Actual source code: mpibaij.c

  1: #include <../src/mat/impls/baij/mpi/mpibaij.h>

  3: #include <petsc/private/hashseti.h>
  4: #include <petscblaslapack.h>
  5: #include <petscsf.h>

  7: static PetscErrorCode MatDestroy_MPIBAIJ(Mat mat)
  8: {
  9:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;

 11:   PetscFunctionBegin;
 12:   PetscCall(PetscLogObjectState((PetscObject)mat, "Rows=%" PetscInt_FMT ",Cols=%" PetscInt_FMT, mat->rmap->N, mat->cmap->N));
 13:   PetscCall(MatStashDestroy_Private(&mat->stash));
 14:   PetscCall(MatStashDestroy_Private(&mat->bstash));
 15:   PetscCall(MatDestroy(&baij->A));
 16:   PetscCall(MatDestroy(&baij->B));
 17: #if defined(PETSC_USE_CTABLE)
 18:   PetscCall(PetscHMapIDestroy(&baij->colmap));
 19: #else
 20:   PetscCall(PetscFree(baij->colmap));
 21: #endif
 22:   PetscCall(PetscFree(baij->garray));
 23:   PetscCall(VecDestroy(&baij->lvec));
 24:   PetscCall(VecScatterDestroy(&baij->Mvctx));
 25:   PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));
 26:   PetscCall(PetscFree(baij->barray));
 27:   PetscCall(PetscFree2(baij->hd, baij->ht));
 28:   PetscCall(PetscFree(baij->rangebs));
 29:   PetscCall(PetscFree(mat->data));

 31:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, NULL));
 32:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatStoreValues_C", NULL));
 33:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatRetrieveValues_C", NULL));
 34:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPIBAIJSetPreallocation_C", NULL));
 35:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPIBAIJSetPreallocationCSR_C", NULL));
 36:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDiagonalScaleLocal_C", NULL));
 37:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatSetHashTableFactor_C", NULL));
 38:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_mpisbaij_C", NULL));
 39:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_mpiadj_C", NULL));
 40:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_mpiaij_C", NULL));
 41: #if defined(PETSC_HAVE_HYPRE)
 42:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_hypre_C", NULL));
 43: #endif
 44:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpibaij_is_C", NULL));
 45:   PetscFunctionReturn(PETSC_SUCCESS);
 46: }

 48: /* defines MatSetValues_MPI_Hash(), MatAssemblyBegin_MPI_Hash(), and  MatAssemblyEnd_MPI_Hash() */
 49: #define TYPE BAIJ
 50: #include "../src/mat/impls/aij/mpi/mpihashmat.h"
 51: #undef TYPE

 53: #if defined(PETSC_HAVE_HYPRE)
 54: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat, MatType, MatReuse, Mat *);
 55: #endif

 57: static PetscErrorCode MatGetRowMaxAbs_MPIBAIJ(Mat A, Vec v, PetscInt idx[])
 58: {
 59:   Mat_MPIBAIJ       *a = (Mat_MPIBAIJ *)A->data;
 60:   PetscInt           i, *idxb = NULL, m = A->rmap->n, bs = A->cmap->bs;
 61:   PetscScalar       *va, *vv;
 62:   Vec                vB, vA;
 63:   const PetscScalar *vb;

 65:   PetscFunctionBegin;
 66:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &vA));
 67:   PetscCall(MatGetRowMaxAbs(a->A, vA, idx));

 69:   PetscCall(VecGetArrayWrite(vA, &va));
 70:   if (idx) {
 71:     for (i = 0; i < m; i++) {
 72:       if (PetscAbsScalar(va[i])) idx[i] += A->cmap->rstart;
 73:     }
 74:   }

 76:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &vB));
 77:   PetscCall(PetscMalloc1(m, &idxb));
 78:   PetscCall(MatGetRowMaxAbs(a->B, vB, idxb));

 80:   PetscCall(VecGetArrayWrite(v, &vv));
 81:   PetscCall(VecGetArrayRead(vB, &vb));
 82:   for (i = 0; i < m; i++) {
 83:     if (PetscAbsScalar(va[i]) < PetscAbsScalar(vb[i])) {
 84:       vv[i] = vb[i];
 85:       if (idx) idx[i] = bs * a->garray[idxb[i] / bs] + (idxb[i] % bs);
 86:     } else {
 87:       vv[i] = va[i];
 88:       if (idx && PetscAbsScalar(va[i]) == PetscAbsScalar(vb[i]) && idxb[i] != -1 && idx[i] > bs * a->garray[idxb[i] / bs] + (idxb[i] % bs)) idx[i] = bs * a->garray[idxb[i] / bs] + (idxb[i] % bs);
 89:     }
 90:   }
 91:   PetscCall(VecRestoreArrayWrite(vA, &vv));
 92:   PetscCall(VecRestoreArrayWrite(vA, &va));
 93:   PetscCall(VecRestoreArrayRead(vB, &vb));
 94:   PetscCall(PetscFree(idxb));
 95:   PetscCall(VecDestroy(&vA));
 96:   PetscCall(VecDestroy(&vB));
 97:   PetscFunctionReturn(PETSC_SUCCESS);
 98: }

100: static PetscErrorCode MatStoreValues_MPIBAIJ(Mat mat)
101: {
102:   Mat_MPIBAIJ *aij = (Mat_MPIBAIJ *)mat->data;

104:   PetscFunctionBegin;
105:   PetscCall(MatStoreValues(aij->A));
106:   PetscCall(MatStoreValues(aij->B));
107:   PetscFunctionReturn(PETSC_SUCCESS);
108: }

110: static PetscErrorCode MatRetrieveValues_MPIBAIJ(Mat mat)
111: {
112:   Mat_MPIBAIJ *aij = (Mat_MPIBAIJ *)mat->data;

114:   PetscFunctionBegin;
115:   PetscCall(MatRetrieveValues(aij->A));
116:   PetscCall(MatRetrieveValues(aij->B));
117:   PetscFunctionReturn(PETSC_SUCCESS);
118: }

120: /*
121:      Local utility routine that creates a mapping from the global column
122:    number to the local number in the off-diagonal part of the local
123:    storage of the matrix.  This is done in a non scalable way since the
124:    length of colmap equals the global matrix length.
125: */
126: PetscErrorCode MatCreateColmap_MPIBAIJ_Private(Mat mat)
127: {
128:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
129:   Mat_SeqBAIJ *B    = (Mat_SeqBAIJ *)baij->B->data;
130:   PetscInt     nbs = B->nbs, i, bs = mat->rmap->bs;

132:   PetscFunctionBegin;
133: #if defined(PETSC_USE_CTABLE)
134:   PetscCall(PetscHMapICreateWithSize(baij->nbs, &baij->colmap));
135:   for (i = 0; i < nbs; i++) PetscCall(PetscHMapISet(baij->colmap, baij->garray[i] + 1, i * bs + 1));
136: #else
137:   PetscCall(PetscCalloc1(baij->Nbs + 1, &baij->colmap));
138:   for (i = 0; i < nbs; i++) baij->colmap[baij->garray[i]] = i * bs + 1;
139: #endif
140:   PetscFunctionReturn(PETSC_SUCCESS);
141: }

143: #define MatSetValues_SeqBAIJ_A_Private(row, col, value, addv, orow, ocol) \
144:   do { \
145:     brow = row / bs; \
146:     rp   = PetscSafePointerPlusOffset(aj, ai[brow]); \
147:     ap   = PetscSafePointerPlusOffset(aa, bs2 * ai[brow]); \
148:     rmax = aimax[brow]; \
149:     nrow = ailen[brow]; \
150:     bcol = col / bs; \
151:     ridx = row % bs; \
152:     cidx = col % bs; \
153:     low  = 0; \
154:     high = nrow; \
155:     while (high - low > 3) { \
156:       t = (low + high) / 2; \
157:       if (rp[t] > bcol) high = t; \
158:       else low = t; \
159:     } \
160:     for (_i = low; _i < high; _i++) { \
161:       if (rp[_i] > bcol) break; \
162:       if (rp[_i] == bcol) { \
163:         bap = ap + bs2 * _i + bs * cidx + ridx; \
164:         if (addv == ADD_VALUES) *bap += value; \
165:         else *bap = value; \
166:         goto a_noinsert; \
167:       } \
168:     } \
169:     if (a->nonew == 1) goto a_noinsert; \
170:     PetscCheck(a->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
171:     MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, brow, bcol, rmax, aa, ai, aj, rp, ap, aimax, a->nonew, MatScalar); \
172:     N = nrow++ - 1; \
173:     /* shift up all the later entries in this row */ \
174:     PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
175:     PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
176:     PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
177:     rp[_i]                          = bcol; \
178:     ap[bs2 * _i + bs * cidx + ridx] = value; \
179:   a_noinsert:; \
180:     ailen[brow] = nrow; \
181:   } while (0)

183: #define MatSetValues_SeqBAIJ_B_Private(row, col, value, addv, orow, ocol) \
184:   do { \
185:     brow = row / bs; \
186:     rp   = PetscSafePointerPlusOffset(bj, bi[brow]); \
187:     ap   = PetscSafePointerPlusOffset(ba, bs2 * bi[brow]); \
188:     rmax = bimax[brow]; \
189:     nrow = bilen[brow]; \
190:     bcol = col / bs; \
191:     ridx = row % bs; \
192:     cidx = col % bs; \
193:     low  = 0; \
194:     high = nrow; \
195:     while (high - low > 3) { \
196:       t = (low + high) / 2; \
197:       if (rp[t] > bcol) high = t; \
198:       else low = t; \
199:     } \
200:     for (_i = low; _i < high; _i++) { \
201:       if (rp[_i] > bcol) break; \
202:       if (rp[_i] == bcol) { \
203:         bap = ap + bs2 * _i + bs * cidx + ridx; \
204:         if (addv == ADD_VALUES) *bap += value; \
205:         else *bap = value; \
206:         goto b_noinsert; \
207:       } \
208:     } \
209:     if (b->nonew == 1) goto b_noinsert; \
210:     PetscCheck(b->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column  (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
211:     MatSeqXAIJReallocateAIJ(B, b->mbs, bs2, nrow, brow, bcol, rmax, ba, bi, bj, rp, ap, bimax, b->nonew, MatScalar); \
212:     N = nrow++ - 1; \
213:     /* shift up all the later entries in this row */ \
214:     PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
215:     PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
216:     PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
217:     rp[_i]                          = bcol; \
218:     ap[bs2 * _i + bs * cidx + ridx] = value; \
219:   b_noinsert:; \
220:     bilen[brow] = nrow; \
221:   } while (0)

223: PetscErrorCode MatSetValues_MPIBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
224: {
225:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
226:   MatScalar    value;
227:   PetscBool    roworiented = baij->roworiented;
228:   PetscInt     i, j, row, col;
229:   PetscInt     rstart_orig = mat->rmap->rstart;
230:   PetscInt     rend_orig = mat->rmap->rend, cstart_orig = mat->cmap->rstart;
231:   PetscInt     cend_orig = mat->cmap->rend, bs = mat->rmap->bs;

233:   /* Some Variables required in the macro */
234:   Mat          A     = baij->A;
235:   Mat_SeqBAIJ *a     = (Mat_SeqBAIJ *)(A)->data;
236:   PetscInt    *aimax = a->imax, *ai = a->i, *ailen = a->ilen, *aj = a->j;
237:   MatScalar   *aa = a->a;

239:   Mat          B     = baij->B;
240:   Mat_SeqBAIJ *b     = (Mat_SeqBAIJ *)(B)->data;
241:   PetscInt    *bimax = b->imax, *bi = b->i, *bilen = b->ilen, *bj = b->j;
242:   MatScalar   *ba = b->a;

244:   PetscInt  *rp, ii, nrow, _i, rmax, N, brow, bcol;
245:   PetscInt   low, high, t, ridx, cidx, bs2 = a->bs2;
246:   MatScalar *ap, *bap;

248:   PetscFunctionBegin;
249:   for (i = 0; i < m; i++) {
250:     if (im[i] < 0) continue;
251:     PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
252:     if (im[i] >= rstart_orig && im[i] < rend_orig) {
253:       row = im[i] - rstart_orig;
254:       for (j = 0; j < n; j++) {
255:         if (in[j] >= cstart_orig && in[j] < cend_orig) {
256:           col = in[j] - cstart_orig;
257:           if (roworiented) value = v[i * n + j];
258:           else value = v[i + j * m];
259:           MatSetValues_SeqBAIJ_A_Private(row, col, value, addv, im[i], in[j]);
260:         } else if (in[j] < 0) {
261:           continue;
262:         } else {
263:           PetscCheck(in[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], mat->cmap->N - 1);
264:           if (mat->was_assembled) {
265:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
266: #if defined(PETSC_USE_CTABLE)
267:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] / bs + 1, 0, &col));
268:             col = col - 1;
269: #else
270:             col = baij->colmap[in[j] / bs] - 1;
271: #endif
272:             if (col < 0 && !((Mat_SeqBAIJ *)baij->B->data)->nonew) {
273:               PetscCall(MatDisAssemble_MPIBAIJ(mat));
274:               col = in[j];
275:               /* Reinitialize the variables required by MatSetValues_SeqBAIJ_B_Private() */
276:               B     = baij->B;
277:               b     = (Mat_SeqBAIJ *)(B)->data;
278:               bimax = b->imax;
279:               bi    = b->i;
280:               bilen = b->ilen;
281:               bj    = b->j;
282:               ba    = b->a;
283:             } else {
284:               PetscCheck(col >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", im[i], in[j]);
285:               col += in[j] % bs;
286:             }
287:           } else col = in[j];
288:           if (roworiented) value = v[i * n + j];
289:           else value = v[i + j * m];
290:           MatSetValues_SeqBAIJ_B_Private(row, col, value, addv, im[i], in[j]);
291:           /* PetscCall(MatSetValues_SeqBAIJ(baij->B,1,&row,1,&col,&value,addv)); */
292:         }
293:       }
294:     } else {
295:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
296:       if (!baij->donotstash) {
297:         mat->assembled = PETSC_FALSE;
298:         if (roworiented) {
299:           PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n, in, v + i * n, PETSC_FALSE));
300:         } else {
301:           PetscCall(MatStashValuesCol_Private(&mat->stash, im[i], n, in, v + i, m, PETSC_FALSE));
302:         }
303:       }
304:     }
305:   }
306:   PetscFunctionReturn(PETSC_SUCCESS);
307: }

309: static inline PetscErrorCode MatSetValuesBlocked_SeqBAIJ_Inlined(Mat A, PetscInt row, PetscInt col, const PetscScalar v[], InsertMode is, PetscInt orow, PetscInt ocol)
310: {
311:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ *)A->data;
312:   PetscInt          *rp, low, high, t, ii, jj, nrow, i, rmax, N;
313:   PetscInt          *imax = a->imax, *ai = a->i, *ailen = a->ilen;
314:   PetscInt          *aj = a->j, nonew = a->nonew, bs2 = a->bs2, bs = A->rmap->bs;
315:   PetscBool          roworiented = a->roworiented;
316:   const PetscScalar *value       = v;
317:   MatScalar         *ap, *aa = a->a, *bap;

319:   PetscFunctionBegin;
320:   rp    = aj + ai[row];
321:   ap    = aa + bs2 * ai[row];
322:   rmax  = imax[row];
323:   nrow  = ailen[row];
324:   value = v;
325:   low   = 0;
326:   high  = nrow;
327:   while (high - low > 7) {
328:     t = (low + high) / 2;
329:     if (rp[t] > col) high = t;
330:     else low = t;
331:   }
332:   for (i = low; i < high; i++) {
333:     if (rp[i] > col) break;
334:     if (rp[i] == col) {
335:       bap = ap + bs2 * i;
336:       if (roworiented) {
337:         if (is == ADD_VALUES) {
338:           for (ii = 0; ii < bs; ii++) {
339:             for (jj = ii; jj < bs2; jj += bs) bap[jj] += *value++;
340:           }
341:         } else {
342:           for (ii = 0; ii < bs; ii++) {
343:             for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
344:           }
345:         }
346:       } else {
347:         if (is == ADD_VALUES) {
348:           for (ii = 0; ii < bs; ii++, value += bs) {
349:             for (jj = 0; jj < bs; jj++) bap[jj] += value[jj];
350:             bap += bs;
351:           }
352:         } else {
353:           for (ii = 0; ii < bs; ii++, value += bs) {
354:             for (jj = 0; jj < bs; jj++) bap[jj] = value[jj];
355:             bap += bs;
356:           }
357:         }
358:       }
359:       goto noinsert2;
360:     }
361:   }
362:   if (nonew == 1) goto noinsert2;
363:   PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new global block indexed nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", orow, ocol);
364:   MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
365:   N = nrow++ - 1;
366:   high++;
367:   /* shift up all the later entries in this row */
368:   PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
369:   PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
370:   rp[i] = col;
371:   bap   = ap + bs2 * i;
372:   if (roworiented) {
373:     for (ii = 0; ii < bs; ii++) {
374:       for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
375:     }
376:   } else {
377:     for (ii = 0; ii < bs; ii++) {
378:       for (jj = 0; jj < bs; jj++) *bap++ = *value++;
379:     }
380:   }
381: noinsert2:;
382:   ailen[row] = nrow;
383:   PetscFunctionReturn(PETSC_SUCCESS);
384: }

386: /*
387:     This routine should be optimized so that the block copy at ** Here a copy is required ** below is not needed
388:     by passing additional stride information into the MatSetValuesBlocked_SeqBAIJ_Inlined() routine
389: */
390: static PetscErrorCode MatSetValuesBlocked_MPIBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
391: {
392:   Mat_MPIBAIJ       *baij = (Mat_MPIBAIJ *)mat->data;
393:   const PetscScalar *value;
394:   MatScalar         *barray      = baij->barray;
395:   PetscBool          roworiented = baij->roworiented;
396:   PetscInt           i, j, ii, jj, row, col, rstart = baij->rstartbs;
397:   PetscInt           rend = baij->rendbs, cstart = baij->cstartbs, stepval;
398:   PetscInt           cend = baij->cendbs, bs = mat->rmap->bs, bs2 = baij->bs2;

400:   PetscFunctionBegin;
401:   if (!barray) {
402:     PetscCall(PetscMalloc1(bs2, &barray));
403:     baij->barray = barray;
404:   }

406:   if (roworiented) stepval = (n - 1) * bs;
407:   else stepval = (m - 1) * bs;

409:   for (i = 0; i < m; i++) {
410:     if (im[i] < 0) continue;
411:     PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed row too large %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
412:     if (im[i] >= rstart && im[i] < rend) {
413:       row = im[i] - rstart;
414:       for (j = 0; j < n; j++) {
415:         /* If NumCol = 1 then a copy is not required */
416:         if ((roworiented) && (n == 1)) {
417:           barray = (MatScalar *)v + i * bs2;
418:         } else if ((!roworiented) && (m == 1)) {
419:           barray = (MatScalar *)v + j * bs2;
420:         } else { /* Here a copy is required */
421:           if (roworiented) {
422:             value = v + (i * (stepval + bs) + j) * bs;
423:           } else {
424:             value = v + (j * (stepval + bs) + i) * bs;
425:           }
426:           for (ii = 0; ii < bs; ii++, value += bs + stepval) {
427:             for (jj = 0; jj < bs; jj++) barray[jj] = value[jj];
428:             barray += bs;
429:           }
430:           barray -= bs2;
431:         }

433:         if (in[j] >= cstart && in[j] < cend) {
434:           col = in[j] - cstart;
435:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->A, row, col, barray, addv, im[i], in[j]));
436:         } else if (in[j] < 0) {
437:           continue;
438:         } else {
439:           PetscCheck(in[j] < baij->Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed column too large %" PetscInt_FMT " max %" PetscInt_FMT, in[j], baij->Nbs - 1);
440:           if (mat->was_assembled) {
441:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));

443: #if defined(PETSC_USE_DEBUG)
444:   #if defined(PETSC_USE_CTABLE)
445:             {
446:               PetscInt data;
447:               PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &data));
448:               PetscCheck((data - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
449:             }
450:   #else
451:             PetscCheck((baij->colmap[in[j]] - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
452:   #endif
453: #endif
454: #if defined(PETSC_USE_CTABLE)
455:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &col));
456:             col = (col - 1) / bs;
457: #else
458:             col = (baij->colmap[in[j]] - 1) / bs;
459: #endif
460:             if (col < 0 && !((Mat_SeqBAIJ *)baij->B->data)->nonew) {
461:               PetscCall(MatDisAssemble_MPIBAIJ(mat));
462:               col = in[j];
463:             } else PetscCheck(col >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new blocked indexed nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", im[i], in[j]);
464:           } else col = in[j];
465:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B, row, col, barray, addv, im[i], in[j]));
466:         }
467:       }
468:     } else {
469:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process block indexed row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
470:       if (!baij->donotstash) {
471:         if (roworiented) {
472:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
473:         } else {
474:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
475:         }
476:       }
477:     }
478:   }
479:   PetscFunctionReturn(PETSC_SUCCESS);
480: }

482: #define HASH_KEY             0.6180339887
483: #define HASH(size, key, tmp) (tmp = (key) * HASH_KEY, (PetscInt)((size) * (tmp - (PetscInt)tmp)))
484: /* #define HASH(size,key) ((PetscInt)((size)*fmod(((key)*HASH_KEY),1))) */
485: /* #define HASH(size,key,tmp) ((PetscInt)((size)*fmod(((key)*HASH_KEY),1))) */
486: static PetscErrorCode MatSetValues_MPIBAIJ_HT(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
487: {
488:   Mat_MPIBAIJ *baij        = (Mat_MPIBAIJ *)mat->data;
489:   PetscBool    roworiented = baij->roworiented;
490:   PetscInt     i, j, row, col;
491:   PetscInt     rstart_orig = mat->rmap->rstart;
492:   PetscInt     rend_orig = mat->rmap->rend, Nbs = baij->Nbs;
493:   PetscInt     h1, key, size = baij->ht_size, bs = mat->rmap->bs, *HT = baij->ht, idx;
494:   PetscReal    tmp;
495:   MatScalar  **HD       = baij->hd, value;
496:   PetscInt     total_ct = baij->ht_total_ct, insert_ct = baij->ht_insert_ct;

498:   PetscFunctionBegin;
499:   for (i = 0; i < m; i++) {
500:     if (PetscDefined(USE_DEBUG)) {
501:       PetscCheck(im[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row");
502:       PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
503:     }
504:     row = im[i];
505:     if (row >= rstart_orig && row < rend_orig) {
506:       for (j = 0; j < n; j++) {
507:         col = in[j];
508:         if (roworiented) value = v[i * n + j];
509:         else value = v[i + j * m];
510:         /* Look up PetscInto the Hash Table */
511:         key = (row / bs) * Nbs + (col / bs) + 1;
512:         h1  = HASH(size, key, tmp);

514:         idx = h1;
515:         if (PetscDefined(USE_DEBUG)) {
516:           insert_ct++;
517:           total_ct++;
518:           if (HT[idx] != key) {
519:             for (idx = h1; (idx < size) && (HT[idx] != key); idx++, total_ct++);
520:             if (idx == size) {
521:               for (idx = 0; (idx < h1) && (HT[idx] != key); idx++, total_ct++);
522:               PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
523:             }
524:           }
525:         } else if (HT[idx] != key) {
526:           for (idx = h1; (idx < size) && (HT[idx] != key); idx++);
527:           if (idx == size) {
528:             for (idx = 0; (idx < h1) && (HT[idx] != key); idx++);
529:             PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
530:           }
531:         }
532:         /* A HASH table entry is found, so insert the values at the correct address */
533:         if (addv == ADD_VALUES) *(HD[idx] + (col % bs) * bs + (row % bs)) += value;
534:         else *(HD[idx] + (col % bs) * bs + (row % bs)) = value;
535:       }
536:     } else if (!baij->donotstash) {
537:       if (roworiented) {
538:         PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n, in, v + i * n, PETSC_FALSE));
539:       } else {
540:         PetscCall(MatStashValuesCol_Private(&mat->stash, im[i], n, in, v + i, m, PETSC_FALSE));
541:       }
542:     }
543:   }
544:   if (PetscDefined(USE_DEBUG)) {
545:     baij->ht_total_ct += total_ct;
546:     baij->ht_insert_ct += insert_ct;
547:   }
548:   PetscFunctionReturn(PETSC_SUCCESS);
549: }

551: static PetscErrorCode MatSetValuesBlocked_MPIBAIJ_HT(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
552: {
553:   Mat_MPIBAIJ       *baij        = (Mat_MPIBAIJ *)mat->data;
554:   PetscBool          roworiented = baij->roworiented;
555:   PetscInt           i, j, ii, jj, row, col;
556:   PetscInt           rstart = baij->rstartbs;
557:   PetscInt           rend = mat->rmap->rend, stepval, bs = mat->rmap->bs, bs2 = baij->bs2, nbs2 = n * bs2;
558:   PetscInt           h1, key, size = baij->ht_size, idx, *HT = baij->ht, Nbs = baij->Nbs;
559:   PetscReal          tmp;
560:   MatScalar        **HD = baij->hd, *baij_a;
561:   const PetscScalar *v_t, *value;
562:   PetscInt           total_ct = baij->ht_total_ct, insert_ct = baij->ht_insert_ct;

564:   PetscFunctionBegin;
565:   if (roworiented) stepval = (n - 1) * bs;
566:   else stepval = (m - 1) * bs;

568:   for (i = 0; i < m; i++) {
569:     if (PetscDefined(USE_DEBUG)) {
570:       PetscCheck(im[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row: %" PetscInt_FMT, im[i]);
571:       PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
572:     }
573:     row = im[i];
574:     v_t = v + i * nbs2;
575:     if (row >= rstart && row < rend) {
576:       for (j = 0; j < n; j++) {
577:         col = in[j];

579:         /* Look up into the Hash Table */
580:         key = row * Nbs + col + 1;
581:         h1  = HASH(size, key, tmp);

583:         idx = h1;
584:         if (PetscDefined(USE_DEBUG)) {
585:           total_ct++;
586:           insert_ct++;
587:           if (HT[idx] != key) {
588:             for (idx = h1; (idx < size) && (HT[idx] != key); idx++, total_ct++);
589:             if (idx == size) {
590:               for (idx = 0; (idx < h1) && (HT[idx] != key); idx++, total_ct++);
591:               PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
592:             }
593:           }
594:         } else if (HT[idx] != key) {
595:           for (idx = h1; (idx < size) && (HT[idx] != key); idx++);
596:           if (idx == size) {
597:             for (idx = 0; (idx < h1) && (HT[idx] != key); idx++);
598:             PetscCheck(idx != h1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "(%" PetscInt_FMT ",%" PetscInt_FMT ") has no entry in the hash table", row, col);
599:           }
600:         }
601:         baij_a = HD[idx];
602:         if (roworiented) {
603:           /*value = v + i*(stepval+bs)*bs + j*bs;*/
604:           /* value = v + (i*(stepval+bs)+j)*bs; */
605:           value = v_t;
606:           v_t += bs;
607:           if (addv == ADD_VALUES) {
608:             for (ii = 0; ii < bs; ii++, value += stepval) {
609:               for (jj = ii; jj < bs2; jj += bs) baij_a[jj] += *value++;
610:             }
611:           } else {
612:             for (ii = 0; ii < bs; ii++, value += stepval) {
613:               for (jj = ii; jj < bs2; jj += bs) baij_a[jj] = *value++;
614:             }
615:           }
616:         } else {
617:           value = v + j * (stepval + bs) * bs + i * bs;
618:           if (addv == ADD_VALUES) {
619:             for (ii = 0; ii < bs; ii++, value += stepval, baij_a += bs) {
620:               for (jj = 0; jj < bs; jj++) baij_a[jj] += *value++;
621:             }
622:           } else {
623:             for (ii = 0; ii < bs; ii++, value += stepval, baij_a += bs) {
624:               for (jj = 0; jj < bs; jj++) baij_a[jj] = *value++;
625:             }
626:           }
627:         }
628:       }
629:     } else {
630:       if (!baij->donotstash) {
631:         if (roworiented) {
632:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
633:         } else {
634:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
635:         }
636:       }
637:     }
638:   }
639:   if (PetscDefined(USE_DEBUG)) {
640:     baij->ht_total_ct += total_ct;
641:     baij->ht_insert_ct += insert_ct;
642:   }
643:   PetscFunctionReturn(PETSC_SUCCESS);
644: }

646: static PetscErrorCode MatGetValues_MPIBAIJ(Mat mat, PetscInt m, const PetscInt idxm[], PetscInt n, const PetscInt idxn[], PetscScalar v[])
647: {
648:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
649:   PetscInt     bs = mat->rmap->bs, i, j, bsrstart = mat->rmap->rstart, bsrend = mat->rmap->rend;
650:   PetscInt     bscstart = mat->cmap->rstart, bscend = mat->cmap->rend, row, col, data;

652:   PetscFunctionBegin;
653:   for (i = 0; i < m; i++) {
654:     if (idxm[i] < 0) continue; /* negative row */
655:     PetscCheck(idxm[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm[i], mat->rmap->N - 1);
656:     if (idxm[i] >= bsrstart && idxm[i] < bsrend) {
657:       row = idxm[i] - bsrstart;
658:       for (j = 0; j < n; j++) {
659:         if (idxn[j] < 0) continue; /* negative column */
660:         PetscCheck(idxn[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, idxn[j], mat->cmap->N - 1);
661:         if (idxn[j] >= bscstart && idxn[j] < bscend) {
662:           col = idxn[j] - bscstart;
663:           PetscCall(MatGetValues_SeqBAIJ(baij->A, 1, &row, 1, &col, v + i * n + j));
664:         } else {
665:           if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
666: #if defined(PETSC_USE_CTABLE)
667:           PetscCall(PetscHMapIGetWithDefault(baij->colmap, idxn[j] / bs + 1, 0, &data));
668:           data--;
669: #else
670:           data = baij->colmap[idxn[j] / bs] - 1;
671: #endif
672:           if ((data < 0) || (baij->garray[data / bs] != idxn[j] / bs)) *(v + i * n + j) = 0.0;
673:           else {
674:             col = data + idxn[j] % bs;
675:             PetscCall(MatGetValues_SeqBAIJ(baij->B, 1, &row, 1, &col, v + i * n + j));
676:           }
677:         }
678:       }
679:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local values currently supported");
680:   }
681:   PetscFunctionReturn(PETSC_SUCCESS);
682: }

684: static PetscErrorCode MatNorm_MPIBAIJ(Mat mat, NormType type, PetscReal *nrm)
685: {
686:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
687:   Mat_SeqBAIJ *amat = (Mat_SeqBAIJ *)baij->A->data, *bmat = (Mat_SeqBAIJ *)baij->B->data;
688:   PetscInt     i, j, bs2 = baij->bs2, bs = baij->A->rmap->bs, nz, row, col;
689:   PetscReal    sum = 0.0;
690:   MatScalar   *v;

692:   PetscFunctionBegin;
693:   if (baij->size == 1) {
694:     PetscCall(MatNorm(baij->A, type, nrm));
695:   } else {
696:     if (type == NORM_FROBENIUS) {
697:       v  = amat->a;
698:       nz = amat->nz * bs2;
699:       for (i = 0; i < nz; i++) {
700:         sum += PetscRealPart(PetscConj(*v) * (*v));
701:         v++;
702:       }
703:       v  = bmat->a;
704:       nz = bmat->nz * bs2;
705:       for (i = 0; i < nz; i++) {
706:         sum += PetscRealPart(PetscConj(*v) * (*v));
707:         v++;
708:       }
709:       PetscCall(MPIU_Allreduce(&sum, nrm, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
710:       *nrm = PetscSqrtReal(*nrm);
711:     } else if (type == NORM_1) { /* max column sum */
712:       PetscReal *tmp, *tmp2;
713:       PetscInt  *jj, *garray = baij->garray, cstart = baij->rstartbs;
714:       PetscCall(PetscCalloc1(mat->cmap->N, &tmp));
715:       PetscCall(PetscMalloc1(mat->cmap->N, &tmp2));
716:       v  = amat->a;
717:       jj = amat->j;
718:       for (i = 0; i < amat->nz; i++) {
719:         for (j = 0; j < bs; j++) {
720:           col = bs * (cstart + *jj) + j; /* column index */
721:           for (row = 0; row < bs; row++) {
722:             tmp[col] += PetscAbsScalar(*v);
723:             v++;
724:           }
725:         }
726:         jj++;
727:       }
728:       v  = bmat->a;
729:       jj = bmat->j;
730:       for (i = 0; i < bmat->nz; i++) {
731:         for (j = 0; j < bs; j++) {
732:           col = bs * garray[*jj] + j;
733:           for (row = 0; row < bs; row++) {
734:             tmp[col] += PetscAbsScalar(*v);
735:             v++;
736:           }
737:         }
738:         jj++;
739:       }
740:       PetscCall(MPIU_Allreduce(tmp, tmp2, mat->cmap->N, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
741:       *nrm = 0.0;
742:       for (j = 0; j < mat->cmap->N; j++) {
743:         if (tmp2[j] > *nrm) *nrm = tmp2[j];
744:       }
745:       PetscCall(PetscFree(tmp));
746:       PetscCall(PetscFree(tmp2));
747:     } else if (type == NORM_INFINITY) { /* max row sum */
748:       PetscReal *sums;
749:       PetscCall(PetscMalloc1(bs, &sums));
750:       sum = 0.0;
751:       for (j = 0; j < amat->mbs; j++) {
752:         for (row = 0; row < bs; row++) sums[row] = 0.0;
753:         v  = amat->a + bs2 * amat->i[j];
754:         nz = amat->i[j + 1] - amat->i[j];
755:         for (i = 0; i < nz; i++) {
756:           for (col = 0; col < bs; col++) {
757:             for (row = 0; row < bs; row++) {
758:               sums[row] += PetscAbsScalar(*v);
759:               v++;
760:             }
761:           }
762:         }
763:         v  = bmat->a + bs2 * bmat->i[j];
764:         nz = bmat->i[j + 1] - bmat->i[j];
765:         for (i = 0; i < nz; i++) {
766:           for (col = 0; col < bs; col++) {
767:             for (row = 0; row < bs; row++) {
768:               sums[row] += PetscAbsScalar(*v);
769:               v++;
770:             }
771:           }
772:         }
773:         for (row = 0; row < bs; row++) {
774:           if (sums[row] > sum) sum = sums[row];
775:         }
776:       }
777:       PetscCall(MPIU_Allreduce(&sum, nrm, 1, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)mat)));
778:       PetscCall(PetscFree(sums));
779:     } else SETERRQ(PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "No support for this norm yet");
780:   }
781:   PetscFunctionReturn(PETSC_SUCCESS);
782: }

784: /*
785:   Creates the hash table, and sets the table
786:   This table is created only once.
787:   If new entried need to be added to the matrix
788:   then the hash table has to be destroyed and
789:   recreated.
790: */
791: static PetscErrorCode MatCreateHashTable_MPIBAIJ_Private(Mat mat, PetscReal factor)
792: {
793:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
794:   Mat          A = baij->A, B = baij->B;
795:   Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)B->data;
796:   PetscInt     i, j, k, nz = a->nz + b->nz, h1, *ai = a->i, *aj = a->j, *bi = b->i, *bj = b->j;
797:   PetscInt     ht_size, bs2 = baij->bs2, rstart = baij->rstartbs;
798:   PetscInt     cstart = baij->cstartbs, *garray = baij->garray, row, col, Nbs = baij->Nbs;
799:   PetscInt    *HT, key;
800:   MatScalar  **HD;
801:   PetscReal    tmp;
802: #if defined(PETSC_USE_INFO)
803:   PetscInt ct = 0, max = 0;
804: #endif

806:   PetscFunctionBegin;
807:   if (baij->ht) PetscFunctionReturn(PETSC_SUCCESS);

809:   baij->ht_size = (PetscInt)(factor * nz);
810:   ht_size       = baij->ht_size;

812:   /* Allocate Memory for Hash Table */
813:   PetscCall(PetscCalloc2(ht_size, &baij->hd, ht_size, &baij->ht));
814:   HD = baij->hd;
815:   HT = baij->ht;

817:   /* Loop Over A */
818:   for (i = 0; i < a->mbs; i++) {
819:     for (j = ai[i]; j < ai[i + 1]; j++) {
820:       row = i + rstart;
821:       col = aj[j] + cstart;

823:       key = row * Nbs + col + 1;
824:       h1  = HASH(ht_size, key, tmp);
825:       for (k = 0; k < ht_size; k++) {
826:         if (!HT[(h1 + k) % ht_size]) {
827:           HT[(h1 + k) % ht_size] = key;
828:           HD[(h1 + k) % ht_size] = a->a + j * bs2;
829:           break;
830: #if defined(PETSC_USE_INFO)
831:         } else {
832:           ct++;
833: #endif
834:         }
835:       }
836: #if defined(PETSC_USE_INFO)
837:       if (k > max) max = k;
838: #endif
839:     }
840:   }
841:   /* Loop Over B */
842:   for (i = 0; i < b->mbs; i++) {
843:     for (j = bi[i]; j < bi[i + 1]; j++) {
844:       row = i + rstart;
845:       col = garray[bj[j]];
846:       key = row * Nbs + col + 1;
847:       h1  = HASH(ht_size, key, tmp);
848:       for (k = 0; k < ht_size; k++) {
849:         if (!HT[(h1 + k) % ht_size]) {
850:           HT[(h1 + k) % ht_size] = key;
851:           HD[(h1 + k) % ht_size] = b->a + j * bs2;
852:           break;
853: #if defined(PETSC_USE_INFO)
854:         } else {
855:           ct++;
856: #endif
857:         }
858:       }
859: #if defined(PETSC_USE_INFO)
860:       if (k > max) max = k;
861: #endif
862:     }
863:   }

865:   /* Print Summary */
866: #if defined(PETSC_USE_INFO)
867:   for (i = 0, j = 0; i < ht_size; i++) {
868:     if (HT[i]) j++;
869:   }
870:   PetscCall(PetscInfo(mat, "Average Search = %5.2g,max search = %" PetscInt_FMT "\n", (!j) ? (double)0.0 : (double)(((PetscReal)(ct + j)) / (double)j), max));
871: #endif
872:   PetscFunctionReturn(PETSC_SUCCESS);
873: }

875: static PetscErrorCode MatAssemblyBegin_MPIBAIJ(Mat mat, MatAssemblyType mode)
876: {
877:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
878:   PetscInt     nstash, reallocs;

880:   PetscFunctionBegin;
881:   if (baij->donotstash || mat->nooffprocentries) PetscFunctionReturn(PETSC_SUCCESS);

883:   PetscCall(MatStashScatterBegin_Private(mat, &mat->stash, mat->rmap->range));
884:   PetscCall(MatStashScatterBegin_Private(mat, &mat->bstash, baij->rangebs));
885:   PetscCall(MatStashGetInfo_Private(&mat->stash, &nstash, &reallocs));
886:   PetscCall(PetscInfo(mat, "Stash has %" PetscInt_FMT " entries,uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
887:   PetscCall(MatStashGetInfo_Private(&mat->bstash, &nstash, &reallocs));
888:   PetscCall(PetscInfo(mat, "Block-Stash has %" PetscInt_FMT " entries, uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
889:   PetscFunctionReturn(PETSC_SUCCESS);
890: }

892: static PetscErrorCode MatAssemblyEnd_MPIBAIJ(Mat mat, MatAssemblyType mode)
893: {
894:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
895:   Mat_SeqBAIJ *a    = (Mat_SeqBAIJ *)baij->A->data;
896:   PetscInt     i, j, rstart, ncols, flg, bs2 = baij->bs2;
897:   PetscInt    *row, *col;
898:   PetscBool    r1, r2, r3, other_disassembled;
899:   MatScalar   *val;
900:   PetscMPIInt  n;

902:   PetscFunctionBegin;
903:   /* do not use 'b=(Mat_SeqBAIJ*)baij->B->data' as B can be reset in disassembly */
904:   if (!baij->donotstash && !mat->nooffprocentries) {
905:     while (1) {
906:       PetscCall(MatStashScatterGetMesg_Private(&mat->stash, &n, &row, &col, &val, &flg));
907:       if (!flg) break;

909:       for (i = 0; i < n;) {
910:         /* Now identify the consecutive vals belonging to the same row */
911:         for (j = i, rstart = row[j]; j < n; j++) {
912:           if (row[j] != rstart) break;
913:         }
914:         if (j < n) ncols = j - i;
915:         else ncols = n - i;
916:         /* Now assemble all these values with a single function call */
917:         PetscCall(MatSetValues_MPIBAIJ(mat, 1, row + i, ncols, col + i, val + i, mat->insertmode));
918:         i = j;
919:       }
920:     }
921:     PetscCall(MatStashScatterEnd_Private(&mat->stash));
922:     /* Now process the block-stash. Since the values are stashed column-oriented,
923:        set the row-oriented flag to column-oriented, and after MatSetValues()
924:        restore the original flags */
925:     r1 = baij->roworiented;
926:     r2 = a->roworiented;
927:     r3 = ((Mat_SeqBAIJ *)baij->B->data)->roworiented;

929:     baij->roworiented                           = PETSC_FALSE;
930:     a->roworiented                              = PETSC_FALSE;
931:     ((Mat_SeqBAIJ *)baij->B->data)->roworiented = PETSC_FALSE;
932:     while (1) {
933:       PetscCall(MatStashScatterGetMesg_Private(&mat->bstash, &n, &row, &col, &val, &flg));
934:       if (!flg) break;

936:       for (i = 0; i < n;) {
937:         /* Now identify the consecutive vals belonging to the same row */
938:         for (j = i, rstart = row[j]; j < n; j++) {
939:           if (row[j] != rstart) break;
940:         }
941:         if (j < n) ncols = j - i;
942:         else ncols = n - i;
943:         PetscCall(MatSetValuesBlocked_MPIBAIJ(mat, 1, row + i, ncols, col + i, val + i * bs2, mat->insertmode));
944:         i = j;
945:       }
946:     }
947:     PetscCall(MatStashScatterEnd_Private(&mat->bstash));

949:     baij->roworiented                           = r1;
950:     a->roworiented                              = r2;
951:     ((Mat_SeqBAIJ *)baij->B->data)->roworiented = r3;
952:   }

954:   PetscCall(MatAssemblyBegin(baij->A, mode));
955:   PetscCall(MatAssemblyEnd(baij->A, mode));

957:   /* determine if any processor has disassembled, if so we must
958:      also disassemble ourselves, in order that we may reassemble. */
959:   /*
960:      if nonzero structure of submatrix B cannot change then we know that
961:      no processor disassembled thus we can skip this stuff
962:   */
963:   if (!((Mat_SeqBAIJ *)baij->B->data)->nonew) {
964:     PetscCall(MPIU_Allreduce(&mat->was_assembled, &other_disassembled, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)mat)));
965:     if (mat->was_assembled && !other_disassembled) PetscCall(MatDisAssemble_MPIBAIJ(mat));
966:   }

968:   if (!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) PetscCall(MatSetUpMultiply_MPIBAIJ(mat));
969:   PetscCall(MatAssemblyBegin(baij->B, mode));
970:   PetscCall(MatAssemblyEnd(baij->B, mode));

972: #if defined(PETSC_USE_INFO)
973:   if (baij->ht && mode == MAT_FINAL_ASSEMBLY) {
974:     PetscCall(PetscInfo(mat, "Average Hash Table Search in MatSetValues = %5.2f\n", (double)((PetscReal)baij->ht_total_ct) / baij->ht_insert_ct));

976:     baij->ht_total_ct  = 0;
977:     baij->ht_insert_ct = 0;
978:   }
979: #endif
980:   if (baij->ht_flag && !baij->ht && mode == MAT_FINAL_ASSEMBLY) {
981:     PetscCall(MatCreateHashTable_MPIBAIJ_Private(mat, baij->ht_fact));

983:     mat->ops->setvalues        = MatSetValues_MPIBAIJ_HT;
984:     mat->ops->setvaluesblocked = MatSetValuesBlocked_MPIBAIJ_HT;
985:   }

987:   PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));

989:   baij->rowvalues = NULL;

991:   /* if no new nonzero locations are allowed in matrix then only set the matrix state the first time through */
992:   if ((!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) || !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
993:     PetscObjectState state = baij->A->nonzerostate + baij->B->nonzerostate;
994:     PetscCall(MPIU_Allreduce(&state, &mat->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)mat)));
995:   }
996:   PetscFunctionReturn(PETSC_SUCCESS);
997: }

999: extern PetscErrorCode MatView_SeqBAIJ(Mat, PetscViewer);
1000: #include <petscdraw.h>
1001: static PetscErrorCode MatView_MPIBAIJ_ASCIIorDraworSocket(Mat mat, PetscViewer viewer)
1002: {
1003:   Mat_MPIBAIJ      *baij = (Mat_MPIBAIJ *)mat->data;
1004:   PetscMPIInt       rank = baij->rank;
1005:   PetscInt          bs   = mat->rmap->bs;
1006:   PetscBool         iascii, isdraw;
1007:   PetscViewer       sviewer;
1008:   PetscViewerFormat format;

1010:   PetscFunctionBegin;
1011:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1012:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1013:   if (iascii) {
1014:     PetscCall(PetscViewerGetFormat(viewer, &format));
1015:     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
1016:       MatInfo info;
1017:       PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
1018:       PetscCall(MatGetInfo(mat, MAT_LOCAL, &info));
1019:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
1020:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Local rows %" PetscInt_FMT " nz %" PetscInt_FMT " nz alloced %" PetscInt_FMT " bs %" PetscInt_FMT " mem %g\n", rank, mat->rmap->n, (PetscInt)info.nz_used, (PetscInt)info.nz_allocated,
1021:                                                    mat->rmap->bs, (double)info.memory));
1022:       PetscCall(MatGetInfo(baij->A, MAT_LOCAL, &info));
1023:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] on-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
1024:       PetscCall(MatGetInfo(baij->B, MAT_LOCAL, &info));
1025:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] off-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
1026:       PetscCall(PetscViewerFlush(viewer));
1027:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
1028:       PetscCall(PetscViewerASCIIPrintf(viewer, "Information on VecScatter used in matrix-vector product: \n"));
1029:       PetscCall(VecScatterView(baij->Mvctx, viewer));
1030:       PetscFunctionReturn(PETSC_SUCCESS);
1031:     } else if (format == PETSC_VIEWER_ASCII_INFO) {
1032:       PetscCall(PetscViewerASCIIPrintf(viewer, "  block size is %" PetscInt_FMT "\n", bs));
1033:       PetscFunctionReturn(PETSC_SUCCESS);
1034:     } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
1035:       PetscFunctionReturn(PETSC_SUCCESS);
1036:     }
1037:   }

1039:   if (isdraw) {
1040:     PetscDraw draw;
1041:     PetscBool isnull;
1042:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1043:     PetscCall(PetscDrawIsNull(draw, &isnull));
1044:     if (isnull) PetscFunctionReturn(PETSC_SUCCESS);
1045:   }

1047:   {
1048:     /* assemble the entire matrix onto first processor. */
1049:     Mat          A;
1050:     Mat_SeqBAIJ *Aloc;
1051:     PetscInt     M = mat->rmap->N, N = mat->cmap->N, *ai, *aj, col, i, j, k, *rvals, mbs = baij->mbs;
1052:     MatScalar   *a;
1053:     const char  *matname;

1055:     /* Here we are creating a temporary matrix, so will assume MPIBAIJ is acceptable */
1056:     /* Perhaps this should be the type of mat? */
1057:     PetscCall(MatCreate(PetscObjectComm((PetscObject)mat), &A));
1058:     if (rank == 0) {
1059:       PetscCall(MatSetSizes(A, M, N, M, N));
1060:     } else {
1061:       PetscCall(MatSetSizes(A, 0, 0, M, N));
1062:     }
1063:     PetscCall(MatSetType(A, MATMPIBAIJ));
1064:     PetscCall(MatMPIBAIJSetPreallocation(A, mat->rmap->bs, 0, NULL, 0, NULL));
1065:     PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_FALSE));

1067:     /* copy over the A part */
1068:     Aloc = (Mat_SeqBAIJ *)baij->A->data;
1069:     ai   = Aloc->i;
1070:     aj   = Aloc->j;
1071:     a    = Aloc->a;
1072:     PetscCall(PetscMalloc1(bs, &rvals));

1074:     for (i = 0; i < mbs; i++) {
1075:       rvals[0] = bs * (baij->rstartbs + i);
1076:       for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1077:       for (j = ai[i]; j < ai[i + 1]; j++) {
1078:         col = (baij->cstartbs + aj[j]) * bs;
1079:         for (k = 0; k < bs; k++) {
1080:           PetscCall(MatSetValues_MPIBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
1081:           col++;
1082:           a += bs;
1083:         }
1084:       }
1085:     }
1086:     /* copy over the B part */
1087:     Aloc = (Mat_SeqBAIJ *)baij->B->data;
1088:     ai   = Aloc->i;
1089:     aj   = Aloc->j;
1090:     a    = Aloc->a;
1091:     for (i = 0; i < mbs; i++) {
1092:       rvals[0] = bs * (baij->rstartbs + i);
1093:       for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1094:       for (j = ai[i]; j < ai[i + 1]; j++) {
1095:         col = baij->garray[aj[j]] * bs;
1096:         for (k = 0; k < bs; k++) {
1097:           PetscCall(MatSetValues_MPIBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
1098:           col++;
1099:           a += bs;
1100:         }
1101:       }
1102:     }
1103:     PetscCall(PetscFree(rvals));
1104:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1105:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1106:     /*
1107:        Everyone has to call to draw the matrix since the graphics waits are
1108:        synchronized across all processors that share the PetscDraw object
1109:     */
1110:     PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
1111:     if (((PetscObject)mat)->name) PetscCall(PetscObjectGetName((PetscObject)mat, &matname));
1112:     if (rank == 0) {
1113:       if (((PetscObject)mat)->name) PetscCall(PetscObjectSetName((PetscObject)((Mat_MPIBAIJ *)A->data)->A, matname));
1114:       PetscCall(MatView_SeqBAIJ(((Mat_MPIBAIJ *)A->data)->A, sviewer));
1115:     }
1116:     PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
1117:     PetscCall(MatDestroy(&A));
1118:   }
1119:   PetscFunctionReturn(PETSC_SUCCESS);
1120: }

1122: /* Used for both MPIBAIJ and MPISBAIJ matrices */
1123: PetscErrorCode MatView_MPIBAIJ_Binary(Mat mat, PetscViewer viewer)
1124: {
1125:   Mat_MPIBAIJ    *aij    = (Mat_MPIBAIJ *)mat->data;
1126:   Mat_SeqBAIJ    *A      = (Mat_SeqBAIJ *)aij->A->data;
1127:   Mat_SeqBAIJ    *B      = (Mat_SeqBAIJ *)aij->B->data;
1128:   const PetscInt *garray = aij->garray;
1129:   PetscInt        header[4], M, N, m, rs, cs, bs, cnt, i, j, ja, jb, k, l;
1130:   PetscInt64      nz, hnz;
1131:   PetscInt       *rowlens, *colidxs;
1132:   PetscScalar    *matvals;
1133:   PetscMPIInt     rank;

1135:   PetscFunctionBegin;
1136:   PetscCall(PetscViewerSetUp(viewer));

1138:   M  = mat->rmap->N;
1139:   N  = mat->cmap->N;
1140:   m  = mat->rmap->n;
1141:   rs = mat->rmap->rstart;
1142:   cs = mat->cmap->rstart;
1143:   bs = mat->rmap->bs;
1144:   nz = bs * bs * (A->nz + B->nz);

1146:   /* write matrix header */
1147:   header[0] = MAT_FILE_CLASSID;
1148:   header[1] = M;
1149:   header[2] = N;
1150:   PetscCallMPI(MPI_Reduce(&nz, &hnz, 1, MPIU_INT64, MPI_SUM, 0, PetscObjectComm((PetscObject)mat)));
1151:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
1152:   if (rank == 0) PetscCall(PetscIntCast(hnz, &header[3]));
1153:   PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

1155:   /* fill in and store row lengths */
1156:   PetscCall(PetscMalloc1(m, &rowlens));
1157:   for (cnt = 0, i = 0; i < A->mbs; i++)
1158:     for (j = 0; j < bs; j++) rowlens[cnt++] = bs * (A->i[i + 1] - A->i[i] + B->i[i + 1] - B->i[i]);
1159:   PetscCall(PetscViewerBinaryWriteAll(viewer, rowlens, m, rs, M, PETSC_INT));
1160:   PetscCall(PetscFree(rowlens));

1162:   /* fill in and store column indices */
1163:   PetscCall(PetscMalloc1(nz, &colidxs));
1164:   for (cnt = 0, i = 0; i < A->mbs; i++) {
1165:     for (k = 0; k < bs; k++) {
1166:       for (jb = B->i[i]; jb < B->i[i + 1]; jb++) {
1167:         if (garray[B->j[jb]] > cs / bs) break;
1168:         for (l = 0; l < bs; l++) colidxs[cnt++] = bs * garray[B->j[jb]] + l;
1169:       }
1170:       for (ja = A->i[i]; ja < A->i[i + 1]; ja++)
1171:         for (l = 0; l < bs; l++) colidxs[cnt++] = bs * A->j[ja] + l + cs;
1172:       for (; jb < B->i[i + 1]; jb++)
1173:         for (l = 0; l < bs; l++) colidxs[cnt++] = bs * garray[B->j[jb]] + l;
1174:     }
1175:   }
1176:   PetscCheck(cnt == nz, PETSC_COMM_SELF, PETSC_ERR_LIB, "Internal PETSc error: cnt = %" PetscInt_FMT " nz = %" PetscInt64_FMT, cnt, nz);
1177:   PetscCall(PetscViewerBinaryWriteAll(viewer, colidxs, nz, PETSC_DECIDE, PETSC_DECIDE, PETSC_INT));
1178:   PetscCall(PetscFree(colidxs));

1180:   /* fill in and store nonzero values */
1181:   PetscCall(PetscMalloc1(nz, &matvals));
1182:   for (cnt = 0, i = 0; i < A->mbs; i++) {
1183:     for (k = 0; k < bs; k++) {
1184:       for (jb = B->i[i]; jb < B->i[i + 1]; jb++) {
1185:         if (garray[B->j[jb]] > cs / bs) break;
1186:         for (l = 0; l < bs; l++) matvals[cnt++] = B->a[bs * (bs * jb + l) + k];
1187:       }
1188:       for (ja = A->i[i]; ja < A->i[i + 1]; ja++)
1189:         for (l = 0; l < bs; l++) matvals[cnt++] = A->a[bs * (bs * ja + l) + k];
1190:       for (; jb < B->i[i + 1]; jb++)
1191:         for (l = 0; l < bs; l++) matvals[cnt++] = B->a[bs * (bs * jb + l) + k];
1192:     }
1193:   }
1194:   PetscCall(PetscViewerBinaryWriteAll(viewer, matvals, nz, PETSC_DECIDE, PETSC_DECIDE, PETSC_SCALAR));
1195:   PetscCall(PetscFree(matvals));

1197:   /* write block size option to the viewer's .info file */
1198:   PetscCall(MatView_Binary_BlockSizes(mat, viewer));
1199:   PetscFunctionReturn(PETSC_SUCCESS);
1200: }

1202: PetscErrorCode MatView_MPIBAIJ(Mat mat, PetscViewer viewer)
1203: {
1204:   PetscBool iascii, isdraw, issocket, isbinary;

1206:   PetscFunctionBegin;
1207:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1208:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1209:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSOCKET, &issocket));
1210:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1211:   if (iascii || isdraw || issocket) {
1212:     PetscCall(MatView_MPIBAIJ_ASCIIorDraworSocket(mat, viewer));
1213:   } else if (isbinary) PetscCall(MatView_MPIBAIJ_Binary(mat, viewer));
1214:   PetscFunctionReturn(PETSC_SUCCESS);
1215: }

1217: static PetscErrorCode MatMult_MPIBAIJ(Mat A, Vec xx, Vec yy)
1218: {
1219:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
1220:   PetscInt     nt;

1222:   PetscFunctionBegin;
1223:   PetscCall(VecGetLocalSize(xx, &nt));
1224:   PetscCheck(nt == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible partition of A and xx");
1225:   PetscCall(VecGetLocalSize(yy, &nt));
1226:   PetscCheck(nt == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible partition of A and yy");
1227:   PetscCall(VecScatterBegin(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1228:   PetscCall((*a->A->ops->mult)(a->A, xx, yy));
1229:   PetscCall(VecScatterEnd(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1230:   PetscCall((*a->B->ops->multadd)(a->B, a->lvec, yy, yy));
1231:   PetscFunctionReturn(PETSC_SUCCESS);
1232: }

1234: static PetscErrorCode MatMultAdd_MPIBAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1235: {
1236:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1238:   PetscFunctionBegin;
1239:   PetscCall(VecScatterBegin(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1240:   PetscCall((*a->A->ops->multadd)(a->A, xx, yy, zz));
1241:   PetscCall(VecScatterEnd(a->Mvctx, xx, a->lvec, INSERT_VALUES, SCATTER_FORWARD));
1242:   PetscCall((*a->B->ops->multadd)(a->B, a->lvec, zz, zz));
1243:   PetscFunctionReturn(PETSC_SUCCESS);
1244: }

1246: static PetscErrorCode MatMultTranspose_MPIBAIJ(Mat A, Vec xx, Vec yy)
1247: {
1248:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1250:   PetscFunctionBegin;
1251:   /* do nondiagonal part */
1252:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->lvec));
1253:   /* do local part */
1254:   PetscCall((*a->A->ops->multtranspose)(a->A, xx, yy));
1255:   /* add partial results together */
1256:   PetscCall(VecScatterBegin(a->Mvctx, a->lvec, yy, ADD_VALUES, SCATTER_REVERSE));
1257:   PetscCall(VecScatterEnd(a->Mvctx, a->lvec, yy, ADD_VALUES, SCATTER_REVERSE));
1258:   PetscFunctionReturn(PETSC_SUCCESS);
1259: }

1261: static PetscErrorCode MatMultTransposeAdd_MPIBAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1262: {
1263:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1265:   PetscFunctionBegin;
1266:   /* do nondiagonal part */
1267:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->lvec));
1268:   /* do local part */
1269:   PetscCall((*a->A->ops->multtransposeadd)(a->A, xx, yy, zz));
1270:   /* add partial results together */
1271:   PetscCall(VecScatterBegin(a->Mvctx, a->lvec, zz, ADD_VALUES, SCATTER_REVERSE));
1272:   PetscCall(VecScatterEnd(a->Mvctx, a->lvec, zz, ADD_VALUES, SCATTER_REVERSE));
1273:   PetscFunctionReturn(PETSC_SUCCESS);
1274: }

1276: /*
1277:   This only works correctly for square matrices where the subblock A->A is the
1278:    diagonal block
1279: */
1280: static PetscErrorCode MatGetDiagonal_MPIBAIJ(Mat A, Vec v)
1281: {
1282:   PetscFunctionBegin;
1283:   PetscCheck(A->rmap->N == A->cmap->N, PETSC_COMM_SELF, PETSC_ERR_SUP, "Supports only square matrix where A->A is diag block");
1284:   PetscCall(MatGetDiagonal(((Mat_MPIBAIJ *)A->data)->A, v));
1285:   PetscFunctionReturn(PETSC_SUCCESS);
1286: }

1288: static PetscErrorCode MatScale_MPIBAIJ(Mat A, PetscScalar aa)
1289: {
1290:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1292:   PetscFunctionBegin;
1293:   PetscCall(MatScale(a->A, aa));
1294:   PetscCall(MatScale(a->B, aa));
1295:   PetscFunctionReturn(PETSC_SUCCESS);
1296: }

1298: PetscErrorCode MatGetRow_MPIBAIJ(Mat matin, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1299: {
1300:   Mat_MPIBAIJ *mat = (Mat_MPIBAIJ *)matin->data;
1301:   PetscScalar *vworkA, *vworkB, **pvA, **pvB, *v_p;
1302:   PetscInt     bs = matin->rmap->bs, bs2 = mat->bs2, i, *cworkA, *cworkB, **pcA, **pcB;
1303:   PetscInt     nztot, nzA, nzB, lrow, brstart = matin->rmap->rstart, brend = matin->rmap->rend;
1304:   PetscInt    *cmap, *idx_p, cstart = mat->cstartbs;

1306:   PetscFunctionBegin;
1307:   PetscCheck(row >= brstart && row < brend, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local rows");
1308:   PetscCheck(!mat->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Already active");
1309:   mat->getrowactive = PETSC_TRUE;

1311:   if (!mat->rowvalues && (idx || v)) {
1312:     /*
1313:         allocate enough space to hold information from the longest row.
1314:     */
1315:     Mat_SeqBAIJ *Aa = (Mat_SeqBAIJ *)mat->A->data, *Ba = (Mat_SeqBAIJ *)mat->B->data;
1316:     PetscInt     max = 1, mbs = mat->mbs, tmp;
1317:     for (i = 0; i < mbs; i++) {
1318:       tmp = Aa->i[i + 1] - Aa->i[i] + Ba->i[i + 1] - Ba->i[i];
1319:       if (max < tmp) max = tmp;
1320:     }
1321:     PetscCall(PetscMalloc2(max * bs2, &mat->rowvalues, max * bs2, &mat->rowindices));
1322:   }
1323:   lrow = row - brstart;

1325:   pvA = &vworkA;
1326:   pcA = &cworkA;
1327:   pvB = &vworkB;
1328:   pcB = &cworkB;
1329:   if (!v) {
1330:     pvA = NULL;
1331:     pvB = NULL;
1332:   }
1333:   if (!idx) {
1334:     pcA = NULL;
1335:     if (!v) pcB = NULL;
1336:   }
1337:   PetscCall((*mat->A->ops->getrow)(mat->A, lrow, &nzA, pcA, pvA));
1338:   PetscCall((*mat->B->ops->getrow)(mat->B, lrow, &nzB, pcB, pvB));
1339:   nztot = nzA + nzB;

1341:   cmap = mat->garray;
1342:   if (v || idx) {
1343:     if (nztot) {
1344:       /* Sort by increasing column numbers, assuming A and B already sorted */
1345:       PetscInt imark = -1;
1346:       if (v) {
1347:         *v = v_p = mat->rowvalues;
1348:         for (i = 0; i < nzB; i++) {
1349:           if (cmap[cworkB[i] / bs] < cstart) v_p[i] = vworkB[i];
1350:           else break;
1351:         }
1352:         imark = i;
1353:         for (i = 0; i < nzA; i++) v_p[imark + i] = vworkA[i];
1354:         for (i = imark; i < nzB; i++) v_p[nzA + i] = vworkB[i];
1355:       }
1356:       if (idx) {
1357:         *idx = idx_p = mat->rowindices;
1358:         if (imark > -1) {
1359:           for (i = 0; i < imark; i++) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1360:         } else {
1361:           for (i = 0; i < nzB; i++) {
1362:             if (cmap[cworkB[i] / bs] < cstart) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1363:             else break;
1364:           }
1365:           imark = i;
1366:         }
1367:         for (i = 0; i < nzA; i++) idx_p[imark + i] = cstart * bs + cworkA[i];
1368:         for (i = imark; i < nzB; i++) idx_p[nzA + i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1369:       }
1370:     } else {
1371:       if (idx) *idx = NULL;
1372:       if (v) *v = NULL;
1373:     }
1374:   }
1375:   *nz = nztot;
1376:   PetscCall((*mat->A->ops->restorerow)(mat->A, lrow, &nzA, pcA, pvA));
1377:   PetscCall((*mat->B->ops->restorerow)(mat->B, lrow, &nzB, pcB, pvB));
1378:   PetscFunctionReturn(PETSC_SUCCESS);
1379: }

1381: PetscErrorCode MatRestoreRow_MPIBAIJ(Mat mat, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1382: {
1383:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;

1385:   PetscFunctionBegin;
1386:   PetscCheck(baij->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "MatGetRow not called");
1387:   baij->getrowactive = PETSC_FALSE;
1388:   PetscFunctionReturn(PETSC_SUCCESS);
1389: }

1391: static PetscErrorCode MatZeroEntries_MPIBAIJ(Mat A)
1392: {
1393:   Mat_MPIBAIJ *l = (Mat_MPIBAIJ *)A->data;

1395:   PetscFunctionBegin;
1396:   PetscCall(MatZeroEntries(l->A));
1397:   PetscCall(MatZeroEntries(l->B));
1398:   PetscFunctionReturn(PETSC_SUCCESS);
1399: }

1401: static PetscErrorCode MatGetInfo_MPIBAIJ(Mat matin, MatInfoType flag, MatInfo *info)
1402: {
1403:   Mat_MPIBAIJ   *a = (Mat_MPIBAIJ *)matin->data;
1404:   Mat            A = a->A, B = a->B;
1405:   PetscLogDouble isend[5], irecv[5];

1407:   PetscFunctionBegin;
1408:   info->block_size = (PetscReal)matin->rmap->bs;

1410:   PetscCall(MatGetInfo(A, MAT_LOCAL, info));

1412:   isend[0] = info->nz_used;
1413:   isend[1] = info->nz_allocated;
1414:   isend[2] = info->nz_unneeded;
1415:   isend[3] = info->memory;
1416:   isend[4] = info->mallocs;

1418:   PetscCall(MatGetInfo(B, MAT_LOCAL, info));

1420:   isend[0] += info->nz_used;
1421:   isend[1] += info->nz_allocated;
1422:   isend[2] += info->nz_unneeded;
1423:   isend[3] += info->memory;
1424:   isend[4] += info->mallocs;

1426:   if (flag == MAT_LOCAL) {
1427:     info->nz_used      = isend[0];
1428:     info->nz_allocated = isend[1];
1429:     info->nz_unneeded  = isend[2];
1430:     info->memory       = isend[3];
1431:     info->mallocs      = isend[4];
1432:   } else if (flag == MAT_GLOBAL_MAX) {
1433:     PetscCall(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_MAX, PetscObjectComm((PetscObject)matin)));

1435:     info->nz_used      = irecv[0];
1436:     info->nz_allocated = irecv[1];
1437:     info->nz_unneeded  = irecv[2];
1438:     info->memory       = irecv[3];
1439:     info->mallocs      = irecv[4];
1440:   } else if (flag == MAT_GLOBAL_SUM) {
1441:     PetscCall(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_SUM, PetscObjectComm((PetscObject)matin)));

1443:     info->nz_used      = irecv[0];
1444:     info->nz_allocated = irecv[1];
1445:     info->nz_unneeded  = irecv[2];
1446:     info->memory       = irecv[3];
1447:     info->mallocs      = irecv[4];
1448:   } else SETERRQ(PetscObjectComm((PetscObject)matin), PETSC_ERR_ARG_WRONG, "Unknown MatInfoType argument %d", (int)flag);
1449:   info->fill_ratio_given  = 0; /* no parallel LU/ILU/Cholesky */
1450:   info->fill_ratio_needed = 0;
1451:   info->factor_mallocs    = 0;
1452:   PetscFunctionReturn(PETSC_SUCCESS);
1453: }

1455: static PetscErrorCode MatSetOption_MPIBAIJ(Mat A, MatOption op, PetscBool flg)
1456: {
1457:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1459:   PetscFunctionBegin;
1460:   switch (op) {
1461:   case MAT_NEW_NONZERO_LOCATIONS:
1462:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1463:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1464:   case MAT_KEEP_NONZERO_PATTERN:
1465:   case MAT_NEW_NONZERO_LOCATION_ERR:
1466:     MatCheckPreallocated(A, 1);
1467:     PetscCall(MatSetOption(a->A, op, flg));
1468:     PetscCall(MatSetOption(a->B, op, flg));
1469:     break;
1470:   case MAT_ROW_ORIENTED:
1471:     MatCheckPreallocated(A, 1);
1472:     a->roworiented = flg;

1474:     PetscCall(MatSetOption(a->A, op, flg));
1475:     PetscCall(MatSetOption(a->B, op, flg));
1476:     break;
1477:   case MAT_FORCE_DIAGONAL_ENTRIES:
1478:   case MAT_SORTED_FULL:
1479:     PetscCall(PetscInfo(A, "Option %s ignored\n", MatOptions[op]));
1480:     break;
1481:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1482:     a->donotstash = flg;
1483:     break;
1484:   case MAT_USE_HASH_TABLE:
1485:     a->ht_flag = flg;
1486:     a->ht_fact = 1.39;
1487:     break;
1488:   case MAT_SYMMETRIC:
1489:   case MAT_STRUCTURALLY_SYMMETRIC:
1490:   case MAT_HERMITIAN:
1491:   case MAT_SUBMAT_SINGLEIS:
1492:   case MAT_SYMMETRY_ETERNAL:
1493:   case MAT_STRUCTURAL_SYMMETRY_ETERNAL:
1494:   case MAT_SPD_ETERNAL:
1495:     /* if the diagonal matrix is square it inherits some of the properties above */
1496:     break;
1497:   default:
1498:     SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "unknown option %d", op);
1499:   }
1500:   PetscFunctionReturn(PETSC_SUCCESS);
1501: }

1503: static PetscErrorCode MatTranspose_MPIBAIJ(Mat A, MatReuse reuse, Mat *matout)
1504: {
1505:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)A->data;
1506:   Mat_SeqBAIJ *Aloc;
1507:   Mat          B;
1508:   PetscInt     M = A->rmap->N, N = A->cmap->N, *ai, *aj, i, *rvals, j, k, col;
1509:   PetscInt     bs = A->rmap->bs, mbs = baij->mbs;
1510:   MatScalar   *a;

1512:   PetscFunctionBegin;
1513:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *matout));
1514:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_INPLACE_MATRIX) {
1515:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
1516:     PetscCall(MatSetSizes(B, A->cmap->n, A->rmap->n, N, M));
1517:     PetscCall(MatSetType(B, ((PetscObject)A)->type_name));
1518:     /* Do not know preallocation information, but must set block size */
1519:     PetscCall(MatMPIBAIJSetPreallocation(B, A->rmap->bs, PETSC_DECIDE, NULL, PETSC_DECIDE, NULL));
1520:   } else {
1521:     B = *matout;
1522:   }

1524:   /* copy over the A part */
1525:   Aloc = (Mat_SeqBAIJ *)baij->A->data;
1526:   ai   = Aloc->i;
1527:   aj   = Aloc->j;
1528:   a    = Aloc->a;
1529:   PetscCall(PetscMalloc1(bs, &rvals));

1531:   for (i = 0; i < mbs; i++) {
1532:     rvals[0] = bs * (baij->rstartbs + i);
1533:     for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1534:     for (j = ai[i]; j < ai[i + 1]; j++) {
1535:       col = (baij->cstartbs + aj[j]) * bs;
1536:       for (k = 0; k < bs; k++) {
1537:         PetscCall(MatSetValues_MPIBAIJ(B, 1, &col, bs, rvals, a, INSERT_VALUES));

1539:         col++;
1540:         a += bs;
1541:       }
1542:     }
1543:   }
1544:   /* copy over the B part */
1545:   Aloc = (Mat_SeqBAIJ *)baij->B->data;
1546:   ai   = Aloc->i;
1547:   aj   = Aloc->j;
1548:   a    = Aloc->a;
1549:   for (i = 0; i < mbs; i++) {
1550:     rvals[0] = bs * (baij->rstartbs + i);
1551:     for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
1552:     for (j = ai[i]; j < ai[i + 1]; j++) {
1553:       col = baij->garray[aj[j]] * bs;
1554:       for (k = 0; k < bs; k++) {
1555:         PetscCall(MatSetValues_MPIBAIJ(B, 1, &col, bs, rvals, a, INSERT_VALUES));
1556:         col++;
1557:         a += bs;
1558:       }
1559:     }
1560:   }
1561:   PetscCall(PetscFree(rvals));
1562:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
1563:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

1565:   if (reuse == MAT_INITIAL_MATRIX || reuse == MAT_REUSE_MATRIX) *matout = B;
1566:   else PetscCall(MatHeaderMerge(A, &B));
1567:   PetscFunctionReturn(PETSC_SUCCESS);
1568: }

1570: static PetscErrorCode MatDiagonalScale_MPIBAIJ(Mat mat, Vec ll, Vec rr)
1571: {
1572:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
1573:   Mat          a = baij->A, b = baij->B;
1574:   PetscInt     s1, s2, s3;

1576:   PetscFunctionBegin;
1577:   PetscCall(MatGetLocalSize(mat, &s2, &s3));
1578:   if (rr) {
1579:     PetscCall(VecGetLocalSize(rr, &s1));
1580:     PetscCheck(s1 == s3, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "right vector non-conforming local size");
1581:     /* Overlap communication with computation. */
1582:     PetscCall(VecScatterBegin(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1583:   }
1584:   if (ll) {
1585:     PetscCall(VecGetLocalSize(ll, &s1));
1586:     PetscCheck(s1 == s2, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "left vector non-conforming local size");
1587:     PetscUseTypeMethod(b, diagonalscale, ll, NULL);
1588:   }
1589:   /* scale  the diagonal block */
1590:   PetscUseTypeMethod(a, diagonalscale, ll, rr);

1592:   if (rr) {
1593:     /* Do a scatter end and then right scale the off-diagonal block */
1594:     PetscCall(VecScatterEnd(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1595:     PetscUseTypeMethod(b, diagonalscale, NULL, baij->lvec);
1596:   }
1597:   PetscFunctionReturn(PETSC_SUCCESS);
1598: }

1600: static PetscErrorCode MatZeroRows_MPIBAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
1601: {
1602:   Mat_MPIBAIJ *l = (Mat_MPIBAIJ *)A->data;
1603:   PetscInt    *lrows;
1604:   PetscInt     r, len;
1605:   PetscBool    cong;

1607:   PetscFunctionBegin;
1608:   /* get locally owned rows */
1609:   PetscCall(MatZeroRowsMapLocal_Private(A, N, rows, &len, &lrows));
1610:   /* fix right-hand side if needed */
1611:   if (x && b) {
1612:     const PetscScalar *xx;
1613:     PetscScalar       *bb;

1615:     PetscCall(VecGetArrayRead(x, &xx));
1616:     PetscCall(VecGetArray(b, &bb));
1617:     for (r = 0; r < len; ++r) bb[lrows[r]] = diag * xx[lrows[r]];
1618:     PetscCall(VecRestoreArrayRead(x, &xx));
1619:     PetscCall(VecRestoreArray(b, &bb));
1620:   }

1622:   /* actually zap the local rows */
1623:   /*
1624:         Zero the required rows. If the "diagonal block" of the matrix
1625:      is square and the user wishes to set the diagonal we use separate
1626:      code so that MatSetValues() is not called for each diagonal allocating
1627:      new memory, thus calling lots of mallocs and slowing things down.

1629:   */
1630:   /* must zero l->B before l->A because the (diag) case below may put values into l->B*/
1631:   PetscCall(MatZeroRows_SeqBAIJ(l->B, len, lrows, 0.0, NULL, NULL));
1632:   PetscCall(MatHasCongruentLayouts(A, &cong));
1633:   if ((diag != 0.0) && cong) {
1634:     PetscCall(MatZeroRows_SeqBAIJ(l->A, len, lrows, diag, NULL, NULL));
1635:   } else if (diag != 0.0) {
1636:     PetscCall(MatZeroRows_SeqBAIJ(l->A, len, lrows, 0.0, NULL, NULL));
1637:     PetscCheck(!((Mat_SeqBAIJ *)l->A->data)->nonew, PETSC_COMM_SELF, PETSC_ERR_SUP, "MatZeroRows() on rectangular matrices cannot be used with the Mat options MAT_NEW_NONZERO_LOCATIONS, MAT_NEW_NONZERO_LOCATION_ERR, and MAT_NEW_NONZERO_ALLOCATION_ERR");
1638:     for (r = 0; r < len; ++r) {
1639:       const PetscInt row = lrows[r] + A->rmap->rstart;
1640:       PetscCall(MatSetValues(A, 1, &row, 1, &row, &diag, INSERT_VALUES));
1641:     }
1642:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
1643:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
1644:   } else {
1645:     PetscCall(MatZeroRows_SeqBAIJ(l->A, len, lrows, 0.0, NULL, NULL));
1646:   }
1647:   PetscCall(PetscFree(lrows));

1649:   /* only change matrix nonzero state if pattern was allowed to be changed */
1650:   if (!((Mat_SeqBAIJ *)l->A->data)->keepnonzeropattern || !((Mat_SeqBAIJ *)l->A->data)->nonew) {
1651:     PetscObjectState state = l->A->nonzerostate + l->B->nonzerostate;
1652:     PetscCall(MPIU_Allreduce(&state, &A->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)A)));
1653:   }
1654:   PetscFunctionReturn(PETSC_SUCCESS);
1655: }

1657: static PetscErrorCode MatZeroRowsColumns_MPIBAIJ(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
1658: {
1659:   Mat_MPIBAIJ       *l = (Mat_MPIBAIJ *)A->data;
1660:   PetscMPIInt        n = A->rmap->n, p = 0;
1661:   PetscInt           i, j, k, r, len = 0, row, col, count;
1662:   PetscInt          *lrows, *owners = A->rmap->range;
1663:   PetscSFNode       *rrows;
1664:   PetscSF            sf;
1665:   const PetscScalar *xx;
1666:   PetscScalar       *bb, *mask;
1667:   Vec                xmask, lmask;
1668:   Mat_SeqBAIJ       *baij = (Mat_SeqBAIJ *)l->B->data;
1669:   PetscInt           bs = A->rmap->bs, bs2 = baij->bs2;
1670:   PetscScalar       *aa;

1672:   PetscFunctionBegin;
1673:   /* Create SF where leaves are input rows and roots are owned rows */
1674:   PetscCall(PetscMalloc1(n, &lrows));
1675:   for (r = 0; r < n; ++r) lrows[r] = -1;
1676:   PetscCall(PetscMalloc1(N, &rrows));
1677:   for (r = 0; r < N; ++r) {
1678:     const PetscInt idx = rows[r];
1679:     PetscCheck(idx >= 0 && A->rmap->N > idx, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " out of range [0,%" PetscInt_FMT ")", idx, A->rmap->N);
1680:     if (idx < owners[p] || owners[p + 1] <= idx) { /* short-circuit the search if the last p owns this row too */
1681:       PetscCall(PetscLayoutFindOwner(A->rmap, idx, &p));
1682:     }
1683:     rrows[r].rank  = p;
1684:     rrows[r].index = rows[r] - owners[p];
1685:   }
1686:   PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)A), &sf));
1687:   PetscCall(PetscSFSetGraph(sf, n, N, NULL, PETSC_OWN_POINTER, rrows, PETSC_OWN_POINTER));
1688:   /* Collect flags for rows to be zeroed */
1689:   PetscCall(PetscSFReduceBegin(sf, MPIU_INT, (PetscInt *)rows, lrows, MPI_LOR));
1690:   PetscCall(PetscSFReduceEnd(sf, MPIU_INT, (PetscInt *)rows, lrows, MPI_LOR));
1691:   PetscCall(PetscSFDestroy(&sf));
1692:   /* Compress and put in row numbers */
1693:   for (r = 0; r < n; ++r)
1694:     if (lrows[r] >= 0) lrows[len++] = r;
1695:   /* zero diagonal part of matrix */
1696:   PetscCall(MatZeroRowsColumns(l->A, len, lrows, diag, x, b));
1697:   /* handle off-diagonal part of matrix */
1698:   PetscCall(MatCreateVecs(A, &xmask, NULL));
1699:   PetscCall(VecDuplicate(l->lvec, &lmask));
1700:   PetscCall(VecGetArray(xmask, &bb));
1701:   for (i = 0; i < len; i++) bb[lrows[i]] = 1;
1702:   PetscCall(VecRestoreArray(xmask, &bb));
1703:   PetscCall(VecScatterBegin(l->Mvctx, xmask, lmask, ADD_VALUES, SCATTER_FORWARD));
1704:   PetscCall(VecScatterEnd(l->Mvctx, xmask, lmask, ADD_VALUES, SCATTER_FORWARD));
1705:   PetscCall(VecDestroy(&xmask));
1706:   if (x) {
1707:     PetscCall(VecScatterBegin(l->Mvctx, x, l->lvec, INSERT_VALUES, SCATTER_FORWARD));
1708:     PetscCall(VecScatterEnd(l->Mvctx, x, l->lvec, INSERT_VALUES, SCATTER_FORWARD));
1709:     PetscCall(VecGetArrayRead(l->lvec, &xx));
1710:     PetscCall(VecGetArray(b, &bb));
1711:   }
1712:   PetscCall(VecGetArray(lmask, &mask));
1713:   /* remove zeroed rows of off-diagonal matrix */
1714:   for (i = 0; i < len; ++i) {
1715:     row   = lrows[i];
1716:     count = (baij->i[row / bs + 1] - baij->i[row / bs]) * bs;
1717:     aa    = ((MatScalar *)baij->a) + baij->i[row / bs] * bs2 + (row % bs);
1718:     for (k = 0; k < count; ++k) {
1719:       aa[0] = 0.0;
1720:       aa += bs;
1721:     }
1722:   }
1723:   /* loop over all elements of off process part of matrix zeroing removed columns*/
1724:   for (i = 0; i < l->B->rmap->N; ++i) {
1725:     row = i / bs;
1726:     for (j = baij->i[row]; j < baij->i[row + 1]; ++j) {
1727:       for (k = 0; k < bs; ++k) {
1728:         col = bs * baij->j[j] + k;
1729:         if (PetscAbsScalar(mask[col])) {
1730:           aa = ((MatScalar *)baij->a) + j * bs2 + (i % bs) + bs * k;
1731:           if (x) bb[i] -= aa[0] * xx[col];
1732:           aa[0] = 0.0;
1733:         }
1734:       }
1735:     }
1736:   }
1737:   if (x) {
1738:     PetscCall(VecRestoreArray(b, &bb));
1739:     PetscCall(VecRestoreArrayRead(l->lvec, &xx));
1740:   }
1741:   PetscCall(VecRestoreArray(lmask, &mask));
1742:   PetscCall(VecDestroy(&lmask));
1743:   PetscCall(PetscFree(lrows));

1745:   /* only change matrix nonzero state if pattern was allowed to be changed */
1746:   if (!((Mat_SeqBAIJ *)l->A->data)->nonew) {
1747:     PetscObjectState state = l->A->nonzerostate + l->B->nonzerostate;
1748:     PetscCall(MPIU_Allreduce(&state, &A->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)A)));
1749:   }
1750:   PetscFunctionReturn(PETSC_SUCCESS);
1751: }

1753: static PetscErrorCode MatSetUnfactored_MPIBAIJ(Mat A)
1754: {
1755:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1757:   PetscFunctionBegin;
1758:   PetscCall(MatSetUnfactored(a->A));
1759:   PetscFunctionReturn(PETSC_SUCCESS);
1760: }

1762: static PetscErrorCode MatDuplicate_MPIBAIJ(Mat, MatDuplicateOption, Mat *);

1764: static PetscErrorCode MatEqual_MPIBAIJ(Mat A, Mat B, PetscBool *flag)
1765: {
1766:   Mat_MPIBAIJ *matB = (Mat_MPIBAIJ *)B->data, *matA = (Mat_MPIBAIJ *)A->data;
1767:   Mat          a, b, c, d;
1768:   PetscBool    flg;

1770:   PetscFunctionBegin;
1771:   a = matA->A;
1772:   b = matA->B;
1773:   c = matB->A;
1774:   d = matB->B;

1776:   PetscCall(MatEqual(a, c, &flg));
1777:   if (flg) PetscCall(MatEqual(b, d, &flg));
1778:   PetscCall(MPIU_Allreduce(&flg, flag, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)A)));
1779:   PetscFunctionReturn(PETSC_SUCCESS);
1780: }

1782: static PetscErrorCode MatCopy_MPIBAIJ(Mat A, Mat B, MatStructure str)
1783: {
1784:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
1785:   Mat_MPIBAIJ *b = (Mat_MPIBAIJ *)B->data;

1787:   PetscFunctionBegin;
1788:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
1789:   if ((str != SAME_NONZERO_PATTERN) || (A->ops->copy != B->ops->copy)) {
1790:     PetscCall(MatCopy_Basic(A, B, str));
1791:   } else {
1792:     PetscCall(MatCopy(a->A, b->A, str));
1793:     PetscCall(MatCopy(a->B, b->B, str));
1794:   }
1795:   PetscCall(PetscObjectStateIncrease((PetscObject)B));
1796:   PetscFunctionReturn(PETSC_SUCCESS);
1797: }

1799: PetscErrorCode MatAXPYGetPreallocation_MPIBAIJ(Mat Y, const PetscInt *yltog, Mat X, const PetscInt *xltog, PetscInt *nnz)
1800: {
1801:   PetscInt     bs = Y->rmap->bs, m = Y->rmap->N / bs;
1802:   Mat_SeqBAIJ *x = (Mat_SeqBAIJ *)X->data;
1803:   Mat_SeqBAIJ *y = (Mat_SeqBAIJ *)Y->data;

1805:   PetscFunctionBegin;
1806:   PetscCall(MatAXPYGetPreallocation_MPIX_private(m, x->i, x->j, xltog, y->i, y->j, yltog, nnz));
1807:   PetscFunctionReturn(PETSC_SUCCESS);
1808: }

1810: static PetscErrorCode MatAXPY_MPIBAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
1811: {
1812:   Mat_MPIBAIJ *xx = (Mat_MPIBAIJ *)X->data, *yy = (Mat_MPIBAIJ *)Y->data;
1813:   PetscBLASInt bnz, one                         = 1;
1814:   Mat_SeqBAIJ *x, *y;
1815:   PetscInt     bs2 = Y->rmap->bs * Y->rmap->bs;

1817:   PetscFunctionBegin;
1818:   if (str == SAME_NONZERO_PATTERN) {
1819:     PetscScalar alpha = a;
1820:     x                 = (Mat_SeqBAIJ *)xx->A->data;
1821:     y                 = (Mat_SeqBAIJ *)yy->A->data;
1822:     PetscCall(PetscBLASIntCast(x->nz * bs2, &bnz));
1823:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, x->a, &one, y->a, &one));
1824:     x = (Mat_SeqBAIJ *)xx->B->data;
1825:     y = (Mat_SeqBAIJ *)yy->B->data;
1826:     PetscCall(PetscBLASIntCast(x->nz * bs2, &bnz));
1827:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, x->a, &one, y->a, &one));
1828:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
1829:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
1830:     PetscCall(MatAXPY_Basic(Y, a, X, str));
1831:   } else {
1832:     Mat       B;
1833:     PetscInt *nnz_d, *nnz_o, bs = Y->rmap->bs;
1834:     PetscCall(PetscMalloc1(yy->A->rmap->N, &nnz_d));
1835:     PetscCall(PetscMalloc1(yy->B->rmap->N, &nnz_o));
1836:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
1837:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
1838:     PetscCall(MatSetSizes(B, Y->rmap->n, Y->cmap->n, Y->rmap->N, Y->cmap->N));
1839:     PetscCall(MatSetBlockSizesFromMats(B, Y, Y));
1840:     PetscCall(MatSetType(B, MATMPIBAIJ));
1841:     PetscCall(MatAXPYGetPreallocation_SeqBAIJ(yy->A, xx->A, nnz_d));
1842:     PetscCall(MatAXPYGetPreallocation_MPIBAIJ(yy->B, yy->garray, xx->B, xx->garray, nnz_o));
1843:     PetscCall(MatMPIBAIJSetPreallocation(B, bs, 0, nnz_d, 0, nnz_o));
1844:     /* MatAXPY_BasicWithPreallocation() for BAIJ matrix is much slower than AIJ, even for bs=1 ! */
1845:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
1846:     PetscCall(MatHeaderMerge(Y, &B));
1847:     PetscCall(PetscFree(nnz_d));
1848:     PetscCall(PetscFree(nnz_o));
1849:   }
1850:   PetscFunctionReturn(PETSC_SUCCESS);
1851: }

1853: static PetscErrorCode MatConjugate_MPIBAIJ(Mat mat)
1854: {
1855:   PetscFunctionBegin;
1856:   if (PetscDefined(USE_COMPLEX)) {
1857:     Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)mat->data;

1859:     PetscCall(MatConjugate_SeqBAIJ(a->A));
1860:     PetscCall(MatConjugate_SeqBAIJ(a->B));
1861:   }
1862:   PetscFunctionReturn(PETSC_SUCCESS);
1863: }

1865: static PetscErrorCode MatRealPart_MPIBAIJ(Mat A)
1866: {
1867:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1869:   PetscFunctionBegin;
1870:   PetscCall(MatRealPart(a->A));
1871:   PetscCall(MatRealPart(a->B));
1872:   PetscFunctionReturn(PETSC_SUCCESS);
1873: }

1875: static PetscErrorCode MatImaginaryPart_MPIBAIJ(Mat A)
1876: {
1877:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

1879:   PetscFunctionBegin;
1880:   PetscCall(MatImaginaryPart(a->A));
1881:   PetscCall(MatImaginaryPart(a->B));
1882:   PetscFunctionReturn(PETSC_SUCCESS);
1883: }

1885: static PetscErrorCode MatCreateSubMatrix_MPIBAIJ(Mat mat, IS isrow, IS iscol, MatReuse call, Mat *newmat)
1886: {
1887:   IS       iscol_local;
1888:   PetscInt csize;

1890:   PetscFunctionBegin;
1891:   PetscCall(ISGetLocalSize(iscol, &csize));
1892:   if (call == MAT_REUSE_MATRIX) {
1893:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "ISAllGather", (PetscObject *)&iscol_local));
1894:     PetscCheck(iscol_local, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1895:   } else {
1896:     PetscCall(ISAllGather(iscol, &iscol_local));
1897:   }
1898:   PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(mat, isrow, iscol_local, csize, call, newmat, PETSC_FALSE));
1899:   if (call == MAT_INITIAL_MATRIX) {
1900:     PetscCall(PetscObjectCompose((PetscObject)*newmat, "ISAllGather", (PetscObject)iscol_local));
1901:     PetscCall(ISDestroy(&iscol_local));
1902:   }
1903:   PetscFunctionReturn(PETSC_SUCCESS);
1904: }

1906: /*
1907:   Not great since it makes two copies of the submatrix, first an SeqBAIJ
1908:   in local and then by concatenating the local matrices the end result.
1909:   Writing it directly would be much like MatCreateSubMatrices_MPIBAIJ().
1910:   This routine is used for BAIJ and SBAIJ matrices (unfortunate dependency).
1911: */
1912: PetscErrorCode MatCreateSubMatrix_MPIBAIJ_Private(Mat mat, IS isrow, IS iscol, PetscInt csize, MatReuse call, Mat *newmat, PetscBool sym)
1913: {
1914:   PetscMPIInt  rank, size;
1915:   PetscInt     i, m, n, rstart, row, rend, nz, *cwork, j, bs;
1916:   PetscInt    *ii, *jj, nlocal, *dlens, *olens, dlen, olen, jend, mglobal;
1917:   Mat          M, Mreuse;
1918:   MatScalar   *vwork, *aa;
1919:   MPI_Comm     comm;
1920:   IS           isrow_new, iscol_new;
1921:   Mat_SeqBAIJ *aij;

1923:   PetscFunctionBegin;
1924:   PetscCall(PetscObjectGetComm((PetscObject)mat, &comm));
1925:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
1926:   PetscCallMPI(MPI_Comm_size(comm, &size));
1927:   /* The compression and expansion should be avoided. Doesn't point
1928:      out errors, might change the indices, hence buggey */
1929:   PetscCall(ISCompressIndicesGeneral(mat->rmap->N, mat->rmap->n, mat->rmap->bs, 1, &isrow, &isrow_new));
1930:   if (isrow == iscol) {
1931:     iscol_new = isrow_new;
1932:     PetscCall(PetscObjectReference((PetscObject)iscol_new));
1933:   } else PetscCall(ISCompressIndicesGeneral(mat->cmap->N, mat->cmap->n, mat->cmap->bs, 1, &iscol, &iscol_new));

1935:   if (call == MAT_REUSE_MATRIX) {
1936:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "SubMatrix", (PetscObject *)&Mreuse));
1937:     PetscCheck(Mreuse, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1938:     PetscCall(MatCreateSubMatrices_MPIBAIJ_local(mat, 1, &isrow_new, &iscol_new, MAT_REUSE_MATRIX, &Mreuse, sym));
1939:   } else {
1940:     PetscCall(MatCreateSubMatrices_MPIBAIJ_local(mat, 1, &isrow_new, &iscol_new, MAT_INITIAL_MATRIX, &Mreuse, sym));
1941:   }
1942:   PetscCall(ISDestroy(&isrow_new));
1943:   PetscCall(ISDestroy(&iscol_new));
1944:   /*
1945:       m - number of local rows
1946:       n - number of columns (same on all processors)
1947:       rstart - first row in new global matrix generated
1948:   */
1949:   PetscCall(MatGetBlockSize(mat, &bs));
1950:   PetscCall(MatGetSize(Mreuse, &m, &n));
1951:   m = m / bs;
1952:   n = n / bs;

1954:   if (call == MAT_INITIAL_MATRIX) {
1955:     aij = (Mat_SeqBAIJ *)(Mreuse)->data;
1956:     ii  = aij->i;
1957:     jj  = aij->j;

1959:     /*
1960:         Determine the number of non-zeros in the diagonal and off-diagonal
1961:         portions of the matrix in order to do correct preallocation
1962:     */

1964:     /* first get start and end of "diagonal" columns */
1965:     if (csize == PETSC_DECIDE) {
1966:       PetscCall(ISGetSize(isrow, &mglobal));
1967:       if (mglobal == n * bs) { /* square matrix */
1968:         nlocal = m;
1969:       } else {
1970:         nlocal = n / size + ((n % size) > rank);
1971:       }
1972:     } else {
1973:       nlocal = csize / bs;
1974:     }
1975:     PetscCallMPI(MPI_Scan(&nlocal, &rend, 1, MPIU_INT, MPI_SUM, comm));
1976:     rstart = rend - nlocal;
1977:     PetscCheck(rank != size - 1 || rend == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Local column sizes %" PetscInt_FMT " do not add up to total number of columns %" PetscInt_FMT, rend, n);

1979:     /* next, compute all the lengths */
1980:     PetscCall(PetscMalloc2(m + 1, &dlens, m + 1, &olens));
1981:     for (i = 0; i < m; i++) {
1982:       jend = ii[i + 1] - ii[i];
1983:       olen = 0;
1984:       dlen = 0;
1985:       for (j = 0; j < jend; j++) {
1986:         if (*jj < rstart || *jj >= rend) olen++;
1987:         else dlen++;
1988:         jj++;
1989:       }
1990:       olens[i] = olen;
1991:       dlens[i] = dlen;
1992:     }
1993:     PetscCall(MatCreate(comm, &M));
1994:     PetscCall(MatSetSizes(M, bs * m, bs * nlocal, PETSC_DECIDE, bs * n));
1995:     PetscCall(MatSetType(M, sym ? ((PetscObject)mat)->type_name : MATMPIBAIJ));
1996:     PetscCall(MatMPIBAIJSetPreallocation(M, bs, 0, dlens, 0, olens));
1997:     PetscCall(MatMPISBAIJSetPreallocation(M, bs, 0, dlens, 0, olens));
1998:     PetscCall(PetscFree2(dlens, olens));
1999:   } else {
2000:     PetscInt ml, nl;

2002:     M = *newmat;
2003:     PetscCall(MatGetLocalSize(M, &ml, &nl));
2004:     PetscCheck(ml == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Previous matrix must be same size/layout as request");
2005:     PetscCall(MatZeroEntries(M));
2006:     /*
2007:          The next two lines are needed so we may call MatSetValues_MPIAIJ() below directly,
2008:        rather than the slower MatSetValues().
2009:     */
2010:     M->was_assembled = PETSC_TRUE;
2011:     M->assembled     = PETSC_FALSE;
2012:   }
2013:   PetscCall(MatSetOption(M, MAT_ROW_ORIENTED, PETSC_FALSE));
2014:   PetscCall(MatGetOwnershipRange(M, &rstart, &rend));
2015:   aij = (Mat_SeqBAIJ *)(Mreuse)->data;
2016:   ii  = aij->i;
2017:   jj  = aij->j;
2018:   aa  = aij->a;
2019:   for (i = 0; i < m; i++) {
2020:     row   = rstart / bs + i;
2021:     nz    = ii[i + 1] - ii[i];
2022:     cwork = jj;
2023:     jj    = PetscSafePointerPlusOffset(jj, nz);
2024:     vwork = aa;
2025:     aa    = PetscSafePointerPlusOffset(aa, nz * bs * bs);
2026:     PetscCall(MatSetValuesBlocked_MPIBAIJ(M, 1, &row, nz, cwork, vwork, INSERT_VALUES));
2027:   }

2029:   PetscCall(MatAssemblyBegin(M, MAT_FINAL_ASSEMBLY));
2030:   PetscCall(MatAssemblyEnd(M, MAT_FINAL_ASSEMBLY));
2031:   *newmat = M;

2033:   /* save submatrix used in processor for next request */
2034:   if (call == MAT_INITIAL_MATRIX) {
2035:     PetscCall(PetscObjectCompose((PetscObject)M, "SubMatrix", (PetscObject)Mreuse));
2036:     PetscCall(PetscObjectDereference((PetscObject)Mreuse));
2037:   }
2038:   PetscFunctionReturn(PETSC_SUCCESS);
2039: }

2041: static PetscErrorCode MatPermute_MPIBAIJ(Mat A, IS rowp, IS colp, Mat *B)
2042: {
2043:   MPI_Comm        comm, pcomm;
2044:   PetscInt        clocal_size, nrows;
2045:   const PetscInt *rows;
2046:   PetscMPIInt     size;
2047:   IS              crowp, lcolp;

2049:   PetscFunctionBegin;
2050:   PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
2051:   /* make a collective version of 'rowp' */
2052:   PetscCall(PetscObjectGetComm((PetscObject)rowp, &pcomm));
2053:   if (pcomm == comm) {
2054:     crowp = rowp;
2055:   } else {
2056:     PetscCall(ISGetSize(rowp, &nrows));
2057:     PetscCall(ISGetIndices(rowp, &rows));
2058:     PetscCall(ISCreateGeneral(comm, nrows, rows, PETSC_COPY_VALUES, &crowp));
2059:     PetscCall(ISRestoreIndices(rowp, &rows));
2060:   }
2061:   PetscCall(ISSetPermutation(crowp));
2062:   /* make a local version of 'colp' */
2063:   PetscCall(PetscObjectGetComm((PetscObject)colp, &pcomm));
2064:   PetscCallMPI(MPI_Comm_size(pcomm, &size));
2065:   if (size == 1) {
2066:     lcolp = colp;
2067:   } else {
2068:     PetscCall(ISAllGather(colp, &lcolp));
2069:   }
2070:   PetscCall(ISSetPermutation(lcolp));
2071:   /* now we just get the submatrix */
2072:   PetscCall(MatGetLocalSize(A, NULL, &clocal_size));
2073:   PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(A, crowp, lcolp, clocal_size, MAT_INITIAL_MATRIX, B, PETSC_FALSE));
2074:   /* clean up */
2075:   if (pcomm != comm) PetscCall(ISDestroy(&crowp));
2076:   if (size > 1) PetscCall(ISDestroy(&lcolp));
2077:   PetscFunctionReturn(PETSC_SUCCESS);
2078: }

2080: static PetscErrorCode MatGetGhosts_MPIBAIJ(Mat mat, PetscInt *nghosts, const PetscInt *ghosts[])
2081: {
2082:   Mat_MPIBAIJ *baij = (Mat_MPIBAIJ *)mat->data;
2083:   Mat_SeqBAIJ *B    = (Mat_SeqBAIJ *)baij->B->data;

2085:   PetscFunctionBegin;
2086:   if (nghosts) *nghosts = B->nbs;
2087:   if (ghosts) *ghosts = baij->garray;
2088:   PetscFunctionReturn(PETSC_SUCCESS);
2089: }

2091: static PetscErrorCode MatGetSeqNonzeroStructure_MPIBAIJ(Mat A, Mat *newmat)
2092: {
2093:   Mat          B;
2094:   Mat_MPIBAIJ *a  = (Mat_MPIBAIJ *)A->data;
2095:   Mat_SeqBAIJ *ad = (Mat_SeqBAIJ *)a->A->data, *bd = (Mat_SeqBAIJ *)a->B->data;
2096:   Mat_SeqAIJ  *b;
2097:   PetscMPIInt  size, rank, *recvcounts = NULL, *displs = NULL;
2098:   PetscInt     sendcount, i, *rstarts = A->rmap->range, n, cnt, j, bs = A->rmap->bs;
2099:   PetscInt     m, *garray = a->garray, *lens, *jsendbuf, *a_jsendbuf, *b_jsendbuf;

2101:   PetscFunctionBegin;
2102:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
2103:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));

2105:   /*   Tell every processor the number of nonzeros per row  */
2106:   PetscCall(PetscMalloc1(A->rmap->N / bs, &lens));
2107:   for (i = A->rmap->rstart / bs; i < A->rmap->rend / bs; i++) lens[i] = ad->i[i - A->rmap->rstart / bs + 1] - ad->i[i - A->rmap->rstart / bs] + bd->i[i - A->rmap->rstart / bs + 1] - bd->i[i - A->rmap->rstart / bs];
2108:   PetscCall(PetscMalloc1(2 * size, &recvcounts));
2109:   displs = recvcounts + size;
2110:   for (i = 0; i < size; i++) {
2111:     recvcounts[i] = A->rmap->range[i + 1] / bs - A->rmap->range[i] / bs;
2112:     displs[i]     = A->rmap->range[i] / bs;
2113:   }
2114:   PetscCallMPI(MPI_Allgatherv(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, lens, recvcounts, displs, MPIU_INT, PetscObjectComm((PetscObject)A)));
2115:   /* Create the sequential matrix of the same type as the local block diagonal  */
2116:   PetscCall(MatCreate(PETSC_COMM_SELF, &B));
2117:   PetscCall(MatSetSizes(B, A->rmap->N / bs, A->cmap->N / bs, PETSC_DETERMINE, PETSC_DETERMINE));
2118:   PetscCall(MatSetType(B, MATSEQAIJ));
2119:   PetscCall(MatSeqAIJSetPreallocation(B, 0, lens));
2120:   b = (Mat_SeqAIJ *)B->data;

2122:   /*     Copy my part of matrix column indices over  */
2123:   sendcount  = ad->nz + bd->nz;
2124:   jsendbuf   = b->j + b->i[rstarts[rank] / bs];
2125:   a_jsendbuf = ad->j;
2126:   b_jsendbuf = bd->j;
2127:   n          = A->rmap->rend / bs - A->rmap->rstart / bs;
2128:   cnt        = 0;
2129:   for (i = 0; i < n; i++) {
2130:     /* put in lower diagonal portion */
2131:     m = bd->i[i + 1] - bd->i[i];
2132:     while (m > 0) {
2133:       /* is it above diagonal (in bd (compressed) numbering) */
2134:       if (garray[*b_jsendbuf] > A->rmap->rstart / bs + i) break;
2135:       jsendbuf[cnt++] = garray[*b_jsendbuf++];
2136:       m--;
2137:     }

2139:     /* put in diagonal portion */
2140:     for (j = ad->i[i]; j < ad->i[i + 1]; j++) jsendbuf[cnt++] = A->rmap->rstart / bs + *a_jsendbuf++;

2142:     /* put in upper diagonal portion */
2143:     while (m-- > 0) jsendbuf[cnt++] = garray[*b_jsendbuf++];
2144:   }
2145:   PetscCheck(cnt == sendcount, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Corrupted PETSc matrix: nz given %" PetscInt_FMT " actual nz %" PetscInt_FMT, sendcount, cnt);

2147:   /*  Gather all column indices to all processors  */
2148:   for (i = 0; i < size; i++) {
2149:     recvcounts[i] = 0;
2150:     for (j = A->rmap->range[i] / bs; j < A->rmap->range[i + 1] / bs; j++) recvcounts[i] += lens[j];
2151:   }
2152:   displs[0] = 0;
2153:   for (i = 1; i < size; i++) displs[i] = displs[i - 1] + recvcounts[i - 1];
2154:   PetscCallMPI(MPI_Allgatherv(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, b->j, recvcounts, displs, MPIU_INT, PetscObjectComm((PetscObject)A)));
2155:   /*  Assemble the matrix into usable form (note numerical values not yet set)  */
2156:   /* set the b->ilen (length of each row) values */
2157:   PetscCall(PetscArraycpy(b->ilen, lens, A->rmap->N / bs));
2158:   /* set the b->i indices */
2159:   b->i[0] = 0;
2160:   for (i = 1; i <= A->rmap->N / bs; i++) b->i[i] = b->i[i - 1] + lens[i - 1];
2161:   PetscCall(PetscFree(lens));
2162:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2163:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2164:   PetscCall(PetscFree(recvcounts));

2166:   PetscCall(MatPropagateSymmetryOptions(A, B));
2167:   *newmat = B;
2168:   PetscFunctionReturn(PETSC_SUCCESS);
2169: }

2171: static PetscErrorCode MatSOR_MPIBAIJ(Mat matin, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
2172: {
2173:   Mat_MPIBAIJ *mat = (Mat_MPIBAIJ *)matin->data;
2174:   Vec          bb1 = NULL;

2176:   PetscFunctionBegin;
2177:   if (flag == SOR_APPLY_UPPER) {
2178:     PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2179:     PetscFunctionReturn(PETSC_SUCCESS);
2180:   }

2182:   if (its > 1 || ~flag & SOR_ZERO_INITIAL_GUESS) PetscCall(VecDuplicate(bb, &bb1));

2184:   if ((flag & SOR_LOCAL_SYMMETRIC_SWEEP) == SOR_LOCAL_SYMMETRIC_SWEEP) {
2185:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2186:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2187:       its--;
2188:     }

2190:     while (its--) {
2191:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
2192:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

2194:       /* update rhs: bb1 = bb - B*x */
2195:       PetscCall(VecScale(mat->lvec, -1.0));
2196:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

2198:       /* local sweep */
2199:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_SYMMETRIC_SWEEP, fshift, lits, 1, xx));
2200:     }
2201:   } else if (flag & SOR_LOCAL_FORWARD_SWEEP) {
2202:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2203:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2204:       its--;
2205:     }
2206:     while (its--) {
2207:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
2208:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

2210:       /* update rhs: bb1 = bb - B*x */
2211:       PetscCall(VecScale(mat->lvec, -1.0));
2212:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

2214:       /* local sweep */
2215:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_FORWARD_SWEEP, fshift, lits, 1, xx));
2216:     }
2217:   } else if (flag & SOR_LOCAL_BACKWARD_SWEEP) {
2218:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2219:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2220:       its--;
2221:     }
2222:     while (its--) {
2223:       PetscCall(VecScatterBegin(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));
2224:       PetscCall(VecScatterEnd(mat->Mvctx, xx, mat->lvec, INSERT_VALUES, SCATTER_FORWARD));

2226:       /* update rhs: bb1 = bb - B*x */
2227:       PetscCall(VecScale(mat->lvec, -1.0));
2228:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->lvec, bb, bb1));

2230:       /* local sweep */
2231:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_BACKWARD_SWEEP, fshift, lits, 1, xx));
2232:     }
2233:   } else SETERRQ(PetscObjectComm((PetscObject)matin), PETSC_ERR_SUP, "Parallel version of SOR requested not supported");

2235:   PetscCall(VecDestroy(&bb1));
2236:   PetscFunctionReturn(PETSC_SUCCESS);
2237: }

2239: static PetscErrorCode MatGetColumnReductions_MPIBAIJ(Mat A, PetscInt type, PetscReal *reductions)
2240: {
2241:   Mat_MPIBAIJ *aij = (Mat_MPIBAIJ *)A->data;
2242:   PetscInt     m, N, i, *garray = aij->garray;
2243:   PetscInt     ib, jb, bs = A->rmap->bs;
2244:   Mat_SeqBAIJ *a_aij = (Mat_SeqBAIJ *)aij->A->data;
2245:   MatScalar   *a_val = a_aij->a;
2246:   Mat_SeqBAIJ *b_aij = (Mat_SeqBAIJ *)aij->B->data;
2247:   MatScalar   *b_val = b_aij->a;
2248:   PetscReal   *work;

2250:   PetscFunctionBegin;
2251:   PetscCall(MatGetSize(A, &m, &N));
2252:   PetscCall(PetscCalloc1(N, &work));
2253:   if (type == NORM_2) {
2254:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2255:       for (jb = 0; jb < bs; jb++) {
2256:         for (ib = 0; ib < bs; ib++) {
2257:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscAbsScalar(*a_val * *a_val);
2258:           a_val++;
2259:         }
2260:       }
2261:     }
2262:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2263:       for (jb = 0; jb < bs; jb++) {
2264:         for (ib = 0; ib < bs; ib++) {
2265:           work[garray[b_aij->j[i]] * bs + jb] += PetscAbsScalar(*b_val * *b_val);
2266:           b_val++;
2267:         }
2268:       }
2269:     }
2270:   } else if (type == NORM_1) {
2271:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2272:       for (jb = 0; jb < bs; jb++) {
2273:         for (ib = 0; ib < bs; ib++) {
2274:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscAbsScalar(*a_val);
2275:           a_val++;
2276:         }
2277:       }
2278:     }
2279:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2280:       for (jb = 0; jb < bs; jb++) {
2281:         for (ib = 0; ib < bs; ib++) {
2282:           work[garray[b_aij->j[i]] * bs + jb] += PetscAbsScalar(*b_val);
2283:           b_val++;
2284:         }
2285:       }
2286:     }
2287:   } else if (type == NORM_INFINITY) {
2288:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2289:       for (jb = 0; jb < bs; jb++) {
2290:         for (ib = 0; ib < bs; ib++) {
2291:           int col   = A->cmap->rstart + a_aij->j[i] * bs + jb;
2292:           work[col] = PetscMax(PetscAbsScalar(*a_val), work[col]);
2293:           a_val++;
2294:         }
2295:       }
2296:     }
2297:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2298:       for (jb = 0; jb < bs; jb++) {
2299:         for (ib = 0; ib < bs; ib++) {
2300:           int col   = garray[b_aij->j[i]] * bs + jb;
2301:           work[col] = PetscMax(PetscAbsScalar(*b_val), work[col]);
2302:           b_val++;
2303:         }
2304:       }
2305:     }
2306:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
2307:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2308:       for (jb = 0; jb < bs; jb++) {
2309:         for (ib = 0; ib < bs; ib++) {
2310:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscRealPart(*a_val);
2311:           a_val++;
2312:         }
2313:       }
2314:     }
2315:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2316:       for (jb = 0; jb < bs; jb++) {
2317:         for (ib = 0; ib < bs; ib++) {
2318:           work[garray[b_aij->j[i]] * bs + jb] += PetscRealPart(*b_val);
2319:           b_val++;
2320:         }
2321:       }
2322:     }
2323:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
2324:     for (i = a_aij->i[0]; i < a_aij->i[aij->A->rmap->n / bs]; i++) {
2325:       for (jb = 0; jb < bs; jb++) {
2326:         for (ib = 0; ib < bs; ib++) {
2327:           work[A->cmap->rstart + a_aij->j[i] * bs + jb] += PetscImaginaryPart(*a_val);
2328:           a_val++;
2329:         }
2330:       }
2331:     }
2332:     for (i = b_aij->i[0]; i < b_aij->i[aij->B->rmap->n / bs]; i++) {
2333:       for (jb = 0; jb < bs; jb++) {
2334:         for (ib = 0; ib < bs; ib++) {
2335:           work[garray[b_aij->j[i]] * bs + jb] += PetscImaginaryPart(*b_val);
2336:           b_val++;
2337:         }
2338:       }
2339:     }
2340:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");
2341:   if (type == NORM_INFINITY) {
2342:     PetscCall(MPIU_Allreduce(work, reductions, N, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)A)));
2343:   } else {
2344:     PetscCall(MPIU_Allreduce(work, reductions, N, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)A)));
2345:   }
2346:   PetscCall(PetscFree(work));
2347:   if (type == NORM_2) {
2348:     for (i = 0; i < N; i++) reductions[i] = PetscSqrtReal(reductions[i]);
2349:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
2350:     for (i = 0; i < N; i++) reductions[i] /= m;
2351:   }
2352:   PetscFunctionReturn(PETSC_SUCCESS);
2353: }

2355: static PetscErrorCode MatInvertBlockDiagonal_MPIBAIJ(Mat A, const PetscScalar **values)
2356: {
2357:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

2359:   PetscFunctionBegin;
2360:   PetscCall(MatInvertBlockDiagonal(a->A, values));
2361:   A->factorerrortype             = a->A->factorerrortype;
2362:   A->factorerror_zeropivot_value = a->A->factorerror_zeropivot_value;
2363:   A->factorerror_zeropivot_row   = a->A->factorerror_zeropivot_row;
2364:   PetscFunctionReturn(PETSC_SUCCESS);
2365: }

2367: static PetscErrorCode MatShift_MPIBAIJ(Mat Y, PetscScalar a)
2368: {
2369:   Mat_MPIBAIJ *maij = (Mat_MPIBAIJ *)Y->data;
2370:   Mat_SeqBAIJ *aij  = (Mat_SeqBAIJ *)maij->A->data;

2372:   PetscFunctionBegin;
2373:   if (!Y->preallocated) {
2374:     PetscCall(MatMPIBAIJSetPreallocation(Y, Y->rmap->bs, 1, NULL, 0, NULL));
2375:   } else if (!aij->nz) {
2376:     PetscInt nonew = aij->nonew;
2377:     PetscCall(MatSeqBAIJSetPreallocation(maij->A, Y->rmap->bs, 1, NULL));
2378:     aij->nonew = nonew;
2379:   }
2380:   PetscCall(MatShift_Basic(Y, a));
2381:   PetscFunctionReturn(PETSC_SUCCESS);
2382: }

2384: static PetscErrorCode MatMissingDiagonal_MPIBAIJ(Mat A, PetscBool *missing, PetscInt *d)
2385: {
2386:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

2388:   PetscFunctionBegin;
2389:   PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only works for square matrices");
2390:   PetscCall(MatMissingDiagonal(a->A, missing, d));
2391:   if (d) {
2392:     PetscInt rstart;
2393:     PetscCall(MatGetOwnershipRange(A, &rstart, NULL));
2394:     *d += rstart / A->rmap->bs;
2395:   }
2396:   PetscFunctionReturn(PETSC_SUCCESS);
2397: }

2399: static PetscErrorCode MatGetDiagonalBlock_MPIBAIJ(Mat A, Mat *a)
2400: {
2401:   PetscFunctionBegin;
2402:   *a = ((Mat_MPIBAIJ *)A->data)->A;
2403:   PetscFunctionReturn(PETSC_SUCCESS);
2404: }

2406: static PetscErrorCode MatEliminateZeros_MPIBAIJ(Mat A, PetscBool keep)
2407: {
2408:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;

2410:   PetscFunctionBegin;
2411:   PetscCall(MatEliminateZeros_SeqBAIJ(a->A, keep));        // possibly keep zero diagonal coefficients
2412:   PetscCall(MatEliminateZeros_SeqBAIJ(a->B, PETSC_FALSE)); // never keep zero diagonal coefficients
2413:   PetscFunctionReturn(PETSC_SUCCESS);
2414: }

2416: static struct _MatOps MatOps_Values = {MatSetValues_MPIBAIJ,
2417:                                        MatGetRow_MPIBAIJ,
2418:                                        MatRestoreRow_MPIBAIJ,
2419:                                        MatMult_MPIBAIJ,
2420:                                        /* 4*/ MatMultAdd_MPIBAIJ,
2421:                                        MatMultTranspose_MPIBAIJ,
2422:                                        MatMultTransposeAdd_MPIBAIJ,
2423:                                        NULL,
2424:                                        NULL,
2425:                                        NULL,
2426:                                        /*10*/ NULL,
2427:                                        NULL,
2428:                                        NULL,
2429:                                        MatSOR_MPIBAIJ,
2430:                                        MatTranspose_MPIBAIJ,
2431:                                        /*15*/ MatGetInfo_MPIBAIJ,
2432:                                        MatEqual_MPIBAIJ,
2433:                                        MatGetDiagonal_MPIBAIJ,
2434:                                        MatDiagonalScale_MPIBAIJ,
2435:                                        MatNorm_MPIBAIJ,
2436:                                        /*20*/ MatAssemblyBegin_MPIBAIJ,
2437:                                        MatAssemblyEnd_MPIBAIJ,
2438:                                        MatSetOption_MPIBAIJ,
2439:                                        MatZeroEntries_MPIBAIJ,
2440:                                        /*24*/ MatZeroRows_MPIBAIJ,
2441:                                        NULL,
2442:                                        NULL,
2443:                                        NULL,
2444:                                        NULL,
2445:                                        /*29*/ MatSetUp_MPI_Hash,
2446:                                        NULL,
2447:                                        NULL,
2448:                                        MatGetDiagonalBlock_MPIBAIJ,
2449:                                        NULL,
2450:                                        /*34*/ MatDuplicate_MPIBAIJ,
2451:                                        NULL,
2452:                                        NULL,
2453:                                        NULL,
2454:                                        NULL,
2455:                                        /*39*/ MatAXPY_MPIBAIJ,
2456:                                        MatCreateSubMatrices_MPIBAIJ,
2457:                                        MatIncreaseOverlap_MPIBAIJ,
2458:                                        MatGetValues_MPIBAIJ,
2459:                                        MatCopy_MPIBAIJ,
2460:                                        /*44*/ NULL,
2461:                                        MatScale_MPIBAIJ,
2462:                                        MatShift_MPIBAIJ,
2463:                                        NULL,
2464:                                        MatZeroRowsColumns_MPIBAIJ,
2465:                                        /*49*/ NULL,
2466:                                        NULL,
2467:                                        NULL,
2468:                                        NULL,
2469:                                        NULL,
2470:                                        /*54*/ MatFDColoringCreate_MPIXAIJ,
2471:                                        NULL,
2472:                                        MatSetUnfactored_MPIBAIJ,
2473:                                        MatPermute_MPIBAIJ,
2474:                                        MatSetValuesBlocked_MPIBAIJ,
2475:                                        /*59*/ MatCreateSubMatrix_MPIBAIJ,
2476:                                        MatDestroy_MPIBAIJ,
2477:                                        MatView_MPIBAIJ,
2478:                                        NULL,
2479:                                        NULL,
2480:                                        /*64*/ NULL,
2481:                                        NULL,
2482:                                        NULL,
2483:                                        NULL,
2484:                                        NULL,
2485:                                        /*69*/ MatGetRowMaxAbs_MPIBAIJ,
2486:                                        NULL,
2487:                                        NULL,
2488:                                        NULL,
2489:                                        NULL,
2490:                                        /*74*/ NULL,
2491:                                        MatFDColoringApply_BAIJ,
2492:                                        NULL,
2493:                                        NULL,
2494:                                        NULL,
2495:                                        /*79*/ NULL,
2496:                                        NULL,
2497:                                        NULL,
2498:                                        NULL,
2499:                                        MatLoad_MPIBAIJ,
2500:                                        /*84*/ NULL,
2501:                                        NULL,
2502:                                        NULL,
2503:                                        NULL,
2504:                                        NULL,
2505:                                        /*89*/ NULL,
2506:                                        NULL,
2507:                                        NULL,
2508:                                        NULL,
2509:                                        NULL,
2510:                                        /*94*/ NULL,
2511:                                        NULL,
2512:                                        NULL,
2513:                                        NULL,
2514:                                        NULL,
2515:                                        /*99*/ NULL,
2516:                                        NULL,
2517:                                        NULL,
2518:                                        MatConjugate_MPIBAIJ,
2519:                                        NULL,
2520:                                        /*104*/ NULL,
2521:                                        MatRealPart_MPIBAIJ,
2522:                                        MatImaginaryPart_MPIBAIJ,
2523:                                        NULL,
2524:                                        NULL,
2525:                                        /*109*/ NULL,
2526:                                        NULL,
2527:                                        NULL,
2528:                                        NULL,
2529:                                        MatMissingDiagonal_MPIBAIJ,
2530:                                        /*114*/ MatGetSeqNonzeroStructure_MPIBAIJ,
2531:                                        NULL,
2532:                                        MatGetGhosts_MPIBAIJ,
2533:                                        NULL,
2534:                                        NULL,
2535:                                        /*119*/ NULL,
2536:                                        NULL,
2537:                                        NULL,
2538:                                        NULL,
2539:                                        MatGetMultiProcBlock_MPIBAIJ,
2540:                                        /*124*/ NULL,
2541:                                        MatGetColumnReductions_MPIBAIJ,
2542:                                        MatInvertBlockDiagonal_MPIBAIJ,
2543:                                        NULL,
2544:                                        NULL,
2545:                                        /*129*/ NULL,
2546:                                        NULL,
2547:                                        NULL,
2548:                                        NULL,
2549:                                        NULL,
2550:                                        /*134*/ NULL,
2551:                                        NULL,
2552:                                        NULL,
2553:                                        NULL,
2554:                                        NULL,
2555:                                        /*139*/ MatSetBlockSizes_Default,
2556:                                        NULL,
2557:                                        NULL,
2558:                                        MatFDColoringSetUp_MPIXAIJ,
2559:                                        NULL,
2560:                                        /*144*/ MatCreateMPIMatConcatenateSeqMat_MPIBAIJ,
2561:                                        NULL,
2562:                                        NULL,
2563:                                        NULL,
2564:                                        NULL,
2565:                                        NULL,
2566:                                        /*150*/ NULL,
2567:                                        MatEliminateZeros_MPIBAIJ,
2568:                                        NULL};

2570: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPISBAIJ(Mat, MatType, MatReuse, Mat *);
2571: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat, MatType, MatReuse, Mat *);

2573: static PetscErrorCode MatMPIBAIJSetPreallocationCSR_MPIBAIJ(Mat B, PetscInt bs, const PetscInt ii[], const PetscInt jj[], const PetscScalar V[])
2574: {
2575:   PetscInt        m, rstart, cstart, cend;
2576:   PetscInt        i, j, dlen, olen, nz, nz_max = 0, *d_nnz = NULL, *o_nnz = NULL;
2577:   const PetscInt *JJ          = NULL;
2578:   PetscScalar    *values      = NULL;
2579:   PetscBool       roworiented = ((Mat_MPIBAIJ *)B->data)->roworiented;
2580:   PetscBool       nooffprocentries;

2582:   PetscFunctionBegin;
2583:   PetscCall(PetscLayoutSetBlockSize(B->rmap, bs));
2584:   PetscCall(PetscLayoutSetBlockSize(B->cmap, bs));
2585:   PetscCall(PetscLayoutSetUp(B->rmap));
2586:   PetscCall(PetscLayoutSetUp(B->cmap));
2587:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));
2588:   m      = B->rmap->n / bs;
2589:   rstart = B->rmap->rstart / bs;
2590:   cstart = B->cmap->rstart / bs;
2591:   cend   = B->cmap->rend / bs;

2593:   PetscCheck(!ii[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ii[0] must be 0 but it is %" PetscInt_FMT, ii[0]);
2594:   PetscCall(PetscMalloc2(m, &d_nnz, m, &o_nnz));
2595:   for (i = 0; i < m; i++) {
2596:     nz = ii[i + 1] - ii[i];
2597:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
2598:     nz_max = PetscMax(nz_max, nz);
2599:     dlen   = 0;
2600:     olen   = 0;
2601:     JJ     = jj + ii[i];
2602:     for (j = 0; j < nz; j++) {
2603:       if (*JJ < cstart || *JJ >= cend) olen++;
2604:       else dlen++;
2605:       JJ++;
2606:     }
2607:     d_nnz[i] = dlen;
2608:     o_nnz[i] = olen;
2609:   }
2610:   PetscCall(MatMPIBAIJSetPreallocation(B, bs, 0, d_nnz, 0, o_nnz));
2611:   PetscCall(PetscFree2(d_nnz, o_nnz));

2613:   values = (PetscScalar *)V;
2614:   if (!values) PetscCall(PetscCalloc1(bs * bs * nz_max, &values));
2615:   for (i = 0; i < m; i++) {
2616:     PetscInt        row   = i + rstart;
2617:     PetscInt        ncols = ii[i + 1] - ii[i];
2618:     const PetscInt *icols = jj + ii[i];
2619:     if (bs == 1 || !roworiented) { /* block ordering matches the non-nested layout of MatSetValues so we can insert entire rows */
2620:       const PetscScalar *svals = values + (V ? (bs * bs * ii[i]) : 0);
2621:       PetscCall(MatSetValuesBlocked_MPIBAIJ(B, 1, &row, ncols, icols, svals, INSERT_VALUES));
2622:     } else { /* block ordering does not match so we can only insert one block at a time. */
2623:       PetscInt j;
2624:       for (j = 0; j < ncols; j++) {
2625:         const PetscScalar *svals = values + (V ? (bs * bs * (ii[i] + j)) : 0);
2626:         PetscCall(MatSetValuesBlocked_MPIBAIJ(B, 1, &row, 1, &icols[j], svals, INSERT_VALUES));
2627:       }
2628:     }
2629:   }

2631:   if (!V) PetscCall(PetscFree(values));
2632:   nooffprocentries    = B->nooffprocentries;
2633:   B->nooffprocentries = PETSC_TRUE;
2634:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2635:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2636:   B->nooffprocentries = nooffprocentries;

2638:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
2639:   PetscFunctionReturn(PETSC_SUCCESS);
2640: }

2642: /*@C
2643:   MatMPIBAIJSetPreallocationCSR - Creates a sparse parallel matrix in `MATBAIJ` format using the given nonzero structure and (optional) numerical values

2645:   Collective

2647:   Input Parameters:
2648: + B  - the matrix
2649: . bs - the block size
2650: . i  - the indices into `j` for the start of each local row (starts with zero)
2651: . j  - the column indices for each local row (starts with zero) these must be sorted for each row
2652: - v  - optional values in the matrix, use `NULL` if not provided

2654:   Level: advanced

2656:   Notes:
2657:   The `i`, `j`, and `v` arrays ARE copied by this routine into the internal format used by PETSc;
2658:   thus you CANNOT change the matrix entries by changing the values of `v` after you have
2659:   called this routine.

2661:   The order of the entries in values is specified by the `MatOption` `MAT_ROW_ORIENTED`.  For example, C programs
2662:   may want to use the default `MAT_ROW_ORIENTED` with value `PETSC_TRUE` and use an array v[nnz][bs][bs] where the second index is
2663:   over rows within a block and the last index is over columns within a block row.  Fortran programs will likely set
2664:   `MAT_ROW_ORIENTED` with value `PETSC_FALSE` and use a Fortran array v(bs,bs,nnz) in which the first index is over rows within a
2665:   block column and the second index is over columns within a block.

2667:   Though this routine has Preallocation() in the name it also sets the exact nonzero locations of the matrix entries and usually the numerical values as well

2669: .seealso: `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIBAIJSetPreallocation()`, `MatCreateAIJ()`, `MATMPIAIJ`, `MatCreateMPIBAIJWithArrays()`, `MATMPIBAIJ`
2670: @*/
2671: PetscErrorCode MatMPIBAIJSetPreallocationCSR(Mat B, PetscInt bs, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
2672: {
2673:   PetscFunctionBegin;
2677:   PetscTryMethod(B, "MatMPIBAIJSetPreallocationCSR_C", (Mat, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, bs, i, j, v));
2678:   PetscFunctionReturn(PETSC_SUCCESS);
2679: }

2681: PetscErrorCode MatMPIBAIJSetPreallocation_MPIBAIJ(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt *d_nnz, PetscInt o_nz, const PetscInt *o_nnz)
2682: {
2683:   Mat_MPIBAIJ *b = (Mat_MPIBAIJ *)B->data;
2684:   PetscInt     i;
2685:   PetscMPIInt  size;

2687:   PetscFunctionBegin;
2688:   if (B->hash_active) {
2689:     B->ops[0]      = b->cops;
2690:     B->hash_active = PETSC_FALSE;
2691:   }
2692:   if (!B->preallocated) PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), bs, &B->bstash));
2693:   PetscCall(MatSetBlockSize(B, PetscAbs(bs)));
2694:   PetscCall(PetscLayoutSetUp(B->rmap));
2695:   PetscCall(PetscLayoutSetUp(B->cmap));
2696:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));

2698:   if (d_nnz) {
2699:     for (i = 0; i < B->rmap->n / bs; i++) PetscCheck(d_nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "d_nnz cannot be less than -1: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, d_nnz[i]);
2700:   }
2701:   if (o_nnz) {
2702:     for (i = 0; i < B->rmap->n / bs; i++) PetscCheck(o_nnz[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "o_nnz cannot be less than -1: local row %" PetscInt_FMT " value %" PetscInt_FMT, i, o_nnz[i]);
2703:   }

2705:   b->bs2 = bs * bs;
2706:   b->mbs = B->rmap->n / bs;
2707:   b->nbs = B->cmap->n / bs;
2708:   b->Mbs = B->rmap->N / bs;
2709:   b->Nbs = B->cmap->N / bs;

2711:   for (i = 0; i <= b->size; i++) b->rangebs[i] = B->rmap->range[i] / bs;
2712:   b->rstartbs = B->rmap->rstart / bs;
2713:   b->rendbs   = B->rmap->rend / bs;
2714:   b->cstartbs = B->cmap->rstart / bs;
2715:   b->cendbs   = B->cmap->rend / bs;

2717: #if defined(PETSC_USE_CTABLE)
2718:   PetscCall(PetscHMapIDestroy(&b->colmap));
2719: #else
2720:   PetscCall(PetscFree(b->colmap));
2721: #endif
2722:   PetscCall(PetscFree(b->garray));
2723:   PetscCall(VecDestroy(&b->lvec));
2724:   PetscCall(VecScatterDestroy(&b->Mvctx));

2726:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));

2728:   MatSeqXAIJGetOptions_Private(b->B);
2729:   PetscCall(MatDestroy(&b->B));
2730:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->B));
2731:   PetscCall(MatSetSizes(b->B, B->rmap->n, size > 1 ? B->cmap->N : 0, B->rmap->n, size > 1 ? B->cmap->N : 0));
2732:   PetscCall(MatSetType(b->B, MATSEQBAIJ));
2733:   MatSeqXAIJRestoreOptions_Private(b->B);

2735:   MatSeqXAIJGetOptions_Private(b->A);
2736:   PetscCall(MatDestroy(&b->A));
2737:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->A));
2738:   PetscCall(MatSetSizes(b->A, B->rmap->n, B->cmap->n, B->rmap->n, B->cmap->n));
2739:   PetscCall(MatSetType(b->A, MATSEQBAIJ));
2740:   MatSeqXAIJRestoreOptions_Private(b->A);

2742:   PetscCall(MatSeqBAIJSetPreallocation(b->A, bs, d_nz, d_nnz));
2743:   PetscCall(MatSeqBAIJSetPreallocation(b->B, bs, o_nz, o_nnz));
2744:   B->preallocated  = PETSC_TRUE;
2745:   B->was_assembled = PETSC_FALSE;
2746:   B->assembled     = PETSC_FALSE;
2747:   PetscFunctionReturn(PETSC_SUCCESS);
2748: }

2750: extern PetscErrorCode MatDiagonalScaleLocal_MPIBAIJ(Mat, Vec);
2751: extern PetscErrorCode MatSetHashTableFactor_MPIBAIJ(Mat, PetscReal);

2753: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIAdj(Mat B, MatType newtype, MatReuse reuse, Mat *adj)
2754: {
2755:   Mat_MPIBAIJ    *b = (Mat_MPIBAIJ *)B->data;
2756:   Mat_SeqBAIJ    *d = (Mat_SeqBAIJ *)b->A->data, *o = (Mat_SeqBAIJ *)b->B->data;
2757:   PetscInt        M = B->rmap->n / B->rmap->bs, i, *ii, *jj, cnt, j, k, rstart = B->rmap->rstart / B->rmap->bs;
2758:   const PetscInt *id = d->i, *jd = d->j, *io = o->i, *jo = o->j, *garray = b->garray;

2760:   PetscFunctionBegin;
2761:   PetscCall(PetscMalloc1(M + 1, &ii));
2762:   ii[0] = 0;
2763:   for (i = 0; i < M; i++) {
2764:     PetscCheck((id[i + 1] - id[i]) >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Indices wrong %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT, i, id[i], id[i + 1]);
2765:     PetscCheck((io[i + 1] - io[i]) >= 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Indices wrong %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT, i, io[i], io[i + 1]);
2766:     ii[i + 1] = ii[i] + id[i + 1] - id[i] + io[i + 1] - io[i];
2767:     /* remove one from count of matrix has diagonal */
2768:     for (j = id[i]; j < id[i + 1]; j++) {
2769:       if (jd[j] == i) {
2770:         ii[i + 1]--;
2771:         break;
2772:       }
2773:     }
2774:   }
2775:   PetscCall(PetscMalloc1(ii[M], &jj));
2776:   cnt = 0;
2777:   for (i = 0; i < M; i++) {
2778:     for (j = io[i]; j < io[i + 1]; j++) {
2779:       if (garray[jo[j]] > rstart) break;
2780:       jj[cnt++] = garray[jo[j]];
2781:     }
2782:     for (k = id[i]; k < id[i + 1]; k++) {
2783:       if (jd[k] != i) jj[cnt++] = rstart + jd[k];
2784:     }
2785:     for (; j < io[i + 1]; j++) jj[cnt++] = garray[jo[j]];
2786:   }
2787:   PetscCall(MatCreateMPIAdj(PetscObjectComm((PetscObject)B), M, B->cmap->N / B->rmap->bs, ii, jj, NULL, adj));
2788:   PetscFunctionReturn(PETSC_SUCCESS);
2789: }

2791: #include <../src/mat/impls/aij/mpi/mpiaij.h>

2793: PETSC_INTERN PetscErrorCode MatConvert_SeqBAIJ_SeqAIJ(Mat, MatType, MatReuse, Mat *);

2795: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIAIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
2796: {
2797:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
2798:   Mat_MPIAIJ  *b;
2799:   Mat          B;

2801:   PetscFunctionBegin;
2802:   PetscCheck(A->assembled, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Matrix must be assembled");

2804:   if (reuse == MAT_REUSE_MATRIX) {
2805:     B = *newmat;
2806:   } else {
2807:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
2808:     PetscCall(MatSetType(B, MATMPIAIJ));
2809:     PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
2810:     PetscCall(MatSetBlockSizes(B, A->rmap->bs, A->cmap->bs));
2811:     PetscCall(MatSeqAIJSetPreallocation(B, 0, NULL));
2812:     PetscCall(MatMPIAIJSetPreallocation(B, 0, NULL, 0, NULL));
2813:   }
2814:   b = (Mat_MPIAIJ *)B->data;

2816:   if (reuse == MAT_REUSE_MATRIX) {
2817:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->A, MATSEQAIJ, MAT_REUSE_MATRIX, &b->A));
2818:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->B, MATSEQAIJ, MAT_REUSE_MATRIX, &b->B));
2819:   } else {
2820:     PetscInt   *garray = a->garray;
2821:     Mat_SeqAIJ *bB;
2822:     PetscInt    bs, nnz;
2823:     PetscCall(MatDestroy(&b->A));
2824:     PetscCall(MatDestroy(&b->B));
2825:     /* just clear out the data structure */
2826:     PetscCall(MatDisAssemble_MPIAIJ(B));
2827:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->A, MATSEQAIJ, MAT_INITIAL_MATRIX, &b->A));
2828:     PetscCall(MatConvert_SeqBAIJ_SeqAIJ(a->B, MATSEQAIJ, MAT_INITIAL_MATRIX, &b->B));

2830:     /* Global numbering for b->B columns */
2831:     bB  = (Mat_SeqAIJ *)b->B->data;
2832:     bs  = A->rmap->bs;
2833:     nnz = bB->i[A->rmap->n];
2834:     for (PetscInt k = 0; k < nnz; k++) {
2835:       PetscInt bj = bB->j[k] / bs;
2836:       PetscInt br = bB->j[k] % bs;
2837:       bB->j[k]    = garray[bj] * bs + br;
2838:     }
2839:   }
2840:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2841:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

2843:   if (reuse == MAT_INPLACE_MATRIX) {
2844:     PetscCall(MatHeaderReplace(A, &B));
2845:   } else {
2846:     *newmat = B;
2847:   }
2848:   PetscFunctionReturn(PETSC_SUCCESS);
2849: }

2851: /*MC
2852:    MATMPIBAIJ - MATMPIBAIJ = "mpibaij" - A matrix type to be used for distributed block sparse matrices.

2854:    Options Database Keys:
2855: + -mat_type mpibaij - sets the matrix type to `MATMPIBAIJ` during a call to `MatSetFromOptions()`
2856: . -mat_block_size <bs> - set the blocksize used to store the matrix
2857: . -mat_baij_mult_version version - indicate the version of the matrix-vector product to use  (0 often indicates using BLAS)
2858: - -mat_use_hash_table <fact> - set hash table factor

2860:    Level: beginner

2862:    Note:
2863:     `MatSetOption(A, MAT_STRUCTURE_ONLY, PETSC_TRUE)` may be called for this matrix type. In this no
2864:     space is allocated for the nonzero entries and any entries passed with `MatSetValues()` are ignored

2866: .seealso: `Mat`, `MATBAIJ`, `MATSEQBAIJ`, `MatCreateBAIJ`
2867: M*/

2869: PETSC_INTERN PetscErrorCode MatConvert_MPIBAIJ_MPIBSTRM(Mat, MatType, MatReuse, Mat *);

2871: PETSC_EXTERN PetscErrorCode MatCreate_MPIBAIJ(Mat B)
2872: {
2873:   Mat_MPIBAIJ *b;
2874:   PetscBool    flg = PETSC_FALSE;

2876:   PetscFunctionBegin;
2877:   PetscCall(PetscNew(&b));
2878:   B->data      = (void *)b;
2879:   B->ops[0]    = MatOps_Values;
2880:   B->assembled = PETSC_FALSE;

2882:   B->insertmode = NOT_SET_VALUES;
2883:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)B), &b->rank));
2884:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &b->size));

2886:   /* build local table of row and column ownerships */
2887:   PetscCall(PetscMalloc1(b->size + 1, &b->rangebs));

2889:   /* build cache for off array entries formed */
2890:   PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), 1, &B->stash));

2892:   b->donotstash  = PETSC_FALSE;
2893:   b->colmap      = NULL;
2894:   b->garray      = NULL;
2895:   b->roworiented = PETSC_TRUE;

2897:   /* stuff used in block assembly */
2898:   b->barray = NULL;

2900:   /* stuff used for matrix vector multiply */
2901:   b->lvec  = NULL;
2902:   b->Mvctx = NULL;

2904:   /* stuff for MatGetRow() */
2905:   b->rowindices   = NULL;
2906:   b->rowvalues    = NULL;
2907:   b->getrowactive = PETSC_FALSE;

2909:   /* hash table stuff */
2910:   b->ht           = NULL;
2911:   b->hd           = NULL;
2912:   b->ht_size      = 0;
2913:   b->ht_flag      = PETSC_FALSE;
2914:   b->ht_fact      = 0;
2915:   b->ht_total_ct  = 0;
2916:   b->ht_insert_ct = 0;

2918:   /* stuff for MatCreateSubMatrices_MPIBAIJ_local() */
2919:   b->ijonly = PETSC_FALSE;

2921:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_mpiadj_C", MatConvert_MPIBAIJ_MPIAdj));
2922:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_mpiaij_C", MatConvert_MPIBAIJ_MPIAIJ));
2923:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_mpisbaij_C", MatConvert_MPIBAIJ_MPISBAIJ));
2924: #if defined(PETSC_HAVE_HYPRE)
2925:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_hypre_C", MatConvert_AIJ_HYPRE));
2926: #endif
2927:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_MPIBAIJ));
2928:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_MPIBAIJ));
2929:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIBAIJSetPreallocation_C", MatMPIBAIJSetPreallocation_MPIBAIJ));
2930:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPIBAIJSetPreallocationCSR_C", MatMPIBAIJSetPreallocationCSR_MPIBAIJ));
2931:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDiagonalScaleLocal_C", MatDiagonalScaleLocal_MPIBAIJ));
2932:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSetHashTableFactor_C", MatSetHashTableFactor_MPIBAIJ));
2933:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpibaij_is_C", MatConvert_XAIJ_IS));
2934:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATMPIBAIJ));

2936:   PetscOptionsBegin(PetscObjectComm((PetscObject)B), NULL, "Options for loading MPIBAIJ matrix 1", "Mat");
2937:   PetscCall(PetscOptionsName("-mat_use_hash_table", "Use hash table to save time in constructing matrix", "MatSetOption", &flg));
2938:   if (flg) {
2939:     PetscReal fact = 1.39;
2940:     PetscCall(MatSetOption(B, MAT_USE_HASH_TABLE, PETSC_TRUE));
2941:     PetscCall(PetscOptionsReal("-mat_use_hash_table", "Use hash table factor", "MatMPIBAIJSetHashTableFactor", fact, &fact, NULL));
2942:     if (fact <= 1.0) fact = 1.39;
2943:     PetscCall(MatMPIBAIJSetHashTableFactor(B, fact));
2944:     PetscCall(PetscInfo(B, "Hash table Factor used %5.2g\n", (double)fact));
2945:   }
2946:   PetscOptionsEnd();
2947:   PetscFunctionReturn(PETSC_SUCCESS);
2948: }

2950: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
2951: /*MC
2952:    MATBAIJ - MATBAIJ = "baij" - A matrix type to be used for block sparse matrices.

2954:    This matrix type is identical to `MATSEQBAIJ` when constructed with a single process communicator,
2955:    and `MATMPIBAIJ` otherwise.

2957:    Options Database Keys:
2958: . -mat_type baij - sets the matrix type to `MATBAIJ` during a call to `MatSetFromOptions()`

2960:   Level: beginner

2962: .seealso: `Mat`, `MatCreateBAIJ()`, `MATSEQBAIJ`, `MATMPIBAIJ`, `MatMPIBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocationCSR()`
2963: M*/

2965: /*@C
2966:   MatMPIBAIJSetPreallocation - Allocates memory for a sparse parallel matrix in `MATMPIBAIJ` format
2967:   (block compressed row).

2969:   Collective

2971:   Input Parameters:
2972: + B     - the matrix
2973: . bs    - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
2974:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
2975: . d_nz  - number of block nonzeros per block row in diagonal portion of local
2976:            submatrix  (same for all local rows)
2977: . d_nnz - array containing the number of block nonzeros in the various block rows
2978:            of the in diagonal portion of the local (possibly different for each block
2979:            row) or `NULL`.  If you plan to factor the matrix you must leave room for the diagonal entry and
2980:            set it even if it is zero.
2981: . o_nz  - number of block nonzeros per block row in the off-diagonal portion of local
2982:            submatrix (same for all local rows).
2983: - o_nnz - array containing the number of nonzeros in the various block rows of the
2984:            off-diagonal portion of the local submatrix (possibly different for
2985:            each block row) or `NULL`.

2987:    If the *_nnz parameter is given then the *_nz parameter is ignored

2989:   Options Database Keys:
2990: + -mat_block_size            - size of the blocks to use
2991: - -mat_use_hash_table <fact> - set hash table factor

2993:   Level: intermediate

2995:   Notes:
2996:   For good matrix assembly performance
2997:   the user should preallocate the matrix storage by setting the parameters
2998:   `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).  By setting these parameters accurately,
2999:   performance can be increased by more than a factor of 50.

3001:   If `PETSC_DECIDE` or  `PETSC_DETERMINE` is used for a particular argument on one processor
3002:   than it must be used on all processors that share the object for that argument.

3004:   Storage Information:
3005:   For a square global matrix we define each processor's diagonal portion
3006:   to be its local rows and the corresponding columns (a square submatrix);
3007:   each processor's off-diagonal portion encompasses the remainder of the
3008:   local matrix (a rectangular submatrix).

3010:   The user can specify preallocated storage for the diagonal part of
3011:   the local submatrix with either `d_nz` or `d_nnz` (not both).  Set
3012:   `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
3013:   memory allocation.  Likewise, specify preallocated storage for the
3014:   off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).

3016:   Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
3017:   the figure below we depict these three local rows and all columns (0-11).

3019: .vb
3020:            0 1 2 3 4 5 6 7 8 9 10 11
3021:           --------------------------
3022:    row 3  |o o o d d d o o o o  o  o
3023:    row 4  |o o o d d d o o o o  o  o
3024:    row 5  |o o o d d d o o o o  o  o
3025:           --------------------------
3026: .ve

3028:   Thus, any entries in the d locations are stored in the d (diagonal)
3029:   submatrix, and any entries in the o locations are stored in the
3030:   o (off-diagonal) submatrix.  Note that the d and the o submatrices are
3031:   stored simply in the `MATSEQBAIJ` format for compressed row storage.

3033:   Now `d_nz` should indicate the number of block nonzeros per row in the d matrix,
3034:   and `o_nz` should indicate the number of block nonzeros per row in the o matrix.
3035:   In general, for PDE problems in which most nonzeros are near the diagonal,
3036:   one expects `d_nz` >> `o_nz`.

3038:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
3039:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3040:   You can also run with the option `-info` and look for messages with the string
3041:   malloc in them to see if additional memory allocation was needed.

3043: .seealso: `Mat`, `MATMPIBAIJ`, `MatCreate()`, `MatCreateSeqBAIJ()`, `MatSetValues()`, `MatCreateBAIJ()`, `MatMPIBAIJSetPreallocationCSR()`, `PetscSplitOwnership()`
3044: @*/
3045: PetscErrorCode MatMPIBAIJSetPreallocation(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[])
3046: {
3047:   PetscFunctionBegin;
3051:   PetscTryMethod(B, "MatMPIBAIJSetPreallocation_C", (Mat, PetscInt, PetscInt, const PetscInt[], PetscInt, const PetscInt[]), (B, bs, d_nz, d_nnz, o_nz, o_nnz));
3052:   PetscFunctionReturn(PETSC_SUCCESS);
3053: }

3055: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
3056: /*@C
3057:   MatCreateBAIJ - Creates a sparse parallel matrix in `MATBAIJ` format
3058:   (block compressed row).

3060:   Collective

3062:   Input Parameters:
3063: + comm  - MPI communicator
3064: . bs    - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
3065:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
3066: . m     - number of local rows (or `PETSC_DECIDE` to have calculated if M is given)
3067:            This value should be the same as the local size used in creating the
3068:            y vector for the matrix-vector product y = Ax.
3069: . n     - number of local columns (or `PETSC_DECIDE` to have calculated if N is given)
3070:            This value should be the same as the local size used in creating the
3071:            x vector for the matrix-vector product y = Ax.
3072: . M     - number of global rows (or `PETSC_DETERMINE` to have calculated if m is given)
3073: . N     - number of global columns (or `PETSC_DETERMINE` to have calculated if n is given)
3074: . d_nz  - number of nonzero blocks per block row in diagonal portion of local
3075:            submatrix  (same for all local rows)
3076: . d_nnz - array containing the number of nonzero blocks in the various block rows
3077:            of the in diagonal portion of the local (possibly different for each block
3078:            row) or NULL.  If you plan to factor the matrix you must leave room for the diagonal entry
3079:            and set it even if it is zero.
3080: . o_nz  - number of nonzero blocks per block row in the off-diagonal portion of local
3081:            submatrix (same for all local rows).
3082: - o_nnz - array containing the number of nonzero blocks in the various block rows of the
3083:            off-diagonal portion of the local submatrix (possibly different for
3084:            each block row) or NULL.

3086:   Output Parameter:
3087: . A - the matrix

3089:   Options Database Keys:
3090: + -mat_block_size            - size of the blocks to use
3091: - -mat_use_hash_table <fact> - set hash table factor

3093:   Level: intermediate

3095:   Notes:
3096:   It is recommended that one use `MatCreateFromOptions()` or the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
3097:   MatXXXXSetPreallocation() paradigm instead of this routine directly.
3098:   [MatXXXXSetPreallocation() is, for example, `MatSeqBAIJSetPreallocation()`]

3100:   For good matrix assembly performance
3101:   the user should preallocate the matrix storage by setting the parameters
3102:   `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).  By setting these parameters accurately,
3103:   performance can be increased by more than a factor of 50.

3105:   If the *_nnz parameter is given then the *_nz parameter is ignored

3107:   A nonzero block is any block that as 1 or more nonzeros in it

3109:   The user MUST specify either the local or global matrix dimensions
3110:   (possibly both).

3112:   If `PETSC_DECIDE` or  `PETSC_DETERMINE` is used for a particular argument on one processor
3113:   than it must be used on all processors that share the object for that argument.

3115:   Storage Information:
3116:   For a square global matrix we define each processor's diagonal portion
3117:   to be its local rows and the corresponding columns (a square submatrix);
3118:   each processor's off-diagonal portion encompasses the remainder of the
3119:   local matrix (a rectangular submatrix).

3121:   The user can specify preallocated storage for the diagonal part of
3122:   the local submatrix with either d_nz or d_nnz (not both).  Set
3123:   `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
3124:   memory allocation.  Likewise, specify preallocated storage for the
3125:   off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).

3127:   Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
3128:   the figure below we depict these three local rows and all columns (0-11).

3130: .vb
3131:            0 1 2 3 4 5 6 7 8 9 10 11
3132:           --------------------------
3133:    row 3  |o o o d d d o o o o  o  o
3134:    row 4  |o o o d d d o o o o  o  o
3135:    row 5  |o o o d d d o o o o  o  o
3136:           --------------------------
3137: .ve

3139:   Thus, any entries in the d locations are stored in the d (diagonal)
3140:   submatrix, and any entries in the o locations are stored in the
3141:   o (off-diagonal) submatrix.  Note that the d and the o submatrices are
3142:   stored simply in the `MATSEQBAIJ` format for compressed row storage.

3144:   Now `d_nz` should indicate the number of block nonzeros per row in the d matrix,
3145:   and `o_nz` should indicate the number of block nonzeros per row in the o matrix.
3146:   In general, for PDE problems in which most nonzeros are near the diagonal,
3147:   one expects `d_nz` >> `o_nz`.

3149: .seealso: `Mat`, `MatCreate()`, `MatCreateSeqBAIJ()`, `MatSetValues()`, `MatMPIBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocationCSR()`
3150: @*/
3151: PetscErrorCode MatCreateBAIJ(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[], Mat *A)
3152: {
3153:   PetscMPIInt size;

3155:   PetscFunctionBegin;
3156:   PetscCall(MatCreate(comm, A));
3157:   PetscCall(MatSetSizes(*A, m, n, M, N));
3158:   PetscCallMPI(MPI_Comm_size(comm, &size));
3159:   if (size > 1) {
3160:     PetscCall(MatSetType(*A, MATMPIBAIJ));
3161:     PetscCall(MatMPIBAIJSetPreallocation(*A, bs, d_nz, d_nnz, o_nz, o_nnz));
3162:   } else {
3163:     PetscCall(MatSetType(*A, MATSEQBAIJ));
3164:     PetscCall(MatSeqBAIJSetPreallocation(*A, bs, d_nz, d_nnz));
3165:   }
3166:   PetscFunctionReturn(PETSC_SUCCESS);
3167: }

3169: static PetscErrorCode MatDuplicate_MPIBAIJ(Mat matin, MatDuplicateOption cpvalues, Mat *newmat)
3170: {
3171:   Mat          mat;
3172:   Mat_MPIBAIJ *a, *oldmat = (Mat_MPIBAIJ *)matin->data;
3173:   PetscInt     len = 0;

3175:   PetscFunctionBegin;
3176:   *newmat = NULL;
3177:   PetscCall(MatCreate(PetscObjectComm((PetscObject)matin), &mat));
3178:   PetscCall(MatSetSizes(mat, matin->rmap->n, matin->cmap->n, matin->rmap->N, matin->cmap->N));
3179:   PetscCall(MatSetType(mat, ((PetscObject)matin)->type_name));

3181:   PetscCall(PetscLayoutReference(matin->rmap, &mat->rmap));
3182:   PetscCall(PetscLayoutReference(matin->cmap, &mat->cmap));
3183:   if (matin->hash_active) {
3184:     PetscCall(MatSetUp(mat));
3185:   } else {
3186:     mat->factortype   = matin->factortype;
3187:     mat->preallocated = PETSC_TRUE;
3188:     mat->assembled    = PETSC_TRUE;
3189:     mat->insertmode   = NOT_SET_VALUES;

3191:     a             = (Mat_MPIBAIJ *)mat->data;
3192:     mat->rmap->bs = matin->rmap->bs;
3193:     a->bs2        = oldmat->bs2;
3194:     a->mbs        = oldmat->mbs;
3195:     a->nbs        = oldmat->nbs;
3196:     a->Mbs        = oldmat->Mbs;
3197:     a->Nbs        = oldmat->Nbs;

3199:     a->size         = oldmat->size;
3200:     a->rank         = oldmat->rank;
3201:     a->donotstash   = oldmat->donotstash;
3202:     a->roworiented  = oldmat->roworiented;
3203:     a->rowindices   = NULL;
3204:     a->rowvalues    = NULL;
3205:     a->getrowactive = PETSC_FALSE;
3206:     a->barray       = NULL;
3207:     a->rstartbs     = oldmat->rstartbs;
3208:     a->rendbs       = oldmat->rendbs;
3209:     a->cstartbs     = oldmat->cstartbs;
3210:     a->cendbs       = oldmat->cendbs;

3212:     /* hash table stuff */
3213:     a->ht           = NULL;
3214:     a->hd           = NULL;
3215:     a->ht_size      = 0;
3216:     a->ht_flag      = oldmat->ht_flag;
3217:     a->ht_fact      = oldmat->ht_fact;
3218:     a->ht_total_ct  = 0;
3219:     a->ht_insert_ct = 0;

3221:     PetscCall(PetscArraycpy(a->rangebs, oldmat->rangebs, a->size + 1));
3222:     if (oldmat->colmap) {
3223: #if defined(PETSC_USE_CTABLE)
3224:       PetscCall(PetscHMapIDuplicate(oldmat->colmap, &a->colmap));
3225: #else
3226:       PetscCall(PetscMalloc1(a->Nbs, &a->colmap));
3227:       PetscCall(PetscArraycpy(a->colmap, oldmat->colmap, a->Nbs));
3228: #endif
3229:     } else a->colmap = NULL;

3231:     if (oldmat->garray && (len = ((Mat_SeqBAIJ *)oldmat->B->data)->nbs)) {
3232:       PetscCall(PetscMalloc1(len, &a->garray));
3233:       PetscCall(PetscArraycpy(a->garray, oldmat->garray, len));
3234:     } else a->garray = NULL;

3236:     PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)matin), matin->rmap->bs, &mat->bstash));
3237:     PetscCall(VecDuplicate(oldmat->lvec, &a->lvec));
3238:     PetscCall(VecScatterCopy(oldmat->Mvctx, &a->Mvctx));

3240:     PetscCall(MatDuplicate(oldmat->A, cpvalues, &a->A));
3241:     PetscCall(MatDuplicate(oldmat->B, cpvalues, &a->B));
3242:   }
3243:   PetscCall(PetscFunctionListDuplicate(((PetscObject)matin)->qlist, &((PetscObject)mat)->qlist));
3244:   *newmat = mat;
3245:   PetscFunctionReturn(PETSC_SUCCESS);
3246: }

3248: /* Used for both MPIBAIJ and MPISBAIJ matrices */
3249: PetscErrorCode MatLoad_MPIBAIJ_Binary(Mat mat, PetscViewer viewer)
3250: {
3251:   PetscInt     header[4], M, N, nz, bs, m, n, mbs, nbs, rows, cols, sum, i, j, k;
3252:   PetscInt    *rowidxs, *colidxs, rs, cs, ce;
3253:   PetscScalar *matvals;

3255:   PetscFunctionBegin;
3256:   PetscCall(PetscViewerSetUp(viewer));

3258:   /* read in matrix header */
3259:   PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
3260:   PetscCheck(header[0] == MAT_FILE_CLASSID, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
3261:   M  = header[1];
3262:   N  = header[2];
3263:   nz = header[3];
3264:   PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
3265:   PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
3266:   PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix stored in special format on disk, cannot load as MPIBAIJ");

3268:   /* set block sizes from the viewer's .info file */
3269:   PetscCall(MatLoad_Binary_BlockSizes(mat, viewer));
3270:   /* set local sizes if not set already */
3271:   if (mat->rmap->n < 0 && M == N) mat->rmap->n = mat->cmap->n;
3272:   if (mat->cmap->n < 0 && M == N) mat->cmap->n = mat->rmap->n;
3273:   /* set global sizes if not set already */
3274:   if (mat->rmap->N < 0) mat->rmap->N = M;
3275:   if (mat->cmap->N < 0) mat->cmap->N = N;
3276:   PetscCall(PetscLayoutSetUp(mat->rmap));
3277:   PetscCall(PetscLayoutSetUp(mat->cmap));

3279:   /* check if the matrix sizes are correct */
3280:   PetscCall(MatGetSize(mat, &rows, &cols));
3281:   PetscCheck(M == rows && N == cols, PETSC_COMM_SELF, PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);
3282:   PetscCall(MatGetBlockSize(mat, &bs));
3283:   PetscCall(MatGetLocalSize(mat, &m, &n));
3284:   PetscCall(PetscLayoutGetRange(mat->rmap, &rs, NULL));
3285:   PetscCall(PetscLayoutGetRange(mat->cmap, &cs, &ce));
3286:   mbs = m / bs;
3287:   nbs = n / bs;

3289:   /* read in row lengths and build row indices */
3290:   PetscCall(PetscMalloc1(m + 1, &rowidxs));
3291:   PetscCall(PetscViewerBinaryReadAll(viewer, rowidxs + 1, m, PETSC_DECIDE, M, PETSC_INT));
3292:   rowidxs[0] = 0;
3293:   for (i = 0; i < m; i++) rowidxs[i + 1] += rowidxs[i];
3294:   PetscCall(MPIU_Allreduce(&rowidxs[m], &sum, 1, MPIU_INT, MPI_SUM, PetscObjectComm((PetscObject)viewer)));
3295:   PetscCheck(sum == nz, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Inconsistent matrix data in file: nonzeros = %" PetscInt_FMT ", sum-row-lengths = %" PetscInt_FMT, nz, sum);

3297:   /* read in column indices and matrix values */
3298:   PetscCall(PetscMalloc2(rowidxs[m], &colidxs, rowidxs[m], &matvals));
3299:   PetscCall(PetscViewerBinaryReadAll(viewer, colidxs, rowidxs[m], PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
3300:   PetscCall(PetscViewerBinaryReadAll(viewer, matvals, rowidxs[m], PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));

3302:   {                /* preallocate matrix storage */
3303:     PetscBT    bt; /* helper bit set to count diagonal nonzeros */
3304:     PetscHSetI ht; /* helper hash set to count off-diagonal nonzeros */
3305:     PetscBool  sbaij, done;
3306:     PetscInt  *d_nnz, *o_nnz;

3308:     PetscCall(PetscBTCreate(nbs, &bt));
3309:     PetscCall(PetscHSetICreate(&ht));
3310:     PetscCall(PetscCalloc2(mbs, &d_nnz, mbs, &o_nnz));
3311:     PetscCall(PetscObjectTypeCompare((PetscObject)mat, MATMPISBAIJ, &sbaij));
3312:     for (i = 0; i < mbs; i++) {
3313:       PetscCall(PetscBTMemzero(nbs, bt));
3314:       PetscCall(PetscHSetIClear(ht));
3315:       for (k = 0; k < bs; k++) {
3316:         PetscInt row = bs * i + k;
3317:         for (j = rowidxs[row]; j < rowidxs[row + 1]; j++) {
3318:           PetscInt col = colidxs[j];
3319:           if (!sbaij || col >= row) {
3320:             if (col >= cs && col < ce) {
3321:               if (!PetscBTLookupSet(bt, (col - cs) / bs)) d_nnz[i]++;
3322:             } else {
3323:               PetscCall(PetscHSetIQueryAdd(ht, col / bs, &done));
3324:               if (done) o_nnz[i]++;
3325:             }
3326:           }
3327:         }
3328:       }
3329:     }
3330:     PetscCall(PetscBTDestroy(&bt));
3331:     PetscCall(PetscHSetIDestroy(&ht));
3332:     PetscCall(MatMPIBAIJSetPreallocation(mat, bs, 0, d_nnz, 0, o_nnz));
3333:     PetscCall(MatMPISBAIJSetPreallocation(mat, bs, 0, d_nnz, 0, o_nnz));
3334:     PetscCall(PetscFree2(d_nnz, o_nnz));
3335:   }

3337:   /* store matrix values */
3338:   for (i = 0; i < m; i++) {
3339:     PetscInt row = rs + i, s = rowidxs[i], e = rowidxs[i + 1];
3340:     PetscUseTypeMethod(mat, setvalues, 1, &row, e - s, colidxs + s, matvals + s, INSERT_VALUES);
3341:   }

3343:   PetscCall(PetscFree(rowidxs));
3344:   PetscCall(PetscFree2(colidxs, matvals));
3345:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
3346:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
3347:   PetscFunctionReturn(PETSC_SUCCESS);
3348: }

3350: PetscErrorCode MatLoad_MPIBAIJ(Mat mat, PetscViewer viewer)
3351: {
3352:   PetscBool isbinary;

3354:   PetscFunctionBegin;
3355:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
3356:   PetscCheck(isbinary, PetscObjectComm((PetscObject)viewer), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)mat)->type_name);
3357:   PetscCall(MatLoad_MPIBAIJ_Binary(mat, viewer));
3358:   PetscFunctionReturn(PETSC_SUCCESS);
3359: }

3361: /*@
3362:   MatMPIBAIJSetHashTableFactor - Sets the factor required to compute the size of the matrices hash table

3364:   Input Parameters:
3365: + mat  - the matrix
3366: - fact - factor

3368:   Options Database Key:
3369: . -mat_use_hash_table <fact> - provide the factor

3371:   Level: advanced

3373: .seealso: `Mat`, `MATMPIBAIJ`, `MatSetOption()`
3374: @*/
3375: PetscErrorCode MatMPIBAIJSetHashTableFactor(Mat mat, PetscReal fact)
3376: {
3377:   PetscFunctionBegin;
3378:   PetscTryMethod(mat, "MatSetHashTableFactor_C", (Mat, PetscReal), (mat, fact));
3379:   PetscFunctionReturn(PETSC_SUCCESS);
3380: }

3382: PetscErrorCode MatSetHashTableFactor_MPIBAIJ(Mat mat, PetscReal fact)
3383: {
3384:   Mat_MPIBAIJ *baij;

3386:   PetscFunctionBegin;
3387:   baij          = (Mat_MPIBAIJ *)mat->data;
3388:   baij->ht_fact = fact;
3389:   PetscFunctionReturn(PETSC_SUCCESS);
3390: }

3392: PetscErrorCode MatMPIBAIJGetSeqBAIJ(Mat A, Mat *Ad, Mat *Ao, const PetscInt *colmap[])
3393: {
3394:   Mat_MPIBAIJ *a = (Mat_MPIBAIJ *)A->data;
3395:   PetscBool    flg;

3397:   PetscFunctionBegin;
3398:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATMPIBAIJ, &flg));
3399:   PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "This function requires a MATMPIBAIJ matrix as input");
3400:   if (Ad) *Ad = a->A;
3401:   if (Ao) *Ao = a->B;
3402:   if (colmap) *colmap = a->garray;
3403:   PetscFunctionReturn(PETSC_SUCCESS);
3404: }

3406: /*
3407:     Special version for direct calls from Fortran (to eliminate two function call overheads
3408: */
3409: #if defined(PETSC_HAVE_FORTRAN_CAPS)
3410:   #define matmpibaijsetvaluesblocked_ MATMPIBAIJSETVALUESBLOCKED
3411: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
3412:   #define matmpibaijsetvaluesblocked_ matmpibaijsetvaluesblocked
3413: #endif

3415: // PetscClangLinter pragma disable: -fdoc-synopsis-matching-symbol-name
3416: /*@C
3417:   MatMPIBAIJSetValuesBlocked - Direct Fortran call to replace call to `MatSetValuesBlocked()`

3419:   Collective

3421:   Input Parameters:
3422: + matin  - the matrix
3423: . min    - number of input rows
3424: . im     - input rows
3425: . nin    - number of input columns
3426: . in     - input columns
3427: . v      - numerical values input
3428: - addvin - `INSERT_VALUES` or `ADD_VALUES`

3430:   Level: advanced

3432:   Developer Notes:
3433:   This has a complete copy of `MatSetValuesBlocked_MPIBAIJ()` which is terrible code un-reuse.

3435: .seealso: `Mat`, `MatSetValuesBlocked()`
3436: @*/
3437: PETSC_EXTERN PetscErrorCode matmpibaijsetvaluesblocked_(Mat *matin, PetscInt *min, const PetscInt im[], PetscInt *nin, const PetscInt in[], const MatScalar v[], InsertMode *addvin)
3438: {
3439:   /* convert input arguments to C version */
3440:   Mat        mat = *matin;
3441:   PetscInt   m = *min, n = *nin;
3442:   InsertMode addv = *addvin;

3444:   Mat_MPIBAIJ     *baij = (Mat_MPIBAIJ *)mat->data;
3445:   const MatScalar *value;
3446:   MatScalar       *barray      = baij->barray;
3447:   PetscBool        roworiented = baij->roworiented;
3448:   PetscInt         i, j, ii, jj, row, col, rstart = baij->rstartbs;
3449:   PetscInt         rend = baij->rendbs, cstart = baij->cstartbs, stepval;
3450:   PetscInt         cend = baij->cendbs, bs = mat->rmap->bs, bs2 = baij->bs2;

3452:   PetscFunctionBegin;
3453:   /* tasks normally handled by MatSetValuesBlocked() */
3454:   if (mat->insertmode == NOT_SET_VALUES) mat->insertmode = addv;
3455:   else PetscCheck(mat->insertmode == addv, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot mix add values and insert values");
3456:   PetscCheck(!mat->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3457:   if (mat->assembled) {
3458:     mat->was_assembled = PETSC_TRUE;
3459:     mat->assembled     = PETSC_FALSE;
3460:   }
3461:   PetscCall(PetscLogEventBegin(MAT_SetValues, mat, 0, 0, 0));

3463:   if (!barray) {
3464:     PetscCall(PetscMalloc1(bs2, &barray));
3465:     baij->barray = barray;
3466:   }

3468:   if (roworiented) stepval = (n - 1) * bs;
3469:   else stepval = (m - 1) * bs;

3471:   for (i = 0; i < m; i++) {
3472:     if (im[i] < 0) continue;
3473:     PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large, row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
3474:     if (im[i] >= rstart && im[i] < rend) {
3475:       row = im[i] - rstart;
3476:       for (j = 0; j < n; j++) {
3477:         /* If NumCol = 1 then a copy is not required */
3478:         if ((roworiented) && (n == 1)) {
3479:           barray = (MatScalar *)v + i * bs2;
3480:         } else if ((!roworiented) && (m == 1)) {
3481:           barray = (MatScalar *)v + j * bs2;
3482:         } else { /* Here a copy is required */
3483:           if (roworiented) {
3484:             value = v + i * (stepval + bs) * bs + j * bs;
3485:           } else {
3486:             value = v + j * (stepval + bs) * bs + i * bs;
3487:           }
3488:           for (ii = 0; ii < bs; ii++, value += stepval) {
3489:             for (jj = 0; jj < bs; jj++) *barray++ = *value++;
3490:           }
3491:           barray -= bs2;
3492:         }

3494:         if (in[j] >= cstart && in[j] < cend) {
3495:           col = in[j] - cstart;
3496:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->A, row, col, barray, addv, im[i], in[j]));
3497:         } else if (in[j] < 0) {
3498:           continue;
3499:         } else {
3500:           PetscCheck(in[j] < baij->Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large, col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], baij->Nbs - 1);
3501:           if (mat->was_assembled) {
3502:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));

3504: #if defined(PETSC_USE_DEBUG)
3505:   #if defined(PETSC_USE_CTABLE)
3506:             {
3507:               PetscInt data;
3508:               PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &data));
3509:               PetscCheck((data - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
3510:             }
3511:   #else
3512:             PetscCheck((baij->colmap[in[j]] - 1) % bs == 0, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Incorrect colmap");
3513:   #endif
3514: #endif
3515: #if defined(PETSC_USE_CTABLE)
3516:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &col));
3517:             col = (col - 1) / bs;
3518: #else
3519:             col = (baij->colmap[in[j]] - 1) / bs;
3520: #endif
3521:             if (col < 0 && !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
3522:               PetscCall(MatDisAssemble_MPIBAIJ(mat));
3523:               col = in[j];
3524:             }
3525:           } else col = in[j];
3526:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B, row, col, barray, addv, im[i], in[j]));
3527:         }
3528:       }
3529:     } else {
3530:       if (!baij->donotstash) {
3531:         if (roworiented) {
3532:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
3533:         } else {
3534:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
3535:         }
3536:       }
3537:     }
3538:   }

3540:   /* task normally handled by MatSetValuesBlocked() */
3541:   PetscCall(PetscLogEventEnd(MAT_SetValues, mat, 0, 0, 0));
3542:   PetscFunctionReturn(PETSC_SUCCESS);
3543: }

3545: /*@
3546:   MatCreateMPIBAIJWithArrays - creates a `MATMPIBAIJ` matrix using arrays that contain in standard block CSR format for the local rows.

3548:   Collective

3550:   Input Parameters:
3551: + comm - MPI communicator
3552: . bs   - the block size, only a block size of 1 is supported
3553: . m    - number of local rows (Cannot be `PETSC_DECIDE`)
3554: . n    - This value should be the same as the local size used in creating the
3555:          x vector for the matrix-vector product $ y = Ax $. (or `PETSC_DECIDE` to have
3556:          calculated if `N` is given) For square matrices `n` is almost always `m`.
3557: . M    - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
3558: . N    - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
3559: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of block elements in that rowth block row of the matrix
3560: . j    - column indices
3561: - a    - matrix values

3563:   Output Parameter:
3564: . mat - the matrix

3566:   Level: intermediate

3568:   Notes:
3569:   The `i`, `j`, and `a` arrays ARE copied by this routine into the internal format used by PETSc;
3570:   thus you CANNOT change the matrix entries by changing the values of a[] after you have
3571:   called this routine. Use `MatCreateMPIAIJWithSplitArrays()` to avoid needing to copy the arrays.

3573:   The order of the entries in values is the same as the block compressed sparse row storage format; that is, it is
3574:   the same as a three dimensional array in Fortran values(bs,bs,nnz) that contains the first column of the first
3575:   block, followed by the second column of the first block etc etc.  That is, the blocks are contiguous in memory
3576:   with column-major ordering within blocks.

3578:   The `i` and `j` indices are 0 based, and `i` indices are indices corresponding to the local `j` array.

3580: .seealso: `Mat`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
3581:           `MATMPIAIJ`, `MatCreateAIJ()`, `MatCreateMPIAIJWithSplitArrays()`
3582: @*/
3583: PetscErrorCode MatCreateMPIBAIJWithArrays(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, const PetscInt i[], const PetscInt j[], const PetscScalar a[], Mat *mat)
3584: {
3585:   PetscFunctionBegin;
3586:   PetscCheck(!i[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
3587:   PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "local number of rows (m) cannot be PETSC_DECIDE, or negative");
3588:   PetscCall(MatCreate(comm, mat));
3589:   PetscCall(MatSetSizes(*mat, m, n, M, N));
3590:   PetscCall(MatSetType(*mat, MATMPIBAIJ));
3591:   PetscCall(MatSetBlockSize(*mat, bs));
3592:   PetscCall(MatSetUp(*mat));
3593:   PetscCall(MatSetOption(*mat, MAT_ROW_ORIENTED, PETSC_FALSE));
3594:   PetscCall(MatMPIBAIJSetPreallocationCSR(*mat, bs, i, j, a));
3595:   PetscCall(MatSetOption(*mat, MAT_ROW_ORIENTED, PETSC_TRUE));
3596:   PetscFunctionReturn(PETSC_SUCCESS);
3597: }

3599: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_MPIBAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
3600: {
3601:   PetscInt     m, N, i, rstart, nnz, Ii, bs, cbs;
3602:   PetscInt    *indx;
3603:   PetscScalar *values;

3605:   PetscFunctionBegin;
3606:   PetscCall(MatGetSize(inmat, &m, &N));
3607:   if (scall == MAT_INITIAL_MATRIX) { /* symbolic phase */
3608:     Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)inmat->data;
3609:     PetscInt    *dnz, *onz, mbs, Nbs, nbs;
3610:     PetscInt    *bindx, rmax = a->rmax, j;
3611:     PetscMPIInt  rank, size;

3613:     PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
3614:     mbs = m / bs;
3615:     Nbs = N / cbs;
3616:     if (n == PETSC_DECIDE) PetscCall(PetscSplitOwnershipBlock(comm, cbs, &n, &N));
3617:     nbs = n / cbs;

3619:     PetscCall(PetscMalloc1(rmax, &bindx));
3620:     MatPreallocateBegin(comm, mbs, nbs, dnz, onz); /* inline function, output __end and __rstart are used below */

3622:     PetscCallMPI(MPI_Comm_rank(comm, &rank));
3623:     PetscCallMPI(MPI_Comm_rank(comm, &size));
3624:     if (rank == size - 1) {
3625:       /* Check sum(nbs) = Nbs */
3626:       PetscCheck(__end == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Sum of local block columns %" PetscInt_FMT " != global block columns %" PetscInt_FMT, __end, Nbs);
3627:     }

3629:     rstart = __rstart; /* block rstart of *outmat; see inline function MatPreallocateBegin */
3630:     for (i = 0; i < mbs; i++) {
3631:       PetscCall(MatGetRow_SeqBAIJ(inmat, i * bs, &nnz, &indx, NULL)); /* non-blocked nnz and indx */
3632:       nnz = nnz / bs;
3633:       for (j = 0; j < nnz; j++) bindx[j] = indx[j * bs] / bs;
3634:       PetscCall(MatPreallocateSet(i + rstart, nnz, bindx, dnz, onz));
3635:       PetscCall(MatRestoreRow_SeqBAIJ(inmat, i * bs, &nnz, &indx, NULL));
3636:     }
3637:     PetscCall(PetscFree(bindx));

3639:     PetscCall(MatCreate(comm, outmat));
3640:     PetscCall(MatSetSizes(*outmat, m, n, PETSC_DETERMINE, PETSC_DETERMINE));
3641:     PetscCall(MatSetBlockSizes(*outmat, bs, cbs));
3642:     PetscCall(MatSetType(*outmat, MATBAIJ));
3643:     PetscCall(MatSeqBAIJSetPreallocation(*outmat, bs, 0, dnz));
3644:     PetscCall(MatMPIBAIJSetPreallocation(*outmat, bs, 0, dnz, 0, onz));
3645:     MatPreallocateEnd(dnz, onz);
3646:     PetscCall(MatSetOption(*outmat, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
3647:   }

3649:   /* numeric phase */
3650:   PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
3651:   PetscCall(MatGetOwnershipRange(*outmat, &rstart, NULL));

3653:   for (i = 0; i < m; i++) {
3654:     PetscCall(MatGetRow_SeqBAIJ(inmat, i, &nnz, &indx, &values));
3655:     Ii = i + rstart;
3656:     PetscCall(MatSetValues(*outmat, 1, &Ii, nnz, indx, values, INSERT_VALUES));
3657:     PetscCall(MatRestoreRow_SeqBAIJ(inmat, i, &nnz, &indx, &values));
3658:   }
3659:   PetscCall(MatAssemblyBegin(*outmat, MAT_FINAL_ASSEMBLY));
3660:   PetscCall(MatAssemblyEnd(*outmat, MAT_FINAL_ASSEMBLY));
3661:   PetscFunctionReturn(PETSC_SUCCESS);
3662: }