->ops->restorearray)(A, array));
4435:   } else {
4436:     *array = NULL;
4437:   }
4438:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
4439:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4440:   PetscFunctionReturn(PETSC_SUCCESS);
4441: }

4443: /*@C
4444:   MatSeqAIJGetArrayRead - gives read-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4446:   Not Collective; No Fortran Support

4448:   Input Parameter:
4449: . A - a `MATSEQAIJ` matrix

4451:   Output Parameter:
4452: . array - pointer to the data

4454:   Level: intermediate

4456: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4457: @*/
4458: PetscErrorCode MatSeqAIJGetArrayRead(Mat A, const PetscScalar *array[])
4459: {
4460:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4462:   PetscFunctionBegin;
4463:   if (aij->ops->getarrayread) {
4464:     PetscCall((*aij->ops->getarrayread)(A, array));
4465:   } else {
4466:     *array = aij->a;
4467:   }
4468:   PetscFunctionReturn(PETSC_SUCCESS);
4469: }

4471: /*@C
4472:   MatSeqAIJRestoreArrayRead - restore the read-only access array obtained from `MatSeqAIJGetArrayRead()`

4474:   Not Collective; No Fortran Support

4476:   Input Parameter:
4477: . A - a `MATSEQAIJ` matrix

4479:   Output Parameter:
4480: . array - pointer to the data

4482:   Level: intermediate

4484: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4485: @*/
4486: PetscErrorCode MatSeqAIJRestoreArrayRead(Mat A, const PetscScalar *array[])
4487: {
4488:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4490:   PetscFunctionBegin;
4491:   if (aij->ops->restorearrayread) {
4492:     PetscCall((*aij->ops->restorearrayread)(A, array));
4493:   } else {
4494:     *array = NULL;
4495:   }
4496:   PetscFunctionReturn(PETSC_SUCCESS);
4497: }

4499: /*@C
4500:   MatSeqAIJGetArrayWrite - gives write-only access to the array where the data for a `MATSEQAIJ` matrix is stored

4502:   Not Collective; No Fortran Support

4504:   Input Parameter:
4505: . A - a `MATSEQAIJ` matrix

4507:   Output Parameter:
4508: . array - pointer to the data

4510:   Level: intermediate

4512: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJRestoreArrayRead()`
4513: @*/
4514: PetscErrorCode MatSeqAIJGetArrayWrite(Mat A, PetscScalar *array[])
4515: {
4516:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4518:   PetscFunctionBegin;
4519:   if (aij->ops->getarraywrite) {
4520:     PetscCall((*aij->ops->getarraywrite)(A, array));
4521:   } else {
4522:     *array = aij->a;
4523:   }
4524:   PetscCall(MatSeqAIJInvalidateDiagonal(A));
4525:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
4526:   PetscFunctionReturn(PETSC_SUCCESS);
4527: }

4529: /*@C
4530:   MatSeqAIJRestoreArrayWrite - restore the read-only access array obtained from MatSeqAIJGetArrayRead

4532:   Not Collective; No Fortran Support

4534:   Input Parameter:
4535: . A - a MATSEQAIJ matrix

4537:   Output Parameter:
4538: . array - pointer to the data

4540:   Level: intermediate

4542: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4543: @*/
4544: PetscErrorCode MatSeqAIJRestoreArrayWrite(Mat A, PetscScalar *array[])
4545: {
4546:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4548:   PetscFunctionBegin;
4549:   if (aij->ops->restorearraywrite) {
4550:     PetscCall((*aij->ops->restorearraywrite)(A, array));
4551:   } else {
4552:     *array = NULL;
4553:   }
4554:   PetscFunctionReturn(PETSC_SUCCESS);
4555: }

4557: /*@C
4558:   MatSeqAIJGetCSRAndMemType - Get the CSR arrays and the memory type of the `MATSEQAIJ` matrix

4560:   Not Collective; No Fortran Support

4562:   Input Parameter:
4563: . mat - a matrix of type `MATSEQAIJ` or its subclasses

4565:   Output Parameters:
4566: + i     - row map array of the matrix
4567: . j     - column index array of the matrix
4568: . a     - data array of the matrix
4569: - mtype - memory type of the arrays

4571:   Level: developer

4573:   Notes:
4574:   Any of the output parameters can be `NULL`, in which case the corresponding value is not returned.
4575:   If mat is a device matrix, the arrays are on the device. Otherwise, they are on the host.

4577:   One can call this routine on a preallocated but not assembled matrix to just get the memory of the CSR underneath the matrix.
4578:   If the matrix is assembled, the data array `a` is guaranteed to have the latest values of the matrix.

4580: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJGetArray()`, `MatSeqAIJGetArrayRead()`
4581: @*/
4582: PetscErrorCode MatSeqAIJGetCSRAndMemType(Mat mat, const PetscInt *i[], const PetscInt *j[], PetscScalar *a[], PetscMemType *mtype)
4583: {
4584:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)mat->data;

4586:   PetscFunctionBegin;
4587:   PetscCheck(mat->preallocated, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "matrix is not preallocated");
4588:   if (aij->ops->getcsrandmemtype) {
4589:     PetscCall((*aij->ops->getcsrandmemtype)(mat, i, j, a, mtype));
4590:   } else {
4591:     if (i) *i = aij->i;
4592:     if (j) *j = aij->j;
4593:     if (a) *a = aij->a;
4594:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
4595:   }
4596:   PetscFunctionReturn(PETSC_SUCCESS);
4597: }

4599: /*@
4600:   MatSeqAIJGetMaxRowNonzeros - returns the maximum number of nonzeros in any row

4602:   Not Collective

4604:   Input Parameter:
4605: . A - a `MATSEQAIJ` matrix

4607:   Output Parameter:
4608: . nz - the maximum number of nonzeros in any row

4610:   Level: intermediate

4612: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRestoreArray()`, `MatSeqAIJGetArrayF90()`
4613: @*/
4614: PetscErrorCode MatSeqAIJGetMaxRowNonzeros(Mat A, PetscInt *nz)
4615: {
4616:   Mat_SeqAIJ *aij = (Mat_SeqAIJ *)A->data;

4618:   PetscFunctionBegin;
4619:   *nz = aij->rmax;
4620:   PetscFunctionReturn(PETSC_SUCCESS);
4621: }

4623: static PetscErrorCode MatCOOStructDestroy_SeqAIJ(void *data)
4624: {
4625:   MatCOOStruct_SeqAIJ *coo = (MatCOOStruct_SeqAIJ *)data;

4627:   PetscFunctionBegin;
4628:   PetscCall(PetscFree(coo->perm));
4629:   PetscCall(PetscFree(coo->jmap));
4630:   PetscCall(PetscFree(coo));
4631:   PetscFunctionReturn(PETSC_SUCCESS);
4632: }

4634: PetscErrorCode MatSetPreallocationCOO_SeqAIJ(Mat mat, PetscCount coo_n, PetscInt coo_i[], PetscInt coo_j[])
4635: {
4636:   MPI_Comm             comm;
4637:   PetscInt            *i, *j;
4638:   PetscInt             M, N, row, iprev;
4639:   PetscCount           k, p, q, nneg, nnz, start, end; /* Index the coo array, so use PetscCount as their type */
4640:   PetscInt            *Ai;                             /* Change to PetscCount once we use it for row pointers */
4641:   PetscInt            *Aj;
4642:   PetscScalar         *Aa;
4643:   Mat_SeqAIJ          *seqaij = (Mat_SeqAIJ *)mat->data;
4644:   MatType              rtype;
4645:   PetscCount          *perm, *jmap;
4646:   MatCOOStruct_SeqAIJ *coo;
4647:   PetscBool            isorted;
4648:   PetscBool            hypre;
4649:   const char          *name;

4651:   PetscFunctionBegin;
4652:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
4653:   PetscCall(MatGetSize(mat, &M, &N));
4654:   i = coo_i;
4655:   j = coo_j;
4656:   PetscCall(PetscMalloc1(coo_n, &perm));

4658:   /* Ignore entries with negative row or col indices; at the same time, check if i[] is already sorted (e.g., MatConvert_AlJ_HYPRE results in this case) */
4659:   isorted = PETSC_TRUE;
4660:   iprev   = PETSC_INT_MIN;
4661:   for (k = 0; k < coo_n; k++) {
4662:     if (j[k] < 0) i[k] = -1;
4663:     if (isorted) {
4664:       if (i[k] < iprev) isorted = PETSC_FALSE;
4665:       else iprev = i[k];
4666:     }
4667:     perm[k] = k;
4668:   }

4670:   /* Sort by row if not already */
4671:   if (!isorted) PetscCall(PetscSortIntWithIntCountArrayPair(coo_n, i, j, perm));

4673:   /* Advance k to the first row with a non-negative index */
4674:   for (k = 0; k < coo_n; k++)
4675:     if (i[k] >= 0) break;
4676:   nneg = k;
4677:   PetscCall(PetscMalloc1(coo_n - nneg + 1, &jmap)); /* +1 to make a CSR-like data structure. jmap[i] originally is the number of repeats for i-th nonzero */
4678:   nnz = 0;                                          /* Total number of unique nonzeros to be counted */
4679:   jmap++;                                           /* Inc jmap by 1 for convenience */

4681:   PetscCall(PetscShmgetAllocateArray(M + 1, sizeof(PetscInt), (void **)&Ai)); /* CSR of A */
4682:   PetscCall(PetscArrayzero(Ai, M + 1));
4683:   PetscCall(PetscShmgetAllocateArray(coo_n - nneg, sizeof(PetscInt), (void **)&Aj)); /* We have at most coo_n-nneg unique nonzeros */

4685:   PetscCall(PetscObjectGetName((PetscObject)mat, &name));
4686:   PetscCall(PetscStrcmp("_internal_COO_mat_for_hypre", name, &hypre));

4688:   /* In each row, sort by column, then unique column indices to get row length */
4689:   Ai++;  /* Inc by 1 for convenience */
4690:   q = 0; /* q-th unique nonzero, with q starting from 0 */
4691:   while (k < coo_n) {
4692:     PetscBool strictly_sorted; // this row is strictly sorted?
4693:     PetscInt  jprev;

4695:     /* get [start,end) indices for this row; also check if cols in this row are strictly sorted */
4696:     row             = i[k];
4697:     start           = k;
4698:     jprev           = PETSC_INT_MIN;
4699:     strictly_sorted = PETSC_TRUE;
4700:     while (k < coo_n && i[k] == row) {
4701:       if (strictly_sorted) {
4702:         if (j[k] <= jprev) strictly_sorted = PETSC_FALSE;
4703:         else jprev = j[k];
4704:       }
4705:       k++;
4706:     }
4707:     end = k;

4709:     /* hack for HYPRE: swap min column to diag so that diagonal values will go first */
4710:     if (hypre) {
4711:       PetscInt  minj    = PETSC_INT_MAX;
4712:       PetscBool hasdiag = PETSC_FALSE;

4714:       if (strictly_sorted) { // fast path to swap the first and the diag
4715:         PetscCount tmp;
4716:         for (p = start; p < end; p++) {
4717:           if (j[p] == row && p != start) {
4718:             j[p]        = j[start];
4719:             j[start]    = row;
4720:             tmp         = perm[start];
4721:             perm[start] = perm[p];
4722:             perm[p]     = tmp;
4723:             break;
4724:           }
4725:         }
4726:       } else {
4727:         for (p = start; p < end; p++) {
4728:           hasdiag = (PetscBool)(hasdiag || (j[p] == row));
4729:           minj    = PetscMin(minj, j[p]);
4730:         }

4732:         if (hasdiag) {
4733:           for (p = start; p < end; p++) {
4734:             if (j[p] == minj) j[p] = row;
4735:             else if (j[p] == row) j[p] = minj;
4736:           }
4737:         }
4738:       }
4739:     }
4740:     // sort by columns in a row
4741:     if (!strictly_sorted) PetscCall(PetscSortIntWithCountArray(end - start, j + start, perm + start));

4743:     if (strictly_sorted) { // fast path to set Aj[], jmap[], Ai[], nnz, q
4744:       for (p = start; p < end; p++, q++) {
4745:         Aj[q]   = j[p];
4746:         jmap[q] = 1;
4747:       }
4748:       PetscCall(PetscIntCast(end - start, Ai + row));
4749:       nnz += Ai[row]; // q is already advanced
4750:     } else {
4751:       /* Find number of unique col entries in this row */
4752:       Aj[q]   = j[start]; /* Log the first nonzero in this row */
4753:       jmap[q] = 1;        /* Number of repeats of this nonzero entry */
4754:       Ai[row] = 1;
4755:       nnz++;

4757:       for (p = start + 1; p < end; p++) { /* Scan remaining nonzero in this row */
4758:         if (j[p] != j[p - 1]) {           /* Meet a new nonzero */
4759:           q++;
4760:           jmap[q] = 1;
4761:           Aj[q]   = j[p];
4762:           Ai[row]++;
4763:           nnz++;
4764:         } else {
4765:           jmap[q]++;
4766:         }
4767:       }
4768:       q++; /* Move to next row and thus next unique nonzero */
4769:     }
4770:   }

4772:   Ai--; /* Back to the beginning of Ai[] */
4773:   for (k = 0; k < M; k++) Ai[k + 1] += Ai[k];
4774:   jmap--; // Back to the beginning of jmap[]
4775:   jmap[0] = 0;
4776:   for (k = 0; k < nnz; k++) jmap[k + 1] += jmap[k];

4778:   if (nnz < coo_n - nneg) { /* Reallocate with actual number of unique nonzeros */
4779:     PetscCount *jmap_new;
4780:     PetscInt   *Aj_new;

4782:     PetscCall(PetscMalloc1(nnz + 1, &jmap_new));
4783:     PetscCall(PetscArraycpy(jmap_new, jmap, nnz + 1));
4784:     PetscCall(PetscFree(jmap));
4785:     jmap = jmap_new;

4787:     PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscInt), (void **)&Aj_new));
4788:     PetscCall(PetscArraycpy(Aj_new, Aj, nnz));
4789:     PetscCall(PetscShmgetDeallocateArray((void **)&Aj));
4790:     Aj = Aj_new;
4791:   }

4793:   if (nneg) { /* Discard heading entries with negative indices in perm[], as we'll access it from index 0 in MatSetValuesCOO */
4794:     PetscCount *perm_new;

4796:     PetscCall(PetscMalloc1(coo_n - nneg, &perm_new));
4797:     PetscCall(PetscArraycpy(perm_new, perm + nneg, coo_n - nneg));
4798:     PetscCall(PetscFree(perm));
4799:     perm = perm_new;
4800:   }

4802:   PetscCall(MatGetRootType_Private(mat, &rtype));
4803:   PetscCall(PetscShmgetAllocateArray(nnz, sizeof(PetscScalar), (void **)&Aa));
4804:   PetscCall(PetscArrayzero(Aa, nnz));
4805:   PetscCall(MatSetSeqAIJWithArrays_private(PETSC_COMM_SELF, M, N, Ai, Aj, Aa, rtype, mat));

4807:   seqaij->free_a = seqaij->free_ij = PETSC_TRUE; /* Let newmat own Ai, Aj and Aa */

4809:   // Put the COO struct in a container and then attach that to the matrix
4810:   PetscCall(PetscMalloc1(1, &coo));
4811:   PetscCall(PetscIntCast(nnz, &coo->nz));
4812:   coo->n    = coo_n;
4813:   coo->Atot = coo_n - nneg; // Annz is seqaij->nz, so no need to record that again
4814:   coo->jmap = jmap;         // of length nnz+1
4815:   coo->perm = perm;
4816:   PetscCall(PetscObjectContainerCompose((PetscObject)mat, "__PETSc_MatCOOStruct_Host", coo, MatCOOStructDestroy_SeqAIJ));
4817:   PetscFunctionReturn(PETSC_SUCCESS);
4818: }

4820: static PetscErrorCode MatSetValuesCOO_SeqAIJ(Mat A, const PetscScalar v[], InsertMode imode)
4821: {
4822:   Mat_SeqAIJ          *aseq = (Mat_SeqAIJ *)A->data;
4823:   PetscCount           i, j, Annz = aseq->nz;
4824:   PetscCount          *perm, *jmap;
4825:   PetscScalar         *Aa;
4826:   PetscContainer       container;
4827:   MatCOOStruct_SeqAIJ *coo;

4829:   PetscFunctionBegin;
4830:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_MatCOOStruct_Host", (PetscObject *)&container));
4831:   PetscCheck(container, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not found MatCOOStruct on this matrix");
4832:   PetscCall(PetscContainerGetPointer(container, (void **)&coo));
4833:   perm = coo->perm;
4834:   jmap = coo->jmap;
4835:   PetscCall(MatSeqAIJGetArray(A, &Aa));
4836:   for (i = 0; i < Annz; i++) {
4837:     PetscScalar sum = 0.0;
4838:     for (j = jmap[i]; j < jmap[i + 1]; j++) sum += v[perm[j]];
4839:     Aa[i] = (imode == INSERT_VALUES ? 0.0 : Aa[i]) + sum;
4840:   }
4841:   PetscCall(MatSeqAIJRestoreArray(A, &Aa));
4842:   PetscFunctionReturn(PETSC_SUCCESS);
4843: }

4845: #if defined(PETSC_HAVE_CUDA)
4846: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCUSPARSE(Mat, MatType, MatReuse, Mat *);
4847: #endif
4848: #if defined(PETSC_HAVE_HIP)
4849: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJHIPSPARSE(Mat, MatType, MatReuse, Mat *);
4850: #endif
4851: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4852: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJKokkos(Mat, MatType, MatReuse, Mat *);
4853: #endif

4855: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJ(Mat B)
4856: {
4857:   Mat_SeqAIJ *b;
4858:   PetscMPIInt size;

4860:   PetscFunctionBegin;
4861:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
4862:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Comm must be of size 1");

4864:   PetscCall(PetscNew(&b));

4866:   B->data   = (void *)b;
4867:   B->ops[0] = MatOps_Values;
4868:   if (B->sortedfull) B->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;

4870:   b->row                = NULL;
4871:   b->col                = NULL;
4872:   b->icol               = NULL;
4873:   b->reallocs           = 0;
4874:   b->ignorezeroentries  = PETSC_FALSE;
4875:   b->roworiented        = PETSC_TRUE;
4876:   b->nonew              = 0;
4877:   b->diag               = NULL;
4878:   b->solve_work         = NULL;
4879:   B->spptr              = NULL;
4880:   b->saved_values       = NULL;
4881:   b->idiag              = NULL;
4882:   b->mdiag              = NULL;
4883:   b->ssor_work          = NULL;
4884:   b->omega              = 1.0;
4885:   b->fshift             = 0.0;
4886:   b->idiagvalid         = PETSC_FALSE;
4887:   b->ibdiagvalid        = PETSC_FALSE;
4888:   b->keepnonzeropattern = PETSC_FALSE;

4890:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4891: #if defined(PETSC_HAVE_MATLAB)
4892:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEnginePut_C", MatlabEnginePut_SeqAIJ));
4893:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "PetscMatlabEngineGet_C", MatlabEngineGet_SeqAIJ));
4894: #endif
4895:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetColumnIndices_C", MatSeqAIJSetColumnIndices_SeqAIJ));
4896:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_SeqAIJ));
4897:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_SeqAIJ));
4898:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsbaij_C", MatConvert_SeqAIJ_SeqSBAIJ));
4899:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqbaij_C", MatConvert_SeqAIJ_SeqBAIJ));
4900:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijperm_C", MatConvert_SeqAIJ_SeqAIJPERM));
4901:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijsell_C", MatConvert_SeqAIJ_SeqAIJSELL));
4902: #if defined(PETSC_HAVE_MKL_SPARSE)
4903:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijmkl_C", MatConvert_SeqAIJ_SeqAIJMKL));
4904: #endif
4905: #if defined(PETSC_HAVE_CUDA)
4906:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcusparse_C", MatConvert_SeqAIJ_SeqAIJCUSPARSE));
4907:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijcusparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4908:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijcusparse_C", MatProductSetFromOptions_SeqAIJ));
4909: #endif
4910: #if defined(PETSC_HAVE_HIP)
4911:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijhipsparse_C", MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
4912:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaijhipsparse_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4913:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaijhipsparse_C", MatProductSetFromOptions_SeqAIJ));
4914: #endif
4915: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
4916:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijkokkos_C", MatConvert_SeqAIJ_SeqAIJKokkos));
4917: #endif
4918:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqaijcrl_C", MatConvert_SeqAIJ_SeqAIJCRL));
4919: #if defined(PETSC_HAVE_ELEMENTAL)
4920:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_elemental_C", MatConvert_SeqAIJ_Elemental));
4921: #endif
4922: #if defined(PETSC_HAVE_SCALAPACK)
4923:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_scalapack_C", MatConvert_AIJ_ScaLAPACK));
4924: #endif
4925: #if defined(PETSC_HAVE_HYPRE)
4926:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_hypre_C", MatConvert_AIJ_HYPRE));
4927:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_transpose_seqaij_seqaij_C", MatProductSetFromOptions_Transpose_AIJ_AIJ));
4928: #endif
4929:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqdense_C", MatConvert_SeqAIJ_SeqDense));
4930:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_seqsell_C", MatConvert_SeqAIJ_SeqSELL));
4931:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqaij_is_C", MatConvert_XAIJ_IS));
4932:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsTranspose_C", MatIsTranspose_SeqAIJ));
4933:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatIsHermitianTranspose_C", MatIsHermitianTranspose_SeqAIJ));
4934:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocation_C", MatSeqAIJSetPreallocation_SeqAIJ));
4935:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatResetPreallocation_C", MatResetPreallocation_SeqAIJ));
4936:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJSetPreallocationCSR_C", MatSeqAIJSetPreallocationCSR_SeqAIJ));
4937:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatReorderForNonzeroDiagonal_C", MatReorderForNonzeroDiagonal_SeqAIJ));
4938:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_is_seqaij_C", MatProductSetFromOptions_IS_XAIJ));
4939:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqaij_C", MatProductSetFromOptions_SeqDense_SeqAIJ));
4940:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqaij_C", MatProductSetFromOptions_SeqAIJ));
4941:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqAIJKron_C", MatSeqAIJKron_SeqAIJ));
4942:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetPreallocationCOO_C", MatSetPreallocationCOO_SeqAIJ));
4943:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetValuesCOO_C", MatSetValuesCOO_SeqAIJ));
4944:   PetscCall(MatCreate_SeqAIJ_Inode(B));
4945:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ));
4946:   PetscCall(MatSeqAIJSetTypeFromOptions(B)); /* this allows changing the matrix subtype to say MATSEQAIJPERM */
4947:   PetscFunctionReturn(PETSC_SUCCESS);
4948: }

4950: /*
4951:     Given a matrix generated with MatGetFactor() duplicates all the information in A into C
4952: */
4953: PetscErrorCode MatDuplicateNoCreate_SeqAIJ(Mat C, Mat A, MatDuplicateOption cpvalues, PetscBool mallocmatspace)
4954: {
4955:   Mat_SeqAIJ *c = (Mat_SeqAIJ *)C->data, *a = (Mat_SeqAIJ *)A->data;
4956:   PetscInt    m = A->rmap->n, i;

4958:   PetscFunctionBegin;
4959:   PetscCheck(A->assembled || cpvalues == MAT_DO_NOT_COPY_VALUES, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot duplicate unassembled matrix");

4961:   C->factortype    = A->factortype;
4962:   c->row           = NULL;
4963:   c->col           = NULL;
4964:   c->icol          = NULL;
4965:   c->reallocs      = 0;
4966:   c->diagonaldense = a->diagonaldense;

4968:   C->assembled = A->assembled;

4970:   if (A->preallocated) {
4971:     PetscCall(PetscLayoutReference(A->rmap, &C->rmap));
4972:     PetscCall(PetscLayoutReference(A->cmap, &C->cmap));

4974:     if (!A->hash_active) {
4975:       PetscCall(PetscMalloc1(m, &c->imax));
4976:       PetscCall(PetscMemcpy(c->imax, a->imax, m * sizeof(PetscInt)));
4977:       PetscCall(PetscMalloc1(m, &c->ilen));
4978:       PetscCall(PetscMemcpy(c->ilen, a->ilen, m * sizeof(PetscInt)));

4980:       /* allocate the matrix space */
4981:       if (mallocmatspace) {
4982:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscScalar), (void **)&c->a));
4983:         PetscCall(PetscShmgetAllocateArray(a->i[m], sizeof(PetscInt), (void **)&c->j));
4984:         PetscCall(PetscShmgetAllocateArray(m + 1, sizeof(PetscInt), (void **)&c->i));
4985:         PetscCall(PetscArraycpy(c->i, a->i, m + 1));
4986:         c->free_a  = PETSC_TRUE;
4987:         c->free_ij = PETSC_TRUE;
4988:         if (m > 0) {
4989:           PetscCall(PetscArraycpy(c->j, a->j, a->i[m]));
4990:           if (cpvalues == MAT_COPY_VALUES) {
4991:             const PetscScalar *aa;

4993:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4994:             PetscCall(PetscArraycpy(c->a, aa, a->i[m]));
4995:             PetscCall(MatSeqAIJGetArrayRead(A, &aa));
4996:           } else {
4997:             PetscCall(PetscArrayzero(c->a, a->i[m]));
4998:           }
4999:         }
5000:       }
5001:       C->preallocated = PETSC_TRUE;
5002:     } else {
5003:       PetscCheck(mallocmatspace, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONGSTATE, "Cannot malloc matrix memory from a non-preallocated matrix");
5004:       PetscCall(MatSetUp(C));
5005:     }

5007:     c->ignorezeroentries = a->ignorezeroentries;
5008:     c->roworiented       = a->roworiented;
5009:     c->nonew             = a->nonew;
5010:     if (a->diag) {
5011:       PetscCall(PetscMalloc1(m + 1, &c->diag));
5012:       PetscCall(PetscMemcpy(c->diag, a->diag, m * sizeof(PetscInt)));
5013:     } else c->diag = NULL;

5015:     c->solve_work         = NULL;
5016:     c->saved_values       = NULL;
5017:     c->idiag              = NULL;
5018:     c->ssor_work          = NULL;
5019:     c->keepnonzeropattern = a->keepnonzeropattern;

5021:     c->rmax  = a->rmax;
5022:     c->nz    = a->nz;
5023:     c->maxnz = a->nz; /* Since we allocate exactly the right amount */

5025:     c->compressedrow.use   = a->compressedrow.use;
5026:     c->compressedrow.nrows = a->compressedrow.nrows;
5027:     if (a->compressedrow.use) {
5028:       i = a->compressedrow.nrows;
5029:       PetscCall(PetscMalloc2(i + 1, &c->compressedrow.i, i, &c->compressedrow.rindex));
5030:       PetscCall(PetscArraycpy(c->compressedrow.i, a->compressedrow.i, i + 1));
5031:       PetscCall(PetscArraycpy(c->compressedrow.rindex, a->compressedrow.rindex, i));
5032:     } else {
5033:       c->compressedrow.use    = PETSC_FALSE;
5034:       c->compressedrow.i      = NULL;
5035:       c->compressedrow.rindex = NULL;
5036:     }
5037:     c->nonzerorowcnt = a->nonzerorowcnt;
5038:     C->nonzerostate  = A->nonzerostate;

5040:     PetscCall(MatDuplicate_SeqAIJ_Inode(A, cpvalues, &C));
5041:   }
5042:   PetscCall(PetscFunctionListDuplicate(((PetscObject)A)->qlist, &((PetscObject)C)->qlist));
5043:   PetscFunctionReturn(PETSC_SUCCESS);
5044: }

5046: PetscErrorCode MatDuplicate_SeqAIJ(Mat A, MatDuplicateOption cpvalues, Mat *B)
5047: {
5048:   PetscFunctionBegin;
5049:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
5050:   PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
5051:   if (!(A->rmap->n % A->rmap->bs) && !(A->cmap->n % A->cmap->bs)) PetscCall(MatSetBlockSizesFromMats(*B, A, A));
5052:   PetscCall(MatSetType(*B, ((PetscObject)A)->type_name));
5053:   PetscCall(MatDuplicateNoCreate_SeqAIJ(*B, A, cpvalues, PETSC_TRUE));
5054:   PetscFunctionReturn(PETSC_SUCCESS);
5055: }

5057: PetscErrorCode MatLoad_SeqAIJ(Mat newMat, PetscViewer viewer)
5058: {
5059:   PetscBool isbinary, ishdf5;

5061:   PetscFunctionBegin;
5064:   /* force binary viewer to load .info file if it has not yet done so */
5065:   PetscCall(PetscViewerSetUp(viewer));
5066:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
5067:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
5068:   if (isbinary) {
5069:     PetscCall(MatLoad_SeqAIJ_Binary(newMat, viewer));
5070:   } else if (ishdf5) {
5071: #if defined(PETSC_HAVE_HDF5)
5072:     PetscCall(MatLoad_AIJ_HDF5(newMat, viewer));
5073: #else
5074:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
5075: #endif
5076:   } else {
5077:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)newMat)->type_name);
5078:   }
5079:   PetscFunctionReturn(PETSC_SUCCESS);
5080: }

5082: PetscErrorCode MatLoad_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
5083: {
5084:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)mat->data;
5085:   PetscInt    header[4], *rowlens, M, N, nz, sum, rows, cols, i;

5087:   PetscFunctionBegin;
5088:   PetscCall(PetscViewerSetUp(viewer));

5090:   /* read in matrix header */
5091:   PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
5092:   PetscCheck(header[0] == MAT_FILE_CLASSID, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
5093:   M  = header[1];
5094:   N  = header[2];
5095:   nz = header[3];
5096:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
5097:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
5098:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix stored in special format on disk, cannot load as SeqAIJ");

5100:   /* set block sizes from the viewer's .info file */
5101:   PetscCall(MatLoad_Binary_BlockSizes(mat, viewer));
5102:   /* set local and global sizes if not set already */
5103:   if (mat->rmap->n < 0) mat->rmap->n = M;
5104:   if (mat->cmap->n < 0) mat->cmap->n = N;
5105:   if (mat->rmap->N < 0) mat->rmap->N = M;
5106:   if (mat->cmap->N < 0) mat->cmap->N = N;
5107:   PetscCall(PetscLayoutSetUp(mat->rmap));
5108:   PetscCall(PetscLayoutSetUp(mat->cmap));

5110:   /* check if the matrix sizes are correct */
5111:   PetscCall(MatGetSize(mat, &rows, &cols));
5112:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);

5114:   /* read in row lengths */
5115:   PetscCall(PetscMalloc1(M, &rowlens));
5116:   PetscCall(PetscViewerBinaryRead(viewer, rowlens, M, NULL, PETSC_INT));
5117:   /* check if sum(rowlens) is same as nz */
5118:   sum = 0;
5119:   for (i = 0; i < M; i++) sum += rowlens[i];
5120:   PetscCheck(sum == nz, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Inconsistent matrix data in file: nonzeros = %" PetscInt_FMT ", sum-row-lengths = %" PetscInt_FMT, nz, sum);
5121:   /* preallocate and check sizes */
5122:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(mat, 0, rowlens));
5123:   PetscCall(MatGetSize(mat, &rows, &cols));
5124:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different length (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);
5125:   /* store row lengths */
5126:   PetscCall(PetscArraycpy(a->ilen, rowlens, M));
5127:   PetscCall(PetscFree(rowlens));

5129:   /* fill in "i" row pointers */
5130:   a->i[0] = 0;
5131:   for (i = 0; i < M; i++) a->i[i + 1] = a->i[i] + a->ilen[i];
5132:   /* read in "j" column indices */
5133:   PetscCall(PetscViewerBinaryRead(viewer, a->j, nz, NULL, PETSC_INT));
5134:   /* read in "a" nonzero values */
5135:   PetscCall(PetscViewerBinaryRead(viewer, a->a, nz, NULL, PETSC_SCALAR));

5137:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
5138:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
5139:   PetscFunctionReturn(PETSC_SUCCESS);
5140: }

5142: PetscErrorCode MatEqual_SeqAIJ(Mat A, Mat B, PetscBool *flg)
5143: {
5144:   Mat_SeqAIJ        *a = (Mat_SeqAIJ *)A->data, *b = (Mat_SeqAIJ *)B->data;
5145:   const PetscScalar *aa, *ba;
5146: #if defined(PETSC_USE_COMPLEX)
5147:   PetscInt k;
5148: #endif

5150:   PetscFunctionBegin;
5151:   /* If the  matrix dimensions are not equal,or no of nonzeros */
5152:   if ((A->rmap->n != B->rmap->n) || (A->cmap->n != B->cmap->n) || (a->nz != b->nz)) {
5153:     *flg = PETSC_FALSE;
5154:     PetscFunctionReturn(PETSC_SUCCESS);
5155:   }

5157:   /* if the a->i are the same */
5158:   PetscCall(PetscArraycmp(a->i, b->i, A->rmap->n + 1, flg));
5159:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5161:   /* if a->j are the same */
5162:   PetscCall(PetscArraycmp(a->j, b->j, a->nz, flg));
5163:   if (!*flg) PetscFunctionReturn(PETSC_SUCCESS);

5165:   PetscCall(MatSeqAIJGetArrayRead(A, &aa));
5166:   PetscCall(MatSeqAIJGetArrayRead(B, &ba));
5167:   /* if a->a are the same */
5168: #if defined(PETSC_USE_COMPLEX)
5169:   for (k = 0; k < a->nz; k++) {
5170:     if (PetscRealPart(aa[k]) != PetscRealPart(ba[k]) || PetscImaginaryPart(aa[k]) != PetscImaginaryPart(ba[k])) {
5171:       *flg = PETSC_FALSE;
5172:       PetscFunctionReturn(PETSC_SUCCESS);
5173:     }
5174:   }
5175: #else
5176:   PetscCall(PetscArraycmp(aa, ba, a->nz, flg));
5177: #endif
5178:   PetscCall(MatSeqAIJRestoreArrayRead(A, &aa));
5179:   PetscCall(MatSeqAIJRestoreArrayRead(B, &ba));
5180:   PetscFunctionReturn(PETSC_SUCCESS);
5181: }

5183: /*@
5184:   MatCreateSeqAIJWithArrays - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in CSR format)
5185:   provided by the user.

5187:   Collective

5189:   Input Parameters:
5190: + comm - must be an MPI communicator of size 1
5191: . m    - number of rows
5192: . n    - number of columns
5193: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of elements in that row of the matrix
5194: . j    - column indices
5195: - a    - matrix values

5197:   Output Parameter:
5198: . mat - the matrix

5200:   Level: intermediate

5202:   Notes:
5203:   The `i`, `j`, and `a` arrays are not copied by this routine, the user must free these arrays
5204:   once the matrix is destroyed and not before

5206:   You cannot set new nonzero locations into this matrix, that will generate an error.

5208:   The `i` and `j` indices are 0 based

5210:   The format which is used for the sparse matrix input, is equivalent to a
5211:   row-major ordering.. i.e for the following matrix, the input data expected is
5212:   as shown
5213: .vb
5214:         1 0 0
5215:         2 0 3
5216:         4 5 6

5218:         i =  {0,1,3,6}  [size = nrow+1  = 3+1]
5219:         j =  {0,0,2,0,1,2}  [size = 6]; values must be sorted for each row
5220:         v =  {1,2,3,4,5,6}  [size = 6]
5221: .ve

5223: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateMPIAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`
5224: @*/
5225: PetscErrorCode MatCreateSeqAIJWithArrays(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat)
5226: {
5227:   PetscInt    ii;
5228:   Mat_SeqAIJ *aij;
5229:   PetscInt    jj;

5231:   PetscFunctionBegin;
5232:   PetscCheck(m <= 0 || i[0] == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
5233:   PetscCall(MatCreate(comm, mat));
5234:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5235:   /* PetscCall(MatSetBlockSizes(*mat,,)); */
5236:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5237:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, MAT_SKIP_ALLOCATION, NULL));
5238:   aij = (Mat_SeqAIJ *)(*mat)->data;
5239:   PetscCall(PetscMalloc1(m, &aij->imax));
5240:   PetscCall(PetscMalloc1(m, &aij->ilen));

5242:   aij->i       = i;
5243:   aij->j       = j;
5244:   aij->a       = a;
5245:   aij->nonew   = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
5246:   aij->free_a  = PETSC_FALSE;
5247:   aij->free_ij = PETSC_FALSE;

5249:   for (ii = 0, aij->nonzerorowcnt = 0, aij->rmax = 0; ii < m; ii++) {
5250:     aij->ilen[ii] = aij->imax[ii] = i[ii + 1] - i[ii];
5251:     if (PetscDefined(USE_DEBUG)) {
5252:       PetscCheck(i[ii + 1] - i[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row length in i (row indices) row = %" PetscInt_FMT " length = %" PetscInt_FMT, ii, i[ii + 1] - i[ii]);
5253:       for (jj = i[ii] + 1; jj < i[ii + 1]; jj++) {
5254:         PetscCheck(j[jj] >= j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is not sorted", jj - i[ii], j[jj], ii);
5255:         PetscCheck(j[jj] != j[jj - 1], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column entry number %" PetscInt_FMT " (actual column %" PetscInt_FMT ") in row %" PetscInt_FMT " is identical to previous entry", jj - i[ii], j[jj], ii);
5256:       }
5257:     }
5258:   }
5259:   if (PetscDefined(USE_DEBUG)) {
5260:     for (ii = 0; ii < aij->i[m]; ii++) {
5261:       PetscCheck(j[ii] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative column index at location = %" PetscInt_FMT " index = %" PetscInt_FMT, ii, j[ii]);
5262:       PetscCheck(j[ii] <= n - 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column index to large at location = %" PetscInt_FMT " index = %" PetscInt_FMT " last column = %" PetscInt_FMT, ii, j[ii], n - 1);
5263:     }
5264:   }

5266:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5267:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5268:   PetscFunctionReturn(PETSC_SUCCESS);
5269: }

5271: /*@
5272:   MatCreateSeqAIJFromTriple - Creates an sequential `MATSEQAIJ` matrix using matrix elements (in COO format)
5273:   provided by the user.

5275:   Collective

5277:   Input Parameters:
5278: + comm - must be an MPI communicator of size 1
5279: . m    - number of rows
5280: . n    - number of columns
5281: . i    - row indices
5282: . j    - column indices
5283: . a    - matrix values
5284: . nz   - number of nonzeros
5285: - idx  - if the `i` and `j` indices start with 1 use `PETSC_TRUE` otherwise use `PETSC_FALSE`

5287:   Output Parameter:
5288: . mat - the matrix

5290:   Level: intermediate

5292:   Example:
5293:   For the following matrix, the input data expected is as shown (using 0 based indexing)
5294: .vb
5295:         1 0 0
5296:         2 0 3
5297:         4 5 6

5299:         i =  {0,1,1,2,2,2}
5300:         j =  {0,0,2,0,1,2}
5301:         v =  {1,2,3,4,5,6}
5302: .ve

5304:   Note:
5305:   Instead of using this function, users should also consider `MatSetPreallocationCOO()` and `MatSetValuesCOO()`, which allow repeated or remote entries,
5306:   and are particularly useful in iterative applications.

5308: .seealso: [](ch_matrices), `Mat`, `MatCreate()`, `MatCreateAIJ()`, `MatCreateSeqAIJ()`, `MatCreateSeqAIJWithArrays()`, `MatMPIAIJSetPreallocationCSR()`, `MatSetValuesCOO()`, `MatSetPreallocationCOO()`
5309: @*/
5310: PetscErrorCode MatCreateSeqAIJFromTriple(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt i[], PetscInt j[], PetscScalar a[], Mat *mat, PetscInt nz, PetscBool idx)
5311: {
5312:   PetscInt ii, *nnz, one = 1, row, col;

5314:   PetscFunctionBegin;
5315:   PetscCall(PetscCalloc1(m, &nnz));
5316:   for (ii = 0; ii < nz; ii++) nnz[i[ii] - !!idx] += 1;
5317:   PetscCall(MatCreate(comm, mat));
5318:   PetscCall(MatSetSizes(*mat, m, n, m, n));
5319:   PetscCall(MatSetType(*mat, MATSEQAIJ));
5320:   PetscCall(MatSeqAIJSetPreallocation_SeqAIJ(*mat, 0, nnz));
5321:   for (ii = 0; ii < nz; ii++) {
5322:     if (idx) {
5323:       row = i[ii] - 1;
5324:       col = j[ii] - 1;
5325:     } else {
5326:       row = i[ii];
5327:       col = j[ii];
5328:     }
5329:     PetscCall(MatSetValues(*mat, one, &row, one, &col, &a[ii], ADD_VALUES));
5330:   }
5331:   PetscCall(MatAssemblyBegin(*mat, MAT_FINAL_ASSEMBLY));
5332:   PetscCall(MatAssemblyEnd(*mat, MAT_FINAL_ASSEMBLY));
5333:   PetscCall(PetscFree(nnz));
5334:   PetscFunctionReturn(PETSC_SUCCESS);
5335: }

5337: PetscErrorCode MatSeqAIJInvalidateDiagonal(Mat A)
5338: {
5339:   Mat_SeqAIJ *a = (Mat_SeqAIJ *)A->data;

5341:   PetscFunctionBegin;
5342:   a->idiagvalid  = PETSC_FALSE;
5343:   a->ibdiagvalid = PETSC_FALSE;

5345:   PetscCall(MatSeqAIJInvalidateDiagonal_Inode(A));
5346:   PetscFunctionReturn(PETSC_SUCCESS);
5347: }

5349: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
5350: {
5351:   PetscFunctionBegin;
5352:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPIAIJ(comm, inmat, n, scall, outmat));
5353:   PetscFunctionReturn(PETSC_SUCCESS);
5354: }

5356: /*
5357:  Permute A into C's *local* index space using rowemb,colemb.
5358:  The embedding are supposed to be injections and the above implies that the range of rowemb is a subset
5359:  of [0,m), colemb is in [0,n).
5360:  If pattern == DIFFERENT_NONZERO_PATTERN, C is preallocated according to A.
5361:  */
5362: PetscErrorCode MatSetSeqMat_SeqAIJ(Mat C, IS rowemb, IS colemb, MatStructure pattern, Mat B)
5363: {
5364:   /* If making this function public, change the error returned in this function away from _PLIB. */
5365:   Mat_SeqAIJ     *Baij;
5366:   PetscBool       seqaij;
5367:   PetscInt        m, n, *nz, i, j, count;
5368:   PetscScalar     v;
5369:   const PetscInt *rowindices, *colindices;

5371:   PetscFunctionBegin;
5372:   if (!B) PetscFunctionReturn(PETSC_SUCCESS);
5373:   /* Check to make sure the target matrix (and embeddings) are compatible with C and each other. */
5374:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)B, MATSEQAIJ, &seqaij));
5375:   PetscCheck(seqaij, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is of wrong type");
5376:   if (rowemb) {
5377:     PetscCall(ISGetLocalSize(rowemb, &m));
5378:     PetscCheck(m == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Row IS of size %" PetscInt_FMT " is incompatible with matrix row size %" PetscInt_FMT, m, B->rmap->n);
5379:   } else {
5380:     PetscCheck(C->rmap->n == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is row-incompatible with the target matrix");
5381:   }
5382:   if (colemb) {
5383:     PetscCall(ISGetLocalSize(colemb, &n));
5384:     PetscCheck(n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Diag col IS of size %" PetscInt_FMT " is incompatible with input matrix col size %" PetscInt_FMT, n, B->cmap->n);
5385:   } else {
5386:     PetscCheck(C->cmap->n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Input matrix is col-incompatible with the target matrix");
5387:   }

5389:   Baij = (Mat_SeqAIJ *)B->data;
5390:   if (pattern == DIFFERENT_NONZERO_PATTERN) {
5391:     PetscCall(PetscMalloc1(B->rmap->n, &nz));
5392:     for (i = 0; i < B->rmap->n; i++) nz[i] = Baij->i[i + 1] - Baij->i[i];
5393:     PetscCall(MatSeqAIJSetPreallocation(C, 0, nz));
5394:     PetscCall(PetscFree(nz));
5395:   }
5396:   if (pattern == SUBSET_NONZERO_PATTERN) PetscCall(MatZeroEntries(C));
5397:   count      = 0;
5398:   rowindices = NULL;
5399:   colindices = NULL;
5400:   if (rowemb) PetscCall(ISGetIndices(rowemb, &rowindices));
5401:   if (colemb) PetscCall(ISGetIndices(colemb, &colindices));
5402:   for (i = 0; i < B->rmap->n; i++) {
5403:     PetscInt row;
5404:     row = i;
5405:     if (rowindices) row = rowindices[i];
5406:     for (j = Baij->i[i]; j < Baij->i[i + 1]; j++) {
5407:       PetscInt col;
5408:       col = Baij->j[count];
5409:       if (colindices) col = colindices[col];
5410:       v = Baij->a[count];
5411:       PetscCall(MatSetValues(C, 1, &row, 1, &col, &v, INSERT_VALUES));
5412:       ++count;
5413:     }
5414:   }
5415:   /* FIXME: set C's nonzerostate correctly. */
5416:   /* Assembly for C is necessary. */
5417:   C->preallocated  = PETSC_TRUE;
5418:   C->assembled     = PETSC_TRUE;
5419:   C->was_assembled = PETSC_FALSE;
5420:   PetscFunctionReturn(PETSC_SUCCESS);
5421: }

5423: PetscErrorCode MatEliminateZeros_SeqAIJ(Mat A, PetscBool keep)
5424: {
5425:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5426:   MatScalar  *aa = a->a;
5427:   PetscInt    m = A->rmap->n, fshift = 0, fshift_prev = 0, i, k;
5428:   PetscInt   *ailen = a->ilen, *imax = a->imax, *ai = a->i, *aj = a->j, rmax = 0;

5430:   PetscFunctionBegin;
5431:   PetscCheck(A->assembled, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot eliminate zeros for unassembled matrix");
5432:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
5433:   for (i = 1; i <= m; i++) {
5434:     /* move each nonzero entry back by the amount of zero slots (fshift) before it*/
5435:     for (k = ai[i - 1]; k < ai[i]; k++) {
5436:       if (aa[k] == 0 && (aj[k] != i - 1 || !keep)) fshift++;
5437:       else {
5438:         if (aa[k] == 0 && aj[k] == i - 1) PetscCall(PetscInfo(A, "Keep the diagonal zero at row %" PetscInt_FMT "\n", i - 1));
5439:         aa[k - fshift] = aa[k];
5440:         aj[k - fshift] = aj[k];
5441:       }
5442:     }
5443:     ai[i - 1] -= fshift_prev; // safe to update ai[i-1] now since it will not be used in the next iteration
5444:     fshift_prev = fshift;
5445:     /* reset ilen and imax for each row */
5446:     ailen[i - 1] = imax[i - 1] = ai[i] - fshift - ai[i - 1];
5447:     a->nonzerorowcnt += ((ai[i] - fshift - ai[i - 1]) > 0);
5448:     rmax = PetscMax(rmax, ailen[i - 1]);
5449:   }
5450:   if (fshift) {
5451:     if (m) {
5452:       ai[m] -= fshift;
5453:       a->nz = ai[m];
5454:     }
5455:     PetscCall(PetscInfo(A, "Matrix size: %" PetscInt_FMT " X %" PetscInt_FMT "; zeros eliminated: %" PetscInt_FMT "; nonzeros left: %" PetscInt_FMT "\n", m, A->cmap->n, fshift, a->nz));
5456:     A->nonzerostate++;
5457:     A->info.nz_unneeded += (PetscReal)fshift;
5458:     a->rmax = rmax;
5459:     if (a->inode.use && a->inode.checked) PetscCall(MatSeqAIJCheckInode(A));
5460:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
5461:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
5462:   }
5463:   PetscFunctionReturn(PETSC_SUCCESS);
5464: }

5466: PetscFunctionList MatSeqAIJList = NULL;

5468: /*@
5469:   MatSeqAIJSetType - Converts a `MATSEQAIJ` matrix to a subtype

5471:   Collective

5473:   Input Parameters:
5474: + mat    - the matrix object
5475: - matype - matrix type

5477:   Options Database Key:
5478: . -mat_seqaij_type  <method> - for example seqaijcrl

5480:   Level: intermediate

5482: .seealso: [](ch_matrices), `Mat`, `PCSetType()`, `VecSetType()`, `MatCreate()`, `MatType`
5483: @*/
5484: PetscErrorCode MatSeqAIJSetType(Mat mat, MatType matype)
5485: {
5486:   PetscBool sametype;
5487:   PetscErrorCode (*r)(Mat, MatType, MatReuse, Mat *);

5489:   PetscFunctionBegin;
5491:   PetscCall(PetscObjectTypeCompare((PetscObject)mat, matype, &sametype));
5492:   if (sametype) PetscFunctionReturn(PETSC_SUCCESS);

5494:   PetscCall(PetscFunctionListFind(MatSeqAIJList, matype, &r));
5495:   PetscCheck(r, PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown Mat type given: %s", matype);
5496:   PetscCall((*r)(mat, matype, MAT_INPLACE_MATRIX, &mat));
5497:   PetscFunctionReturn(PETSC_SUCCESS);
5498: }

5500: /*@C
5501:   MatSeqAIJRegister -  - Adds a new sub-matrix type for sequential `MATSEQAIJ` matrices

5503:   Not Collective, No Fortran Support

5505:   Input Parameters:
5506: + sname    - name of a new user-defined matrix type, for example `MATSEQAIJCRL`
5507: - function - routine to convert to subtype

5509:   Level: advanced

5511:   Notes:
5512:   `MatSeqAIJRegister()` may be called multiple times to add several user-defined solvers.

5514:   Then, your matrix can be chosen with the procedural interface at runtime via the option
5515: $     -mat_seqaij_type my_mat

5517: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJRegisterAll()`
5518: @*/
5519: PetscErrorCode MatSeqAIJRegister(const char sname[], PetscErrorCode (*function)(Mat, MatType, MatReuse, Mat *))
5520: {
5521:   PetscFunctionBegin;
5522:   PetscCall(MatInitializePackage());
5523:   PetscCall(PetscFunctionListAdd(&MatSeqAIJList, sname, function));
5524:   PetscFunctionReturn(PETSC_SUCCESS);
5525: }

5527: PetscBool MatSeqAIJRegisterAllCalled = PETSC_FALSE;

5529: /*@C
5530:   MatSeqAIJRegisterAll - Registers all of the matrix subtypes of `MATSSEQAIJ`

5532:   Not Collective

5534:   Level: advanced

5536:   Note:
5537:   This registers the versions of `MATSEQAIJ` for GPUs

5539: .seealso: [](ch_matrices), `Mat`, `MatRegisterAll()`, `MatSeqAIJRegister()`
5540: @*/
5541: PetscErrorCode MatSeqAIJRegisterAll(void)
5542: {
5543:   PetscFunctionBegin;
5544:   if (MatSeqAIJRegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
5545:   MatSeqAIJRegisterAllCalled = PETSC_TRUE;

5547:   PetscCall(MatSeqAIJRegister(MATSEQAIJCRL, MatConvert_SeqAIJ_SeqAIJCRL));
5548:   PetscCall(MatSeqAIJRegister(MATSEQAIJPERM, MatConvert_SeqAIJ_SeqAIJPERM));
5549:   PetscCall(MatSeqAIJRegister(MATSEQAIJSELL, MatConvert_SeqAIJ_SeqAIJSELL));
5550: #if defined(PETSC_HAVE_MKL_SPARSE)
5551:   PetscCall(MatSeqAIJRegister(MATSEQAIJMKL, MatConvert_SeqAIJ_SeqAIJMKL));
5552: #endif
5553: #if defined(PETSC_HAVE_CUDA)
5554:   PetscCall(MatSeqAIJRegister(MATSEQAIJCUSPARSE, MatConvert_SeqAIJ_SeqAIJCUSPARSE));
5555: #endif
5556: #if defined(PETSC_HAVE_HIP)
5557:   PetscCall(MatSeqAIJRegister(MATSEQAIJHIPSPARSE, MatConvert_SeqAIJ_SeqAIJHIPSPARSE));
5558: #endif
5559: #if defined(PETSC_HAVE_KOKKOS_KERNELS)
5560:   PetscCall(MatSeqAIJRegister(MATSEQAIJKOKKOS, MatConvert_SeqAIJ_SeqAIJKokkos));
5561: #endif
5562: #if defined(PETSC_HAVE_VIENNACL) && defined(PETSC_HAVE_VIENNACL_NO_CUDA)
5563:   PetscCall(MatSeqAIJRegister(MATMPIAIJVIENNACL, MatConvert_SeqAIJ_SeqAIJViennaCL));
5564: #endif
5565:   PetscFunctionReturn(PETSC_SUCCESS);
5566: }

5568: /*
5569:     Special version for direct calls from Fortran
5570: */
5571: #if defined(PETSC_HAVE_FORTRAN_CAPS)
5572:   #define matsetvaluesseqaij_ MATSETVALUESSEQAIJ
5573: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
5574:   #define matsetvaluesseqaij_ matsetvaluesseqaij
5575: #endif

5577: /* Change these macros so can be used in void function */

5579: /* Change these macros so can be used in void function */
5580: /* Identical to PetscCallVoid, except it assigns to *_ierr */
5581: #undef PetscCall
5582: #define PetscCall(...) \
5583:   do { \
5584:     PetscErrorCode ierr_msv_mpiaij = __VA_ARGS__; \
5585:     if (PetscUnlikely(ierr_msv_mpiaij)) { \
5586:       *_ierr = PetscError(PETSC_COMM_SELF, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr_msv_mpiaij, PETSC_ERROR_REPEAT, " "); \
5587:       return; \
5588:     } \
5589:   } while (0)

5591: #undef SETERRQ
5592: #define SETERRQ(comm, ierr, ...) \
5593:   do { \
5594:     *_ierr = PetscError(comm, __LINE__, PETSC_FUNCTION_NAME, __FILE__, ierr, PETSC_ERROR_INITIAL, __VA_ARGS__); \
5595:     return; \
5596:   } while (0)

5598: PETSC_EXTERN void matsetvaluesseqaij_(Mat *AA, PetscInt *mm, const PetscInt im[], PetscInt *nn, const PetscInt in[], const PetscScalar v[], InsertMode *isis, PetscErrorCode *_ierr)
5599: {
5600:   Mat         A = *AA;
5601:   PetscInt    m = *mm, n = *nn;
5602:   InsertMode  is = *isis;
5603:   Mat_SeqAIJ *a  = (Mat_SeqAIJ *)A->data;
5604:   PetscInt   *rp, k, low, high, t, ii, row, nrow, i, col, l, rmax, N;
5605:   PetscInt   *imax, *ai, *ailen;
5606:   PetscInt   *aj, nonew = a->nonew, lastcol = -1;
5607:   MatScalar  *ap, value, *aa;
5608:   PetscBool   ignorezeroentries = a->ignorezeroentries;
5609:   PetscBool   roworiented       = a->roworiented;

5611:   PetscFunctionBegin;
5612:   MatCheckPreallocated(A, 1);
5613:   imax  = a->imax;
5614:   ai    = a->i;
5615:   ailen = a->ilen;
5616:   aj    = a->j;
5617:   aa    = a->a;

5619:   for (k = 0; k < m; k++) { /* loop over added rows */
5620:     row = im[k];
5621:     if (row < 0) continue;
5622:     PetscCheck(row < A->rmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Row too large");
5623:     rp   = aj + ai[row];
5624:     ap   = aa + ai[row];
5625:     rmax = imax[row];
5626:     nrow = ailen[row];
5627:     low  = 0;
5628:     high = nrow;
5629:     for (l = 0; l < n; l++) { /* loop over added columns */
5630:       if (in[l] < 0) continue;
5631:       PetscCheck(in[l] < A->cmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Column too large");
5632:       col = in[l];
5633:       if (roworiented) value = v[l + k * n];
5634:       else value = v[k + l * m];

5636:       if (value == 0.0 && ignorezeroentries && (is == ADD_VALUES)) continue;

5638:       if (col <= lastcol) low = 0;
5639:       else high = nrow;
5640:       lastcol = col;
5641:       while (high - low > 5) {
5642:         t = (low + high) / 2;
5643:         if (rp[t] > col) high = t;
5644:         else low = t;
5645:       }
5646:       for (i = low; i < high; i++) {
5647:         if (rp[i] > col) break;
5648:         if (rp[i] == col) {
5649:           if (is == ADD_VALUES) ap[i] += value;
5650:           else ap[i] = value;
5651:           goto noinsert;
5652:         }
5653:       }
5654:       if (value == 0.0 && ignorezeroentries) goto noinsert;
5655:       if (nonew == 1) goto noinsert;
5656:       PetscCheck(nonew != -1, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero in the matrix");
5657:       MatSeqXAIJReallocateAIJ(A, A->rmap->n, 1, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
5658:       N = nrow++ - 1;
5659:       a->nz++;
5660:       high++;
5661:       /* shift up all the later entries in this row */
5662:       for (ii = N; ii >= i; ii--) {
5663:         rp[ii + 1] = rp[ii];
5664:         ap[ii + 1] = ap[ii];
5665:       }
5666:       rp[i] = col;
5667:       ap[i] = value;
5668:     noinsert:;
5669:       low = i + 1;
5670:     }
5671:     ailen[row] = nrow;
5672:   }
5673:   PetscFunctionReturnVoid();
5674: }
5675: /* Undefining these here since they were redefined from their original definition above! No
5676:  * other PETSc functions should be defined past this point, as it is impossible to recover the
5677:  * original definitions */
5678: #undef PetscCall
5679: #undef SETERRQ