Actual source code: vector.c

  1: /*
  2:      Provides the interface functions for vector operations that do NOT have PetscScalar/PetscReal in the signature
  3:    These are the vector functions the user calls.
  4: */
  5: #include <petsc/private/vecimpl.h>
  6: #include <petsc/private/deviceimpl.h>

  8: /* Logging support */
  9: PetscClassId  VEC_CLASSID;
 10: PetscLogEvent VEC_View, VEC_Max, VEC_Min, VEC_Dot, VEC_MDot, VEC_TDot;
 11: PetscLogEvent VEC_Norm, VEC_Normalize, VEC_Scale, VEC_Shift, VEC_Copy, VEC_Set, VEC_AXPY, VEC_AYPX, VEC_WAXPY;
 12: PetscLogEvent VEC_MTDot, VEC_MAXPY, VEC_Swap, VEC_AssemblyBegin, VEC_ScatterBegin, VEC_ScatterEnd;
 13: PetscLogEvent VEC_AssemblyEnd, VEC_PointwiseMult, VEC_PointwiseDivide, VEC_SetValues, VEC_Load, VEC_SetPreallocateCOO, VEC_SetValuesCOO;
 14: PetscLogEvent VEC_SetRandom, VEC_ReduceArithmetic, VEC_ReduceCommunication, VEC_ReduceBegin, VEC_ReduceEnd, VEC_Ops;
 15: PetscLogEvent VEC_DotNorm2, VEC_AXPBYPCZ;
 16: PetscLogEvent VEC_ViennaCLCopyFromGPU, VEC_ViennaCLCopyToGPU;
 17: PetscLogEvent VEC_CUDACopyFromGPU, VEC_CUDACopyToGPU;
 18: PetscLogEvent VEC_HIPCopyFromGPU, VEC_HIPCopyToGPU;

 20: /*@
 21:   VecStashGetInfo - Gets how many values are currently in the vector stash, i.e. need
 22:   to be communicated to other processors during the `VecAssemblyBegin()`/`VecAssemblyEnd()` process

 24:   Not Collective

 26:   Input Parameter:
 27: . vec - the vector

 29:   Output Parameters:
 30: + nstash    - the size of the stash
 31: . reallocs  - the number of additional mallocs incurred in building the stash
 32: . bnstash   - the size of the block stash
 33: - breallocs - the number of additional mallocs incurred in building the block stash (from `VecSetValuesBlocked()`)

 35:   Level: advanced

 37: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecStashSetInitialSize()`, `VecStashView()`
 38: @*/
 39: PetscErrorCode VecStashGetInfo(Vec vec, PetscInt *nstash, PetscInt *reallocs, PetscInt *bnstash, PetscInt *breallocs)
 40: {
 41:   PetscFunctionBegin;
 42:   PetscCall(VecStashGetInfo_Private(&vec->stash, nstash, reallocs));
 43:   PetscCall(VecStashGetInfo_Private(&vec->bstash, bnstash, breallocs));
 44:   PetscFunctionReturn(PETSC_SUCCESS);
 45: }

 47: /*@
 48:   VecSetLocalToGlobalMapping - Sets a local numbering to global numbering used
 49:   by the routine `VecSetValuesLocal()` to allow users to insert vector entries
 50:   using a local (per-processor) numbering.

 52:   Logically Collective

 54:   Input Parameters:
 55: + x       - vector
 56: - mapping - mapping created with `ISLocalToGlobalMappingCreate()` or `ISLocalToGlobalMappingCreateIS()`

 58:   Level: intermediate

 60:   Notes:
 61:   All vectors obtained with `VecDuplicate()` from this vector inherit the same mapping.

 63:   Vectors obtained with `DMCreateGlobaVector()` will often have this attribute attached to the vector so this call is not needed

 65: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`, `VecSetValuesLocal()`,
 66:            `VecGetLocalToGlobalMapping()`, `VecSetValuesBlockedLocal()`
 67: @*/
 68: PetscErrorCode VecSetLocalToGlobalMapping(Vec x, ISLocalToGlobalMapping mapping)
 69: {
 70:   PetscFunctionBegin;
 73:   if (x->ops->setlocaltoglobalmapping) PetscUseTypeMethod(x, setlocaltoglobalmapping, mapping);
 74:   else PetscCall(PetscLayoutSetISLocalToGlobalMapping(x->map, mapping));
 75:   PetscFunctionReturn(PETSC_SUCCESS);
 76: }

 78: /*@
 79:   VecGetLocalToGlobalMapping - Gets the local-to-global numbering set by `VecSetLocalToGlobalMapping()`

 81:   Not Collective

 83:   Input Parameter:
 84: . X - the vector

 86:   Output Parameter:
 87: . mapping - the mapping

 89:   Level: advanced

 91: .seealso: [](ch_vectors), `Vec`, `VecSetValuesLocal()`, `VecSetLocalToGlobalMapping()`
 92: @*/
 93: PetscErrorCode VecGetLocalToGlobalMapping(Vec X, ISLocalToGlobalMapping *mapping)
 94: {
 95:   PetscFunctionBegin;
 98:   PetscAssertPointer(mapping, 2);
 99:   if (X->ops->getlocaltoglobalmapping) PetscUseTypeMethod(X, getlocaltoglobalmapping, mapping);
100:   else *mapping = X->map->mapping;
101:   PetscFunctionReturn(PETSC_SUCCESS);
102: }

104: /*@
105:   VecAssemblyBegin - Begins assembling the vector; that is ensuring all the vector's entries are stored on the correct MPI process. This routine should
106:   be called after completing all calls to `VecSetValues()`.

108:   Collective

110:   Input Parameter:
111: . vec - the vector

113:   Level: beginner

115: .seealso: [](ch_vectors), `Vec`, `VecAssemblyEnd()`, `VecSetValues()`
116: @*/
117: PetscErrorCode VecAssemblyBegin(Vec vec)
118: {
119:   PetscFunctionBegin;
122:   PetscCall(VecStashViewFromOptions(vec, NULL, "-vec_view_stash"));
123:   PetscCall(PetscLogEventBegin(VEC_AssemblyBegin, vec, 0, 0, 0));
124:   PetscTryTypeMethod(vec, assemblybegin);
125:   PetscCall(PetscLogEventEnd(VEC_AssemblyBegin, vec, 0, 0, 0));
126:   PetscCall(PetscObjectStateIncrease((PetscObject)vec));
127:   PetscFunctionReturn(PETSC_SUCCESS);
128: }

130: /*@
131:   VecAssemblyEnd - Completes assembling the vector.  This routine should be called after `VecAssemblyBegin()`.

133:   Collective

135:   Input Parameter:
136: . vec - the vector

138:   Options Database Keys:
139: + -vec_view                 - Prints vector in `PETSC_VIEWER_DEFAULT` format
140: . -vec_view ::ascii_matlab  - Prints vector in `PETSC_VIEWER_ASCII_MATLAB` format to stdout
141: . -vec_view matlab:filename - Prints vector in MATLAB .mat file to filename (requires PETSc configured with --with-matlab)
142: . -vec_view draw            - Activates vector viewing using drawing tools
143: . -display <name>           - Sets display name (default is host)
144: . -draw_pause <sec>         - Sets number of seconds to pause after display
145: - -vec_view socket          - Activates vector viewing using a socket

147:   Level: beginner

149: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecSetValues()`
150: @*/
151: PetscErrorCode VecAssemblyEnd(Vec vec)
152: {
153:   PetscFunctionBegin;
155:   PetscCall(PetscLogEventBegin(VEC_AssemblyEnd, vec, 0, 0, 0));
157:   PetscTryTypeMethod(vec, assemblyend);
158:   PetscCall(PetscLogEventEnd(VEC_AssemblyEnd, vec, 0, 0, 0));
159:   PetscCall(VecViewFromOptions(vec, NULL, "-vec_view"));
160:   PetscFunctionReturn(PETSC_SUCCESS);
161: }

163: /*@
164:   VecSetPreallocationCOO - set preallocation for a vector using a coordinate format of the entries with global indices

166:   Collective

168:   Input Parameters:
169: + x     - vector being preallocated
170: . ncoo  - number of entries
171: - coo_i - entry indices

173:   Level: beginner

175:   Notes:
176:   This and `VecSetValuesCOO()` provide an alternative API to using `VecSetValues()` to provide vector values.

178:   This API is particularly efficient for use on GPUs.

180:   Entries can be repeated, see `VecSetValuesCOO()`. Negative indices are not allowed unless vector option `VEC_IGNORE_NEGATIVE_INDICES` is set,
181:   in which case they, along with the corresponding entries in `VecSetValuesCOO()`, are ignored. If vector option `VEC_NO_OFF_PROC_ENTRIES` is set,
182:   remote entries are ignored, otherwise, they will be properly added or inserted to the vector.

184:   The array coo_i[] may be freed immediately after calling this function.

186: .seealso: [](ch_vectors), `Vec`, `VecSetValuesCOO()`, `VecSetPreallocationCOOLocal()`
187: @*/
188: PetscErrorCode VecSetPreallocationCOO(Vec x, PetscCount ncoo, const PetscInt coo_i[])
189: {
190:   PetscFunctionBegin;
193:   if (ncoo) PetscAssertPointer(coo_i, 3);
194:   PetscCall(PetscLogEventBegin(VEC_SetPreallocateCOO, x, 0, 0, 0));
195:   PetscCall(PetscLayoutSetUp(x->map));
196:   if (x->ops->setpreallocationcoo) {
197:     PetscUseTypeMethod(x, setpreallocationcoo, ncoo, coo_i);
198:   } else {
199:     IS is_coo_i;
200:     /* The default implementation only supports ncoo within limit of PetscInt */
201:     PetscCheck(ncoo <= PETSC_INT_MAX, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
202:     PetscCall(ISCreateGeneral(PETSC_COMM_SELF, (PetscInt)ncoo, coo_i, PETSC_COPY_VALUES, &is_coo_i));
203:     PetscCall(PetscObjectCompose((PetscObject)x, "__PETSc_coo_i", (PetscObject)is_coo_i));
204:     PetscCall(ISDestroy(&is_coo_i));
205:   }
206:   PetscCall(PetscLogEventEnd(VEC_SetPreallocateCOO, x, 0, 0, 0));
207:   PetscFunctionReturn(PETSC_SUCCESS);
208: }

210: /*@
211:   VecSetPreallocationCOOLocal - set preallocation for vectors using a coordinate format of the entries with local indices

213:   Collective

215:   Input Parameters:
216: + x     - vector being preallocated
217: . ncoo  - number of entries
218: - coo_i - row indices (local numbering; may be modified)

220:   Level: beginner

222:   Notes:
223:   This and `VecSetValuesCOO()` provide an alternative API to using `VecSetValuesLocal()` to provide vector values.

225:   This API is particularly efficient for use on GPUs.

227:   The local indices are translated using the local to global mapping, thus `VecSetLocalToGlobalMapping()` must have been
228:   called prior to this function.

230:   The indices coo_i may be modified within this function. They might be translated to corresponding global
231:   indices, but the caller should not rely on them having any specific value after this function returns. The arrays
232:   can be freed or reused immediately after this function returns.

234:   Entries can be repeated. Negative indices and remote indices might be allowed. see `VecSetPreallocationCOO()`.

236: .seealso: [](ch_vectors), `Vec`, `VecSetPreallocationCOO()`, `VecSetValuesCOO()`
237: @*/
238: PetscErrorCode VecSetPreallocationCOOLocal(Vec x, PetscCount ncoo, PetscInt coo_i[])
239: {
240:   ISLocalToGlobalMapping ltog;

242:   PetscFunctionBegin;
245:   if (ncoo) PetscAssertPointer(coo_i, 3);
246:   PetscCheck(ncoo <= PETSC_INT_MAX, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
247:   PetscCall(PetscLayoutSetUp(x->map));
248:   PetscCall(VecGetLocalToGlobalMapping(x, &ltog));
249:   if (ltog) PetscCall(ISLocalToGlobalMappingApply(ltog, (PetscInt)ncoo, coo_i, coo_i));
250:   PetscCall(VecSetPreallocationCOO(x, ncoo, coo_i));
251:   PetscFunctionReturn(PETSC_SUCCESS);
252: }

254: /*@
255:   VecSetValuesCOO - set values at once in a vector preallocated using `VecSetPreallocationCOO()`

257:   Collective

259:   Input Parameters:
260: + x     - vector being set
261: . coo_v - the value array
262: - imode - the insert mode

264:   Level: beginner

266:   Note:
267:   This and `VecSetPreallocationCOO() or ``VecSetPreallocationCOOLocal()` provide an alternative API to using `VecSetValues()` to provide vector values.

269:   This API is particularly efficient for use on GPUs.

271:   The values must follow the order of the indices prescribed with `VecSetPreallocationCOO()` or `VecSetPreallocationCOOLocal()`.
272:   When repeated entries are specified in the COO indices the `coo_v` values are first properly summed, regardless of the value of `imode`.
273:   The imode flag indicates if `coo_v` must be added to the current values of the vector (`ADD_VALUES`) or overwritten (`INSERT_VALUES`).
274:   `VecAssemblyBegin()` and `VecAssemblyEnd()` do not need to be called after this routine. It automatically handles the assembly process.

276: .seealso: [](ch_vectors), `Vec`, `VecSetPreallocationCOO()`, `VecSetPreallocationCOOLocal()`, `VecSetValues()`
277: @*/
278: PetscErrorCode VecSetValuesCOO(Vec x, const PetscScalar coo_v[], InsertMode imode)
279: {
280:   PetscFunctionBegin;
284:   PetscCall(PetscLogEventBegin(VEC_SetValuesCOO, x, 0, 0, 0));
285:   if (x->ops->setvaluescoo) {
286:     PetscUseTypeMethod(x, setvaluescoo, coo_v, imode);
287:     PetscCall(PetscObjectStateIncrease((PetscObject)x));
288:   } else {
289:     IS              is_coo_i;
290:     const PetscInt *coo_i;
291:     PetscInt        ncoo;
292:     PetscMemType    mtype;

294:     PetscCall(PetscGetMemType(coo_v, &mtype));
295:     PetscCheck(mtype == PETSC_MEMTYPE_HOST, PetscObjectComm((PetscObject)x), PETSC_ERR_ARG_WRONG, "The basic VecSetValuesCOO() only supports v[] on host");
296:     PetscCall(PetscObjectQuery((PetscObject)x, "__PETSc_coo_i", (PetscObject *)&is_coo_i));
297:     PetscCheck(is_coo_i, PetscObjectComm((PetscObject)x), PETSC_ERR_COR, "Missing coo_i IS");
298:     PetscCall(ISGetLocalSize(is_coo_i, &ncoo));
299:     PetscCall(ISGetIndices(is_coo_i, &coo_i));
300:     if (imode != ADD_VALUES) PetscCall(VecZeroEntries(x));
301:     PetscCall(VecSetValues(x, ncoo, coo_i, coo_v, ADD_VALUES));
302:     PetscCall(ISRestoreIndices(is_coo_i, &coo_i));
303:     PetscCall(VecAssemblyBegin(x));
304:     PetscCall(VecAssemblyEnd(x));
305:   }
306:   PetscCall(PetscLogEventEnd(VEC_SetValuesCOO, x, 0, 0, 0));
307:   PetscFunctionReturn(PETSC_SUCCESS);
308: }

310: static PetscErrorCode VecPointwiseApply_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx, PetscLogEvent event, const char async_name[], PetscErrorCode (*const pointwise_op)(Vec, Vec, Vec))
311: {
312:   PetscErrorCode (*async_fn)(Vec, Vec, Vec, PetscDeviceContext) = NULL;

314:   PetscFunctionBegin;
321:   PetscCheckSameTypeAndComm(x, 2, y, 3);
322:   PetscCheckSameTypeAndComm(y, 3, w, 1);
323:   VecCheckSameSize(w, 1, x, 2);
324:   VecCheckSameSize(w, 1, y, 3);
325:   VecCheckAssembled(x);
326:   VecCheckAssembled(y);
327:   PetscCall(VecSetErrorIfLocked(w, 1));

330:   if (dctx) PetscCall(PetscObjectQueryFunction((PetscObject)w, async_name, &async_fn));
331:   if (event) PetscCall(PetscLogEventBegin(event, x, y, w, 0));
332:   if (async_fn) {
333:     PetscCall((*async_fn)(w, x, y, dctx));
334:   } else {
335:     PetscCall((*pointwise_op)(w, x, y));
336:   }
337:   if (event) PetscCall(PetscLogEventEnd(event, x, y, w, 0));
338:   PetscCall(PetscObjectStateIncrease((PetscObject)w));
339:   PetscFunctionReturn(PETSC_SUCCESS);
340: }

342: PetscErrorCode VecPointwiseMaxAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
343: {
344:   PetscFunctionBegin;
345:   // REVIEW ME: no log event?
346:   PetscCall(VecPointwiseApply_Private(w, x, y, dctx, 0, VecAsyncFnName(PointwiseMax), w->ops->pointwisemax));
347:   PetscFunctionReturn(PETSC_SUCCESS);
348: }

350: /*@
351:   VecPointwiseMax - Computes the component-wise maximum `w[i] = max(x[i], y[i])`.

353:   Logically Collective

355:   Input Parameters:
356: + x - the first input vector
357: - y - the second input vector

359:   Output Parameter:
360: . w - the result

362:   Level: advanced

364:   Notes:
365:   Any subset of the `x`, `y`, and `w` may be the same vector.

367:   For complex numbers compares only the real part

369: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMult()`, `VecPointwiseMin()`, `VecPointwiseMaxAbs()`, `VecMaxPointwiseDivide()`
370: @*/
371: PetscErrorCode VecPointwiseMax(Vec w, Vec x, Vec y)
372: {
373:   PetscFunctionBegin;
374:   PetscCall(VecPointwiseMaxAsync_Private(w, x, y, NULL));
375:   PetscFunctionReturn(PETSC_SUCCESS);
376: }

378: PetscErrorCode VecPointwiseMinAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
379: {
380:   PetscFunctionBegin;
381:   // REVIEW ME: no log event?
382:   PetscCall(VecPointwiseApply_Private(w, x, y, dctx, 0, VecAsyncFnName(PointwiseMin), w->ops->pointwisemin));
383:   PetscFunctionReturn(PETSC_SUCCESS);
384: }

386: /*@
387:   VecPointwiseMin - Computes the component-wise minimum `w[i] = min(x[i], y[i])`.

389:   Logically Collective

391:   Input Parameters:
392: + x - the first input vector
393: - y - the second input vector

395:   Output Parameter:
396: . w - the result

398:   Level: advanced

400:   Notes:
401:   Any subset of the `x`, `y`, and `w` may be the same vector.

403:   For complex numbers compares only the real part

405: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMult()`, `VecPointwiseMaxAbs()`, `VecMaxPointwiseDivide()`
406: @*/
407: PetscErrorCode VecPointwiseMin(Vec w, Vec x, Vec y)
408: {
409:   PetscFunctionBegin;
410:   PetscCall(VecPointwiseMinAsync_Private(w, x, y, NULL));
411:   PetscFunctionReturn(PETSC_SUCCESS);
412: }

414: PetscErrorCode VecPointwiseMaxAbsAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
415: {
416:   PetscFunctionBegin;
417:   // REVIEW ME: no log event?
418:   PetscCall(VecPointwiseApply_Private(w, x, y, dctx, 0, VecAsyncFnName(PointwiseMaxAbs), w->ops->pointwisemaxabs));
419:   PetscFunctionReturn(PETSC_SUCCESS);
420: }

422: /*@
423:   VecPointwiseMaxAbs - Computes the component-wise maximum of the absolute values `w[i] = max(abs(x[i]), abs(y[i]))`.

425:   Logically Collective

427:   Input Parameters:
428: + x - the first input vector
429: - y - the second input vector

431:   Output Parameter:
432: . w - the result

434:   Level: advanced

436:   Notes:
437:   Any subset of the `x`, `y`, and `w` may be the same vector.

439: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMult()`, `VecPointwiseMin()`, `VecPointwiseMax()`, `VecMaxPointwiseDivide()`
440: @*/
441: PetscErrorCode VecPointwiseMaxAbs(Vec w, Vec x, Vec y)
442: {
443:   PetscFunctionBegin;
444:   PetscCall(VecPointwiseMaxAbsAsync_Private(w, x, y, NULL));
445:   PetscFunctionReturn(PETSC_SUCCESS);
446: }

448: PetscErrorCode VecPointwiseDivideAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
449: {
450:   PetscFunctionBegin;
451:   PetscCall(VecPointwiseApply_Private(w, x, y, dctx, VEC_PointwiseDivide, VecAsyncFnName(PointwiseDivide), w->ops->pointwisedivide));
452:   PetscFunctionReturn(PETSC_SUCCESS);
453: }

455: /*@
456:   VecPointwiseDivide - Computes the component-wise division `w[i] = x[i] / y[i]`.

458:   Logically Collective

460:   Input Parameters:
461: + x - the numerator vector
462: - y - the denominator vector

464:   Output Parameter:
465: . w - the result

467:   Level: advanced

469:   Note:
470:   Any subset of the `x`, `y`, and `w` may be the same vector.

472: .seealso: [](ch_vectors), `Vec`, `VecPointwiseMult()`, `VecPointwiseMax()`, `VecPointwiseMin()`, `VecPointwiseMaxAbs()`, `VecMaxPointwiseDivide()`
473: @*/
474: PetscErrorCode VecPointwiseDivide(Vec w, Vec x, Vec y)
475: {
476:   PetscFunctionBegin;
477:   PetscCall(VecPointwiseDivideAsync_Private(w, x, y, NULL));
478:   PetscFunctionReturn(PETSC_SUCCESS);
479: }

481: PetscErrorCode VecPointwiseMultAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
482: {
483:   PetscFunctionBegin;
485:   PetscCall(VecPointwiseApply_Private(w, x, y, dctx, VEC_PointwiseMult, VecAsyncFnName(PointwiseMult), w->ops->pointwisemult));
486:   PetscFunctionReturn(PETSC_SUCCESS);
487: }

489: /*@
490:   VecPointwiseMult - Computes the component-wise multiplication `w[i] = x[i] * y[i]`.

492:   Logically Collective

494:   Input Parameters:
495: + x - the first vector
496: - y - the second vector

498:   Output Parameter:
499: . w - the result

501:   Level: advanced

503:   Note:
504:   Any subset of the `x`, `y`, and `w` may be the same vector.

506: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMax()`, `VecPointwiseMin()`, `VecPointwiseMaxAbs()`, `VecMaxPointwiseDivide()`
507: @*/
508: PetscErrorCode VecPointwiseMult(Vec w, Vec x, Vec y)
509: {
510:   PetscFunctionBegin;
511:   PetscCall(VecPointwiseMultAsync_Private(w, x, y, NULL));
512:   PetscFunctionReturn(PETSC_SUCCESS);
513: }

515: /*@
516:   VecDuplicate - Creates a new vector of the same type as an existing vector.

518:   Collective

520:   Input Parameter:
521: . v - a vector to mimic

523:   Output Parameter:
524: . newv - location to put new vector

526:   Level: beginner

528:   Notes:
529:   `VecDuplicate()` DOES NOT COPY the vector entries, but rather allocates storage
530:   for the new vector.  Use `VecCopy()` to copy a vector.

532:   Use `VecDestroy()` to free the space. Use `VecDuplicateVecs()` to get several
533:   vectors.

535: .seealso: [](ch_vectors), `Vec`, `VecDestroy()`, `VecDuplicateVecs()`, `VecCreate()`, `VecCopy()`
536: @*/
537: PetscErrorCode VecDuplicate(Vec v, Vec *newv)
538: {
539:   PetscFunctionBegin;
541:   PetscAssertPointer(newv, 2);
543:   PetscUseTypeMethod(v, duplicate, newv);
544: #if PetscDefined(HAVE_DEVICE)
545:   if (v->boundtocpu && v->bindingpropagates) {
546:     PetscCall(VecSetBindingPropagates(*newv, PETSC_TRUE));
547:     PetscCall(VecBindToCPU(*newv, PETSC_TRUE));
548:   }
549: #endif
550:   PetscCall(PetscObjectStateIncrease((PetscObject)*newv));
551:   PetscFunctionReturn(PETSC_SUCCESS);
552: }

554: /*@
555:   VecDestroy - Destroys a vector.

557:   Collective

559:   Input Parameter:
560: . v - the vector

562:   Level: beginner

564: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecDuplicate()`, `VecDestroyVecs()`
565: @*/
566: PetscErrorCode VecDestroy(Vec *v)
567: {
568:   PetscFunctionBegin;
569:   PetscAssertPointer(v, 1);
570:   if (!*v) PetscFunctionReturn(PETSC_SUCCESS);
572:   if (--((PetscObject)*v)->refct > 0) {
573:     *v = NULL;
574:     PetscFunctionReturn(PETSC_SUCCESS);
575:   }

577:   PetscCall(PetscObjectSAWsViewOff((PetscObject)*v));
578:   /* destroy the internal part */
579:   PetscTryTypeMethod(*v, destroy);
580:   PetscCall(PetscFree((*v)->defaultrandtype));
581:   /* destroy the external/common part */
582:   PetscCall(PetscLayoutDestroy(&(*v)->map));
583:   PetscCall(PetscHeaderDestroy(v));
584:   PetscFunctionReturn(PETSC_SUCCESS);
585: }

587: /*@C
588:   VecDuplicateVecs - Creates several vectors of the same type as an existing vector.

590:   Collective

592:   Input Parameters:
593: + m - the number of vectors to obtain
594: - v - a vector to mimic

596:   Output Parameter:
597: . V - location to put pointer to array of vectors

599:   Level: intermediate

601:   Note:
602:   Use `VecDestroyVecs()` to free the space. Use `VecDuplicate()` to form a single
603:   vector.

605:   Fortran Notes:
606:   The Fortran interface is slightly different from that given below, it
607:   requires one to pass in `V` a `Vec` array of size at least `m`.
608:   See the [](ch_fortran) for details.

610: .seealso: [](ch_vectors), `Vec`, [](ch_fortran), `VecDestroyVecs()`, `VecDuplicate()`, `VecCreate()`, `VecDuplicateVecsF90()`
611: @*/
612: PetscErrorCode VecDuplicateVecs(Vec v, PetscInt m, Vec *V[])
613: {
614:   PetscFunctionBegin;
616:   PetscAssertPointer(V, 3);
618:   PetscUseTypeMethod(v, duplicatevecs, m, V);
619: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
620:   if (v->boundtocpu && v->bindingpropagates) {
621:     PetscInt i;

623:     for (i = 0; i < m; i++) {
624:       /* Since ops->duplicatevecs might itself propagate the value of boundtocpu,
625:        * avoid unnecessary overhead by only calling VecBindToCPU() if the vector isn't already bound. */
626:       if (!(*V)[i]->boundtocpu) {
627:         PetscCall(VecSetBindingPropagates((*V)[i], PETSC_TRUE));
628:         PetscCall(VecBindToCPU((*V)[i], PETSC_TRUE));
629:       }
630:     }
631:   }
632: #endif
633:   PetscFunctionReturn(PETSC_SUCCESS);
634: }

636: /*@C
637:   VecDestroyVecs - Frees a block of vectors obtained with `VecDuplicateVecs()`.

639:   Collective

641:   Input Parameters:
642: + m  - the number of vectors previously obtained, if zero no vectors are destroyed
643: - vv - pointer to pointer to array of vector pointers, if `NULL` no vectors are destroyed

645:   Level: intermediate

647:   Fortran Notes:
648:   The Fortran interface is slightly different from that given below.
649:   See the [](ch_fortran) for details.

651: .seealso: [](ch_vectors), `Vec`, [](ch_fortran), `VecDuplicateVecs()`, `VecDestroyVecsf90()`
652: @*/
653: PetscErrorCode VecDestroyVecs(PetscInt m, Vec *vv[])
654: {
655:   PetscFunctionBegin;
656:   PetscAssertPointer(vv, 2);
657:   PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Trying to destroy negative number of vectors %" PetscInt_FMT, m);
658:   if (!m || !*vv) {
659:     *vv = NULL;
660:     PetscFunctionReturn(PETSC_SUCCESS);
661:   }
664:   PetscCall((*(**vv)->ops->destroyvecs)(m, *vv));
665:   *vv = NULL;
666:   PetscFunctionReturn(PETSC_SUCCESS);
667: }

669: /*@
670:   VecViewFromOptions - View a vector based on values in the options database

672:   Collective

674:   Input Parameters:
675: + A    - the vector
676: . obj  - Optional object that provides the options prefix for this viewing
677: - name - command line option

679:   Level: intermediate

681:   Note:
682:   See `PetscObjectViewFromOptions()` to see the `PetscViewer` and PetscViewerFormat` available

684: .seealso: [](ch_vectors), `Vec`, `VecView`, `PetscObjectViewFromOptions()`, `VecCreate()`
685: @*/
686: PetscErrorCode VecViewFromOptions(Vec A, PetscObject obj, const char name[])
687: {
688:   PetscFunctionBegin;
690:   PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
691:   PetscFunctionReturn(PETSC_SUCCESS);
692: }

694: /*@
695:   VecView - Views a vector object.

697:   Collective

699:   Input Parameters:
700: + vec    - the vector
701: - viewer - an optional `PetscViewer` visualization context

703:   Level: beginner

705:   Notes:
706:   The available visualization contexts include
707: +     `PETSC_VIEWER_STDOUT_SELF` - for sequential vectors
708: .     `PETSC_VIEWER_STDOUT_WORLD` - for parallel vectors created on `PETSC_COMM_WORLD`
709: -     `PETSC_VIEWER_STDOUT`_(comm) - for parallel vectors created on MPI communicator comm

711:   You can change the format the vector is printed using the
712:   option `PetscViewerPushFormat()`.

714:   The user can open alternative viewers with
715: +    `PetscViewerASCIIOpen()` - Outputs vector to a specified file
716: .    `PetscViewerBinaryOpen()` - Outputs vector in binary to a
717:   specified file; corresponding input uses `VecLoad()`
718: .    `PetscViewerDrawOpen()` - Outputs vector to an X window display
719: .    `PetscViewerSocketOpen()` - Outputs vector to Socket viewer
720: -    `PetscViewerHDF5Open()` - Outputs vector to HDF5 file viewer

722:   The user can call `PetscViewerPushFormat()` to specify the output
723:   format of ASCII printed objects (when using `PETSC_VIEWER_STDOUT_SELF`,
724:   `PETSC_VIEWER_STDOUT_WORLD` and `PetscViewerASCIIOpen()`).  Available formats include
725: +    `PETSC_VIEWER_DEFAULT` - default, prints vector contents
726: .    `PETSC_VIEWER_ASCII_MATLAB` - prints vector contents in MATLAB format
727: .    `PETSC_VIEWER_ASCII_INDEX` - prints vector contents, including indices of vector elements
728: -    `PETSC_VIEWER_ASCII_COMMON` - prints vector contents, using a
729:   format common among all vector types

731:   You can pass any number of vector objects, or other PETSc objects to the same viewer.

733:   In the debugger you can do call `VecView`(v,0) to display the vector. (The same holds for any PETSc object viewer).

735:   Notes for binary viewer:
736:   If you pass multiple vectors to a binary viewer you can read them back in the same order
737:   with `VecLoad()`.

739:   If the blocksize of the vector is greater than one then you must provide a unique prefix to
740:   the vector with `PetscObjectSetOptionsPrefix`((`PetscObject`)vec,"uniqueprefix"); BEFORE calling `VecView()` on the
741:   vector to be stored and then set that same unique prefix on the vector that you pass to `VecLoad()`. The blocksize
742:   information is stored in an ASCII file with the same name as the binary file plus a ".info" appended to the
743:   filename. If you copy the binary file, make sure you copy the associated .info file with it.

745:   See the manual page for `VecLoad()` on the exact format the binary viewer stores
746:   the values in the file.

748:   Notes for HDF5 Viewer:
749:   The name of the `Vec` (given with `PetscObjectSetName()` is the name that is used
750:   for the object in the HDF5 file. If you wish to store the same Vec into multiple
751:   datasets in the same file (typically with different values), you must change its
752:   name each time before calling the `VecView()`. To load the same vector,
753:   the name of the Vec object passed to `VecLoad()` must be the same.

755:   If the block size of the vector is greater than 1 then it is used as the first dimension in the HDF5 array.
756:   If the function `PetscViewerHDF5SetBaseDimension2()`is called then even if the block size is one it will
757:   be used as the first dimension in the HDF5 array (that is the HDF5 array will always be two dimensional)
758:   See also `PetscViewerHDF5SetTimestep()` which adds an additional complication to reading and writing `Vec`
759:   with the HDF5 viewer.

761: .seealso: [](ch_vectors), `Vec`, `VecViewFromOptions()`, `PetscViewerASCIIOpen()`, `PetscViewerDrawOpen()`, `PetscDrawLGCreate()`,
762:           `PetscViewerSocketOpen()`, `PetscViewerBinaryOpen()`, `VecLoad()`, `PetscViewerCreate()`,
763:           `PetscRealView()`, `PetscScalarView()`, `PetscIntView()`, `PetscViewerHDF5SetTimestep()`
764: @*/
765: PetscErrorCode VecView(Vec vec, PetscViewer viewer)
766: {
767:   PetscBool         iascii;
768:   PetscViewerFormat format;
769:   PetscMPIInt       size;

771:   PetscFunctionBegin;
774:   VecCheckAssembled(vec);
775:   if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)vec), &viewer));
777:   PetscCall(PetscViewerGetFormat(viewer, &format));
778:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)vec), &size));
779:   if (size == 1 && format == PETSC_VIEWER_LOAD_BALANCE) PetscFunctionReturn(PETSC_SUCCESS);

781:   PetscCheck(!vec->stash.n && !vec->bstash.n, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call VecAssemblyBegin/End() before viewing this vector");

783:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
784:   if (iascii) {
785:     PetscInt rows, bs;

787:     PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)vec, viewer));
788:     if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
789:       PetscCall(PetscViewerASCIIPushTab(viewer));
790:       PetscCall(VecGetSize(vec, &rows));
791:       PetscCall(VecGetBlockSize(vec, &bs));
792:       if (bs != 1) {
793:         PetscCall(PetscViewerASCIIPrintf(viewer, "length=%" PetscInt_FMT ", bs=%" PetscInt_FMT "\n", rows, bs));
794:       } else {
795:         PetscCall(PetscViewerASCIIPrintf(viewer, "length=%" PetscInt_FMT "\n", rows));
796:       }
797:       PetscCall(PetscViewerASCIIPopTab(viewer));
798:     }
799:   }
800:   PetscCall(VecLockReadPush(vec));
801:   PetscCall(PetscLogEventBegin(VEC_View, vec, viewer, 0, 0));
802:   if ((format == PETSC_VIEWER_NATIVE || format == PETSC_VIEWER_LOAD_BALANCE) && vec->ops->viewnative) {
803:     PetscUseTypeMethod(vec, viewnative, viewer);
804:   } else {
805:     PetscUseTypeMethod(vec, view, viewer);
806:   }
807:   PetscCall(VecLockReadPop(vec));
808:   PetscCall(PetscLogEventEnd(VEC_View, vec, viewer, 0, 0));
809:   PetscFunctionReturn(PETSC_SUCCESS);
810: }

812: #if defined(PETSC_USE_DEBUG)
813: #include <../src/sys/totalview/tv_data_display.h>
814: PETSC_UNUSED static int TV_display_type(const struct _p_Vec *v)
815: {
816:   const PetscScalar *values;
817:   char               type[32];

819:   TV_add_row("Local rows", "int", &v->map->n);
820:   TV_add_row("Global rows", "int", &v->map->N);
821:   TV_add_row("Typename", TV_ascii_string_type, ((PetscObject)v)->type_name);
822:   PetscCall(VecGetArrayRead((Vec)v, &values));
823:   PetscCall(PetscSNPrintf(type, 32, "double[%" PetscInt_FMT "]", v->map->n));
824:   TV_add_row("values", type, values);
825:   PetscCall(VecRestoreArrayRead((Vec)v, &values));
826:   return TV_format_OK;
827: }
828: #endif

830: /*@C
831:   VecViewNative - Views a vector object with the original type specific viewer

833:   Collective

835:   Input Parameters:
836: + vec    - the vector
837: - viewer - an optional `PetscViewer` visualization context

839:   Level: developer

841:   Note:
842:   This can be used with, for example, vectors obtained with `DMCreateGlobalVector()` for a `DMDA` to display the vector
843:   in the PETSc storage format (each MPI process values follow the previous MPI processes) instead of the "natural" grid
844:   ordering.

846: .seealso: [](ch_vectors), `Vec`, `PetscViewerASCIIOpen()`, `PetscViewerDrawOpen()`, `PetscDrawLGCreate()`, `VecView()`
847:           `PetscViewerSocketOpen()`, `PetscViewerBinaryOpen()`, `VecLoad()`, `PetscViewerCreate()`,
848:           `PetscRealView()`, `PetscScalarView()`, `PetscIntView()`, `PetscViewerHDF5SetTimestep()`
849: @*/
850: PetscErrorCode VecViewNative(Vec vec, PetscViewer viewer)
851: {
852:   PetscFunctionBegin;
855:   if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)vec), &viewer));
857:   PetscUseTypeMethod(vec, viewnative, viewer);
858:   PetscFunctionReturn(PETSC_SUCCESS);
859: }

861: /*@
862:   VecGetSize - Returns the global number of elements of the vector.

864:   Not Collective

866:   Input Parameter:
867: . x - the vector

869:   Output Parameter:
870: . size - the global length of the vector

872:   Level: beginner

874: .seealso: [](ch_vectors), `Vec`, `VecGetLocalSize()`
875: @*/
876: PetscErrorCode VecGetSize(Vec x, PetscInt *size)
877: {
878:   PetscFunctionBegin;
880:   PetscAssertPointer(size, 2);
882:   PetscUseTypeMethod(x, getsize, size);
883:   PetscFunctionReturn(PETSC_SUCCESS);
884: }

886: /*@
887:   VecGetLocalSize - Returns the number of elements of the vector stored
888:   in local memory (that is on this MPI process)

890:   Not Collective

892:   Input Parameter:
893: . x - the vector

895:   Output Parameter:
896: . size - the length of the local piece of the vector

898:   Level: beginner

900: .seealso: [](ch_vectors), `Vec`, `VecGetSize()`
901: @*/
902: PetscErrorCode VecGetLocalSize(Vec x, PetscInt *size)
903: {
904:   PetscFunctionBegin;
906:   PetscAssertPointer(size, 2);
908:   PetscUseTypeMethod(x, getlocalsize, size);
909:   PetscFunctionReturn(PETSC_SUCCESS);
910: }

912: /*@
913:   VecGetOwnershipRange - Returns the range of indices owned by
914:   this process. The vector is laid out with the
915:   first `n1` elements on the first processor, next `n2` elements on the
916:   second, etc.  For certain parallel layouts this range may not be
917:   well defined.

919:   Not Collective

921:   Input Parameter:
922: . x - the vector

924:   Output Parameters:
925: + low  - the first local element, pass in `NULL` if not interested
926: - high - one more than the last local element, pass in `NULL` if not interested

928:   Level: beginner

930:   Notes:
931:   If the `Vec` was obtained from a `DM` with `DMCreateGlobalVector()`, then the range values are determined by the specific `DM`.

933:   If the `Vec` was created directly the range values are determined by the local size passed to `VecSetSizes()` or `VecCreateMPI()`.
934:   If `PETSC_DECIDE` was passed as the local size, then the vector uses default values for the range using `PetscSplitOwnership()`.

936:   The high argument is one more than the last element stored locally.

938:   For certain `DM`, such as `DMDA`, it is better to use `DM` specific routines, such as `DMDAGetGhostCorners()`, to determine
939:   the local values in the vector.

941: .seealso: [](ch_vectors), `Vec`, `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `VecGetOwnershipRanges()`, `PetscSplitOwnership()`,
942:           `VecSetSizes()`, `VecCreateMPI()`, `PetscLayout`, `DMDAGetGhostCorners()`, `DM`
943: @*/
944: PetscErrorCode VecGetOwnershipRange(Vec x, PetscInt *low, PetscInt *high)
945: {
946:   PetscFunctionBegin;
949:   if (low) PetscAssertPointer(low, 2);
950:   if (high) PetscAssertPointer(high, 3);
951:   if (low) *low = x->map->rstart;
952:   if (high) *high = x->map->rend;
953:   PetscFunctionReturn(PETSC_SUCCESS);
954: }

956: /*@C
957:   VecGetOwnershipRanges - Returns the range of indices owned by EACH processor,
958:   The vector is laid out with the
959:   first `n1` elements on the first processor, next `n2` elements on the
960:   second, etc.  For certain parallel layouts this range may not be
961:   well defined.

963:   Not Collective

965:   Input Parameter:
966: . x - the vector

968:   Output Parameter:
969: . ranges - array of length `size` + 1 with the start and end+1 for each process

971:   Level: beginner

973:   Notes:
974:   If the `Vec` was obtained from a `DM` with `DMCreateGlobalVector()`, then the range values are determined by the specific `DM`.

976:   If the `Vec` was created directly the range values are determined by the local size passed to `VecSetSizes()` or `VecCreateMPI()`.
977:   If `PETSC_DECIDE` was passed as the local size, then the vector uses default values for the range using `PetscSplitOwnership()`.

979:   The high argument is one more than the last element stored locally.

981:   For certain `DM`, such as `DMDA`, it is better to use `DM` specific routines, such as `DMDAGetGhostCorners()`, to determine
982:   the local values in the vector.

984:   The high argument is one more than the last element stored locally.

986:   If `ranges` are used after all vectors that share the ranges has been destroyed, then the program will crash accessing `ranges`.

988:   Fortran Notes:
989:   You must PASS in an array of length `size` + 1, where `size` is the size of the communicator owning the vector

991: .seealso: [](ch_vectors), `Vec`, `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `VecGetOwnershipRange()`, `PetscSplitOwnership()`,
992:           `VecSetSizes()`, `VecCreateMPI()`, `PetscLayout`, `DMDAGetGhostCorners()`, `DM`
993: @*/
994: PetscErrorCode VecGetOwnershipRanges(Vec x, const PetscInt *ranges[])
995: {
996:   PetscFunctionBegin;
999:   PetscCall(PetscLayoutGetRanges(x->map, ranges));
1000:   PetscFunctionReturn(PETSC_SUCCESS);
1001: }

1003: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
1004: /*@
1005:   VecSetOption - Sets an option for controlling a vector's behavior.

1007:   Collective

1009:   Input Parameters:
1010: + x    - the vector
1011: . op   - the option
1012: - flag - turn the option on or off

1014:   Supported Options:
1015: + `VEC_IGNORE_OFF_PROC_ENTRIES` - which causes `VecSetValues()` to ignore
1016:           entries destined to be stored on a separate processor. This can be used
1017:           to eliminate the global reduction in the `VecAssemblyBegin()` if you know
1018:           that you have only used `VecSetValues()` to set local elements
1019: . `VEC_IGNORE_NEGATIVE_INDICES` - which means you can pass negative indices
1020:           in ix in calls to `VecSetValues()` or `VecGetValues()`. These rows are simply
1021:           ignored.
1022: - `VEC_SUBSET_OFF_PROC_ENTRIES` - which causes `VecAssemblyBegin()` to assume that the off-process
1023:           entries will always be a subset (possibly equal) of the off-process entries set on the
1024:           first assembly which had a true `VEC_SUBSET_OFF_PROC_ENTRIES` and the vector has not
1025:           changed this flag afterwards. If this assembly is not such first assembly, then this
1026:           assembly can reuse the communication pattern setup in that first assembly, thus avoiding
1027:           a global reduction. Subsequent assemblies setting off-process values should use the same
1028:           InsertMode as the first assembly.

1030:   Level: intermediate

1032:   Developer Notes:
1033:   The `InsertMode` restriction could be removed by packing the stash messages out of place.

1035: .seealso: [](ch_vectors), `Vec`, `VecSetValues()`
1036: @*/
1037: PetscErrorCode VecSetOption(Vec x, VecOption op, PetscBool flag)
1038: {
1039:   PetscFunctionBegin;
1042:   PetscTryTypeMethod(x, setoption, op, flag);
1043:   PetscFunctionReturn(PETSC_SUCCESS);
1044: }

1046: /* Default routines for obtaining and releasing; */
1047: /* may be used by any implementation */
1048: PetscErrorCode VecDuplicateVecs_Default(Vec w, PetscInt m, Vec *V[])
1049: {
1050:   PetscFunctionBegin;
1051:   PetscCheck(m > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "m must be > 0: m = %" PetscInt_FMT, m);
1052:   PetscCall(PetscMalloc1(m, V));
1053:   for (PetscInt i = 0; i < m; i++) PetscCall(VecDuplicate(w, *V + i));
1054:   PetscFunctionReturn(PETSC_SUCCESS);
1055: }

1057: PetscErrorCode VecDestroyVecs_Default(PetscInt m, Vec v[])
1058: {
1059:   PetscInt i;

1061:   PetscFunctionBegin;
1062:   PetscAssertPointer(v, 2);
1063:   for (i = 0; i < m; i++) PetscCall(VecDestroy(&v[i]));
1064:   PetscCall(PetscFree(v));
1065:   PetscFunctionReturn(PETSC_SUCCESS);
1066: }

1068: /*@
1069:   VecResetArray - Resets a vector to use its default memory. Call this
1070:   after the use of `VecPlaceArray()`.

1072:   Not Collective

1074:   Input Parameter:
1075: . vec - the vector

1077:   Level: developer

1079: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecReplaceArray()`, `VecPlaceArray()`
1080: @*/
1081: PetscErrorCode VecResetArray(Vec vec)
1082: {
1083:   PetscFunctionBegin;
1086:   PetscUseTypeMethod(vec, resetarray);
1087:   PetscCall(PetscObjectStateIncrease((PetscObject)vec));
1088:   PetscFunctionReturn(PETSC_SUCCESS);
1089: }

1091: /*@
1092:   VecLoad - Loads a vector that has been stored in binary or HDF5 format
1093:   with `VecView()`.

1095:   Collective

1097:   Input Parameters:
1098: + vec    - the newly loaded vector, this needs to have been created with `VecCreate()` or
1099:            some related function before the call to `VecLoad()`.
1100: - viewer - binary file viewer, obtained from `PetscViewerBinaryOpen()` or
1101:            HDF5 file viewer, obtained from `PetscViewerHDF5Open()`

1103:   Level: intermediate

1105:   Notes:
1106:   Defaults to the standard `VECSEQ` or `VECMPI`, if you want some other type of `Vec` call `VecSetFromOptions()`
1107:   before calling this.

1109:   The input file must contain the full global vector, as
1110:   written by the routine `VecView()`.

1112:   If the type or size of `vec` is not set before a call to `VecLoad()`, PETSc
1113:   sets the type and the local and global sizes based on the vector it is reading in. If type and/or
1114:   sizes are already set, then the same are used.

1116:   If using the binary viewer and the blocksize of the vector is greater than one then you must provide a unique prefix to
1117:   the vector with `PetscObjectSetOptionsPrefix`((`PetscObject`)vec,"uniqueprefix"); BEFORE calling `VecView()` on the
1118:   vector to be stored and then set that same unique prefix on the vector that you pass to VecLoad(). The blocksize
1119:   information is stored in an ASCII file with the same name as the binary file plus a ".info" appended to the
1120:   filename. If you copy the binary file, make sure you copy the associated .info file with it.

1122:   If using HDF5, you must assign the `Vec` the same name as was used in the Vec
1123:   that was stored in the file using `PetscObjectSetName(). Otherwise you will
1124:   get the error message: "Cannot H5DOpen2() with `Vec` name NAMEOFOBJECT".

1126:   If the HDF5 file contains a two dimensional array the first dimension is treated as the block size
1127:   in loading the vector. Hence, for example, using MATLAB notation h5create('vector.dat','/Test_Vec',[27 1]);
1128:   will load a vector of size 27 and block size 27 thus resulting in all 27 entries being on the first process of
1129:   vectors communicator and the rest of the processes having zero entries

1131:   Notes for advanced users when using the binary viewer:
1132:   Most users should not need to know the details of the binary storage
1133:   format, since `VecLoad()` and `VecView()` completely hide these details.
1134:   But for anyone who's interested, the standard binary vector storage
1135:   format is
1136: .vb
1137:      PetscInt    VEC_FILE_CLASSID
1138:      PetscInt    number of rows
1139:      PetscScalar *values of all entries
1140: .ve

1142:   In addition, PETSc automatically uses byte swapping to work on all machines; the files
1143:   are written ALWAYS using big-endian ordering. On small-endian machines the numbers
1144:   are converted to the small-endian format when they are read in from the file.
1145:   See PetscBinaryRead() and PetscBinaryWrite() to see how this may be done.

1147: .seealso: [](ch_vectors), `Vec`, `PetscViewerBinaryOpen()`, `VecView()`, `MatLoad()`
1148: @*/
1149: PetscErrorCode VecLoad(Vec vec, PetscViewer viewer)
1150: {
1151:   PetscBool         isbinary, ishdf5, isadios, isexodusii, iscgns;
1152:   PetscViewerFormat format;

1154:   PetscFunctionBegin;
1157:   PetscCheckSameComm(vec, 1, viewer, 2);
1158:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1159:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
1160:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERCGNS, &iscgns));
1161:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERADIOS, &isadios));
1162:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWEREXODUSII, &isexodusii));
1163:   PetscCheck(isbinary || ishdf5 || isadios || isexodusii || iscgns, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerBinaryOpen()");

1165:   PetscCall(VecSetErrorIfLocked(vec, 1));
1166:   if (!((PetscObject)vec)->type_name && !vec->ops->create) PetscCall(VecSetType(vec, VECSTANDARD));
1167:   PetscCall(PetscLogEventBegin(VEC_Load, viewer, 0, 0, 0));
1168:   PetscCall(PetscViewerGetFormat(viewer, &format));
1169:   if (format == PETSC_VIEWER_NATIVE && vec->ops->loadnative) {
1170:     PetscUseTypeMethod(vec, loadnative, viewer);
1171:   } else {
1172:     PetscUseTypeMethod(vec, load, viewer);
1173:   }
1174:   PetscCall(PetscLogEventEnd(VEC_Load, viewer, 0, 0, 0));
1175:   PetscFunctionReturn(PETSC_SUCCESS);
1176: }

1178: /*@
1179:   VecReciprocal - Replaces each component of a vector by its reciprocal.

1181:   Logically Collective

1183:   Input Parameter:
1184: . vec - the vector

1186:   Output Parameter:
1187: . vec - the vector reciprocal

1189:   Level: intermediate

1191:   Note:
1192:   Vector entries with value 0.0 are not changed

1194: .seealso: [](ch_vectors), `Vec`, `VecLog()`, `VecExp()`, `VecSqrtAbs()`
1195: @*/
1196: PetscErrorCode VecReciprocal(Vec vec)
1197: {
1198:   PetscFunctionBegin;
1199:   PetscCall(VecReciprocalAsync_Private(vec, NULL));
1200:   PetscFunctionReturn(PETSC_SUCCESS);
1201: }

1203: /*@C
1204:   VecSetOperation - Allows the user to override a particular vector operation.

1206:   Logically Collective; No Fortran Support

1208:   Input Parameters:
1209: + vec - The vector to modify
1210: . op  - The name of the operation
1211: - f   - The function that provides the operation.

1213:   Notes:
1214:   `f` may be `NULL` to remove the operation from `vec`. Depending on the operation this may be
1215:   allowed, however some always expect a valid function. In these cases an error will be raised
1216:   when calling the interface routine in question.

1218:   See `VecOperation` for an up-to-date list of override-able operations. The operations listed
1219:   there have the form `VECOP_<OPERATION>`, where `<OPERATION>` is the suffix (in all capital
1220:   letters) of the public interface routine (e.g., `VecView()` -> `VECOP_VIEW`).

1222:   Overriding a particular `Vec`'s operation has no affect on any other `Vec`s past, present,
1223:   or future. The user should also note that overriding a method is "destructive"; the previous
1224:   method is not retained in any way.

1226:   Level: advanced

1228:   Example Usage:
1229: .vb
1230:   // some new VecView() implementation, must have the same signature as the function it seeks
1231:   // to replace
1232:   PetscErrorCode UserVecView(Vec x, PetscViewer viewer)
1233:   {
1234:     PetscFunctionBeginUser;
1235:     // ...
1236:     PetscFunctionReturn(PETSC_SUCCESS);
1237:   }

1239:   // Create a VECMPI which has a pre-defined VecView() implementation
1240:   VecCreateMPI(comm, n, N, &x);
1241:   // Calls the VECMPI implementation for VecView()
1242:   VecView(x, viewer);

1244:   VecSetOperation(x, VECOP_VIEW, (void (*)(void))UserVecView);
1245:   // Now calls UserVecView()
1246:   VecView(x, viewer);
1247: .ve

1249: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `MatShellSetOperation()`
1250: @*/
1251: PetscErrorCode VecSetOperation(Vec vec, VecOperation op, void (*f)(void))
1252: {
1253:   PetscFunctionBegin;
1255:   if (op == VECOP_VIEW && !vec->ops->viewnative) {
1256:     vec->ops->viewnative = vec->ops->view;
1257:   } else if (op == VECOP_LOAD && !vec->ops->loadnative) {
1258:     vec->ops->loadnative = vec->ops->load;
1259:   }
1260:   ((void (**)(void))vec->ops)[(int)op] = f;
1261:   PetscFunctionReturn(PETSC_SUCCESS);
1262: }

1264: /*@
1265:   VecStashSetInitialSize - sets the sizes of the vec-stash, that is
1266:   used during the assembly process to store values that belong to
1267:   other processors.

1269:   Not Collective, different processes can have different size stashes

1271:   Input Parameters:
1272: + vec   - the vector
1273: . size  - the initial size of the stash.
1274: - bsize - the initial size of the block-stash(if used).

1276:   Options Database Keys:
1277: + -vecstash_initial_size <size> or <size0,size1,...sizep-1>           - set initial size
1278: - -vecstash_block_initial_size <bsize> or <bsize0,bsize1,...bsizep-1> - set initial block size

1280:   Level: intermediate

1282:   Notes:
1283:   The block-stash is used for values set with `VecSetValuesBlocked()` while
1284:   the stash is used for values set with `VecSetValues()`

1286:   Run with the option -info and look for output of the form
1287:   VecAssemblyBegin_MPIXXX:Stash has MM entries, uses nn mallocs.
1288:   to determine the appropriate value, MM, to use for size and
1289:   VecAssemblyBegin_MPIXXX:Block-Stash has BMM entries, uses nn mallocs.
1290:   to determine the value, BMM to use for bsize

1292:   PETSc attempts to smartly manage the stash size so there is little likelihood setting a
1293:   a specific value here will affect performance

1295: .seealso: [](ch_vectors), `Vec`, `VecSetBlockSize()`, `VecSetValues()`, `VecSetValuesBlocked()`, `VecStashView()`
1296: @*/
1297: PetscErrorCode VecStashSetInitialSize(Vec vec, PetscInt size, PetscInt bsize)
1298: {
1299:   PetscFunctionBegin;
1301:   PetscCall(VecStashSetInitialSize_Private(&vec->stash, size));
1302:   PetscCall(VecStashSetInitialSize_Private(&vec->bstash, bsize));
1303:   PetscFunctionReturn(PETSC_SUCCESS);
1304: }

1306: /*@
1307:   VecSetRandom - Sets all components of a vector to random numbers.

1309:   Logically Collective

1311:   Input Parameters:
1312: + x    - the vector
1313: - rctx - the random number context, formed by `PetscRandomCreate()`, or use `NULL` and it will create one internally.

1315:   Output Parameter:
1316: . x - the vector

1318:   Example of Usage:
1319: .vb
1320:      PetscRandomCreate(PETSC_COMM_WORLD,&rctx);
1321:      VecSetRandom(x,rctx);
1322:      PetscRandomDestroy(&rctx);
1323: .ve

1325:   Level: intermediate

1327: .seealso: [](ch_vectors), `Vec`, `VecSet()`, `VecSetValues()`, `PetscRandomCreate()`, `PetscRandomDestroy()`
1328: @*/
1329: PetscErrorCode VecSetRandom(Vec x, PetscRandom rctx)
1330: {
1331:   PetscRandom randObj = NULL;

1333:   PetscFunctionBegin;
1337:   VecCheckAssembled(x);
1338:   PetscCall(VecSetErrorIfLocked(x, 1));

1340:   if (!rctx) {
1341:     PetscCall(PetscRandomCreate(PetscObjectComm((PetscObject)x), &randObj));
1342:     PetscCall(PetscRandomSetType(randObj, x->defaultrandtype));
1343:     PetscCall(PetscRandomSetFromOptions(randObj));
1344:     rctx = randObj;
1345:   }

1347:   PetscCall(PetscLogEventBegin(VEC_SetRandom, x, rctx, 0, 0));
1348:   PetscUseTypeMethod(x, setrandom, rctx);
1349:   PetscCall(PetscLogEventEnd(VEC_SetRandom, x, rctx, 0, 0));

1351:   PetscCall(PetscRandomDestroy(&randObj));
1352:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
1353:   PetscFunctionReturn(PETSC_SUCCESS);
1354: }

1356: /*@
1357:   VecZeroEntries - puts a `0.0` in each element of a vector

1359:   Logically Collective

1361:   Input Parameter:
1362: . vec - The vector

1364:   Level: beginner

1366:   Note:
1367:   If the norm of the vector is known to be zero then this skips the unneeded zeroing process

1369: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecSetOptionsPrefix()`, `VecSet()`, `VecSetValues()`
1370: @*/
1371: PetscErrorCode VecZeroEntries(Vec vec)
1372: {
1373:   PetscFunctionBegin;
1374:   PetscCall(VecSet(vec, 0));
1375:   PetscFunctionReturn(PETSC_SUCCESS);
1376: }

1378: /*
1379:   VecSetTypeFromOptions_Private - Sets the type of vector from user options. Defaults to a PETSc sequential vector on one
1380:   processor and a PETSc MPI vector on more than one processor.

1382:   Collective

1384:   Input Parameter:
1385: . vec - The vector

1387:   Level: intermediate

1389: .seealso: [](ch_vectors), `Vec`, `VecSetFromOptions()`, `VecSetType()`
1390: */
1391: static PetscErrorCode VecSetTypeFromOptions_Private(Vec vec, PetscOptionItems *PetscOptionsObject)
1392: {
1393:   PetscBool   opt;
1394:   VecType     defaultType;
1395:   char        typeName[256];
1396:   PetscMPIInt size;

1398:   PetscFunctionBegin;
1399:   if (((PetscObject)vec)->type_name) defaultType = ((PetscObject)vec)->type_name;
1400:   else {
1401:     PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)vec), &size));
1402:     if (size > 1) defaultType = VECMPI;
1403:     else defaultType = VECSEQ;
1404:   }

1406:   PetscCall(VecRegisterAll());
1407:   PetscCall(PetscOptionsFList("-vec_type", "Vector type", "VecSetType", VecList, defaultType, typeName, 256, &opt));
1408:   if (opt) {
1409:     PetscCall(VecSetType(vec, typeName));
1410:   } else {
1411:     PetscCall(VecSetType(vec, defaultType));
1412:   }
1413:   PetscFunctionReturn(PETSC_SUCCESS);
1414: }

1416: /*@
1417:   VecSetFromOptions - Configures the vector from the options database.

1419:   Collective

1421:   Input Parameter:
1422: . vec - The vector

1424:   Level: beginner

1426:   Notes:
1427:   To see all options, run your program with the -help option.

1429:   Must be called after `VecCreate()` but before the vector is used.

1431: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecSetOptionsPrefix()`
1432: @*/
1433: PetscErrorCode VecSetFromOptions(Vec vec)
1434: {
1435:   PetscBool flg;
1436:   PetscInt  bind_below = 0;

1438:   PetscFunctionBegin;

1441:   PetscObjectOptionsBegin((PetscObject)vec);
1442:   /* Handle vector type options */
1443:   PetscCall(VecSetTypeFromOptions_Private(vec, PetscOptionsObject));

1445:   /* Handle specific vector options */
1446:   PetscTryTypeMethod(vec, setfromoptions, PetscOptionsObject);

1448:   /* Bind to CPU if below a user-specified size threshold.
1449:    * This perhaps belongs in the options for the GPU Vec types, but VecBindToCPU() does nothing when called on non-GPU types,
1450:    * and putting it here makes is more maintainable than duplicating this for all. */
1451:   PetscCall(PetscOptionsInt("-vec_bind_below", "Set the size threshold (in local entries) below which the Vec is bound to the CPU", "VecBindToCPU", bind_below, &bind_below, &flg));
1452:   if (flg && vec->map->n < bind_below) PetscCall(VecBindToCPU(vec, PETSC_TRUE));

1454:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
1455:   PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)vec, PetscOptionsObject));
1456:   PetscOptionsEnd();
1457:   PetscFunctionReturn(PETSC_SUCCESS);
1458: }

1460: /*@
1461:   VecSetSizes - Sets the local and global sizes, and checks to determine compatibility of the sizes

1463:   Collective

1465:   Input Parameters:
1466: + v - the vector
1467: . n - the local size (or `PETSC_DECIDE` to have it set)
1468: - N - the global size (or `PETSC_DETERMINE` to have it set)

1470:   Level: intermediate

1472:   Notes:
1473:   `N` cannot be `PETSC_DETERMINE` if `n` is `PETSC_DECIDE`

1475:   If one processor calls this with `N` of `PETSC_DETERMINE` then all processors must, otherwise the program will hang.

1477:   If `n` is not `PETSC_DECIDE`, then the value determines the `PetscLayout` of the vector and the ranges returned by
1478:   `VecGetOwnershipRange()` and `VecGetOwnershipRanges()`

1480: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecCreateSeq()`, `VecCreateMPI()`, `VecGetSize()`, `PetscSplitOwnership()`, `PetscLayout`,
1481:           `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`, `MatSetSizes()`
1482: @*/
1483: PetscErrorCode VecSetSizes(Vec v, PetscInt n, PetscInt N)
1484: {
1485:   PetscFunctionBegin;
1487:   if (N >= 0) {
1489:     PetscCheck(n <= N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local size %" PetscInt_FMT " cannot be larger than global size %" PetscInt_FMT, n, N);
1490:   }
1491:   PetscCheck(!(v->map->n >= 0 || v->map->N >= 0) || !(v->map->n != n || v->map->N != N), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset vector sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", n, N,
1492:              v->map->n, v->map->N);
1493:   v->map->n = n;
1494:   v->map->N = N;
1495:   PetscTryTypeMethod(v, create);
1496:   v->ops->create = NULL;
1497:   PetscFunctionReturn(PETSC_SUCCESS);
1498: }

1500: /*@
1501:   VecSetBlockSize - Sets the block size for future calls to `VecSetValuesBlocked()`
1502:   and `VecSetValuesBlockedLocal()`.

1504:   Logically Collective

1506:   Input Parameters:
1507: + v  - the vector
1508: - bs - the blocksize

1510:   Level: advanced

1512:   Note:
1513:   All vectors obtained by `VecDuplicate()` inherit the same blocksize.

1515:   Vectors obtained with `DMCreateGlobalVector()` and `DMCreateLocalVector()` generally already have a blocksize set based on the state of the `DM`

1517: .seealso: [](ch_vectors), `Vec`, `VecSetValuesBlocked()`, `VecSetLocalToGlobalMapping()`, `VecGetBlockSize()`
1518: @*/
1519: PetscErrorCode VecSetBlockSize(Vec v, PetscInt bs)
1520: {
1521:   PetscFunctionBegin;
1524:   PetscCall(PetscLayoutSetBlockSize(v->map, bs));
1525:   v->bstash.bs = bs; /* use the same blocksize for the vec's block-stash */
1526:   PetscFunctionReturn(PETSC_SUCCESS);
1527: }

1529: /*@
1530:   VecGetBlockSize - Gets the blocksize for the vector, i.e. what is used for `VecSetValuesBlocked()`
1531:   and `VecSetValuesBlockedLocal()`.

1533:   Not Collective

1535:   Input Parameter:
1536: . v - the vector

1538:   Output Parameter:
1539: . bs - the blocksize

1541:   Level: advanced

1543:   Note:
1544:   All vectors obtained by `VecDuplicate()` inherit the same blocksize.

1546: .seealso: [](ch_vectors), `Vec`, `VecSetValuesBlocked()`, `VecSetLocalToGlobalMapping()`, `VecSetBlockSize()`
1547: @*/
1548: PetscErrorCode VecGetBlockSize(Vec v, PetscInt *bs)
1549: {
1550:   PetscFunctionBegin;
1552:   PetscAssertPointer(bs, 2);
1553:   PetscCall(PetscLayoutGetBlockSize(v->map, bs));
1554:   PetscFunctionReturn(PETSC_SUCCESS);
1555: }

1557: /*@
1558:   VecSetOptionsPrefix - Sets the prefix used for searching for all
1559:   `Vec` options in the database.

1561:   Logically Collective

1563:   Input Parameters:
1564: + v      - the `Vec` context
1565: - prefix - the prefix to prepend to all option names

1567:   Level: advanced

1569:   Note:
1570:   A hyphen (-) must NOT be given at the beginning of the prefix name.
1571:   The first character of all runtime options is AUTOMATICALLY the hyphen.

1573: .seealso: [](ch_vectors), `Vec`, `VecSetFromOptions()`
1574: @*/
1575: PetscErrorCode VecSetOptionsPrefix(Vec v, const char prefix[])
1576: {
1577:   PetscFunctionBegin;
1579:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)v, prefix));
1580:   PetscFunctionReturn(PETSC_SUCCESS);
1581: }

1583: /*@
1584:   VecAppendOptionsPrefix - Appends to the prefix used for searching for all
1585:   `Vec` options in the database.

1587:   Logically Collective

1589:   Input Parameters:
1590: + v      - the `Vec` context
1591: - prefix - the prefix to prepend to all option names

1593:   Level: advanced

1595:   Note:
1596:   A hyphen (-) must NOT be given at the beginning of the prefix name.
1597:   The first character of all runtime options is AUTOMATICALLY the hyphen.

1599: .seealso: [](ch_vectors), `Vec`, `VecGetOptionsPrefix()`
1600: @*/
1601: PetscErrorCode VecAppendOptionsPrefix(Vec v, const char prefix[])
1602: {
1603:   PetscFunctionBegin;
1605:   PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)v, prefix));
1606:   PetscFunctionReturn(PETSC_SUCCESS);
1607: }

1609: /*@
1610:   VecGetOptionsPrefix - Sets the prefix used for searching for all
1611:   Vec options in the database.

1613:   Not Collective

1615:   Input Parameter:
1616: . v - the `Vec` context

1618:   Output Parameter:
1619: . prefix - pointer to the prefix string used

1621:   Level: advanced

1623:   Fortran Notes:
1624:   The user must pass in a string `prefix` of
1625:   sufficient length to hold the prefix.

1627: .seealso: [](ch_vectors), `Vec`, `VecAppendOptionsPrefix()`
1628: @*/
1629: PetscErrorCode VecGetOptionsPrefix(Vec v, const char *prefix[])
1630: {
1631:   PetscFunctionBegin;
1633:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)v, prefix));
1634:   PetscFunctionReturn(PETSC_SUCCESS);
1635: }

1637: /*@C
1638:   VecGetState - Gets the state of a `Vec`.

1640:   Not Collective

1642:   Input Parameter:
1643: . v - the `Vec` context

1645:   Output Parameter:
1646: . state - the object state

1648:   Level: advanced

1650:   Note:
1651:   Object state is an integer which gets increased every time
1652:   the object is changed. By saving and later querying the object state
1653:   one can determine whether information about the object is still current.

1655: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `PetscObjectStateGet()`
1656: @*/
1657: PetscErrorCode VecGetState(Vec v, PetscObjectState *state)
1658: {
1659:   PetscFunctionBegin;
1661:   PetscAssertPointer(state, 2);
1662:   PetscCall(PetscObjectStateGet((PetscObject)v, state));
1663:   PetscFunctionReturn(PETSC_SUCCESS);
1664: }

1666: /*@
1667:   VecSetUp - Sets up the internal vector data structures for the later use.

1669:   Collective

1671:   Input Parameter:
1672: . v - the `Vec` context

1674:   Level: advanced

1676:   Notes:
1677:   For basic use of the `Vec` classes the user need not explicitly call
1678:   `VecSetUp()`, since these actions will happen automatically.

1680: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecDestroy()`
1681: @*/
1682: PetscErrorCode VecSetUp(Vec v)
1683: {
1684:   PetscMPIInt size;

1686:   PetscFunctionBegin;
1688:   PetscCheck(v->map->n >= 0 || v->map->N >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Sizes not set");
1689:   if (!((PetscObject)v)->type_name) {
1690:     PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)v), &size));
1691:     if (size == 1) {
1692:       PetscCall(VecSetType(v, VECSEQ));
1693:     } else {
1694:       PetscCall(VecSetType(v, VECMPI));
1695:     }
1696:   }
1697:   PetscFunctionReturn(PETSC_SUCCESS);
1698: }

1700: /*
1701:     These currently expose the PetscScalar/PetscReal in updating the
1702:     cached norm. If we push those down into the implementation these
1703:     will become independent of PetscScalar/PetscReal
1704: */

1706: PetscErrorCode VecCopyAsync_Private(Vec x, Vec y, PetscDeviceContext dctx)
1707: {
1708:   PetscBool flgs[4];
1709:   PetscReal norms[4] = {0.0, 0.0, 0.0, 0.0};

1711:   PetscFunctionBegin;
1716:   if (x == y) PetscFunctionReturn(PETSC_SUCCESS);
1717:   VecCheckSameLocalSize(x, 1, y, 2);
1718:   VecCheckAssembled(x);
1719:   PetscCall(VecSetErrorIfLocked(y, 2));

1721: #if !defined(PETSC_USE_MIXED_PRECISION)
1722:   for (PetscInt i = 0; i < 4; i++) PetscCall(PetscObjectComposedDataGetReal((PetscObject)x, NormIds[i], norms[i], flgs[i]));
1723: #endif

1725:   PetscCall(PetscLogEventBegin(VEC_Copy, x, y, 0, 0));
1726: #if defined(PETSC_USE_MIXED_PRECISION)
1727:   extern PetscErrorCode VecGetArray(Vec, double **);
1728:   extern PetscErrorCode VecRestoreArray(Vec, double **);
1729:   extern PetscErrorCode VecGetArray(Vec, float **);
1730:   extern PetscErrorCode VecRestoreArray(Vec, float **);
1731:   extern PetscErrorCode VecGetArrayRead(Vec, const double **);
1732:   extern PetscErrorCode VecRestoreArrayRead(Vec, const double **);
1733:   extern PetscErrorCode VecGetArrayRead(Vec, const float **);
1734:   extern PetscErrorCode VecRestoreArrayRead(Vec, const float **);
1735:   if ((((PetscObject)x)->precision == PETSC_PRECISION_SINGLE) && (((PetscObject)y)->precision == PETSC_PRECISION_DOUBLE)) {
1736:     PetscInt     i, n;
1737:     const float *xx;
1738:     double      *yy;
1739:     PetscCall(VecGetArrayRead(x, &xx));
1740:     PetscCall(VecGetArray(y, &yy));
1741:     PetscCall(VecGetLocalSize(x, &n));
1742:     for (i = 0; i < n; i++) yy[i] = xx[i];
1743:     PetscCall(VecRestoreArrayRead(x, &xx));
1744:     PetscCall(VecRestoreArray(y, &yy));
1745:   } else if ((((PetscObject)x)->precision == PETSC_PRECISION_DOUBLE) && (((PetscObject)y)->precision == PETSC_PRECISION_SINGLE)) {
1746:     PetscInt      i, n;
1747:     float        *yy;
1748:     const double *xx;
1749:     PetscCall(VecGetArrayRead(x, &xx));
1750:     PetscCall(VecGetArray(y, &yy));
1751:     PetscCall(VecGetLocalSize(x, &n));
1752:     for (i = 0; i < n; i++) yy[i] = (float)xx[i];
1753:     PetscCall(VecRestoreArrayRead(x, &xx));
1754:     PetscCall(VecRestoreArray(y, &yy));
1755:   } else PetscUseTypeMethod(x, copy, y);
1756: #else
1757:   VecMethodDispatch(x, dctx, VecAsyncFnName(Copy), copy, (Vec, Vec, PetscDeviceContext), y);
1758: #endif

1760:   PetscCall(PetscObjectStateIncrease((PetscObject)y));
1761: #if !defined(PETSC_USE_MIXED_PRECISION)
1762:   for (PetscInt i = 0; i < 4; i++) {
1763:     if (flgs[i]) PetscCall(PetscObjectComposedDataSetReal((PetscObject)y, NormIds[i], norms[i]));
1764:   }
1765: #endif

1767:   PetscCall(PetscLogEventEnd(VEC_Copy, x, y, 0, 0));
1768:   PetscFunctionReturn(PETSC_SUCCESS);
1769: }

1771: /*@
1772:   VecCopy - Copies a vector `y = x`

1774:   Logically Collective

1776:   Input Parameter:
1777: . x - the vector

1779:   Output Parameter:
1780: . y - the copy

1782:   Level: beginner

1784:   Note:
1785:   For default parallel PETSc vectors, both `x` and `y` must be distributed in
1786:   the same manner; local copies are done.

1788:   Developer Notes:
1789:   `PetscCheckSameTypeAndComm`(x,1,y,2) is not used on these vectors because we allow one
1790:   of the vectors to be sequential and one to be parallel so long as both have the same
1791:   local sizes. This is used in some internal functions in PETSc.

1793: .seealso: [](ch_vectors), `Vec`, `VecDuplicate()`
1794: @*/
1795: PetscErrorCode VecCopy(Vec x, Vec y)
1796: {
1797:   PetscFunctionBegin;
1798:   PetscCall(VecCopyAsync_Private(x, y, NULL));
1799:   PetscFunctionReturn(PETSC_SUCCESS);
1800: }

1802: PetscErrorCode VecSwapAsync_Private(Vec x, Vec y, PetscDeviceContext dctx)
1803: {
1804:   PetscReal normxs[4], normys[4];
1805:   PetscBool flgxs[4], flgys[4];

1807:   PetscFunctionBegin;
1812:   PetscCheckSameTypeAndComm(x, 1, y, 2);
1813:   VecCheckSameSize(x, 1, y, 2);
1814:   VecCheckAssembled(x);
1815:   VecCheckAssembled(y);
1816:   PetscCall(VecSetErrorIfLocked(x, 1));
1817:   PetscCall(VecSetErrorIfLocked(y, 2));

1819:   for (PetscInt i = 0; i < 4; i++) {
1820:     PetscCall(PetscObjectComposedDataGetReal((PetscObject)x, NormIds[i], normxs[i], flgxs[i]));
1821:     PetscCall(PetscObjectComposedDataGetReal((PetscObject)y, NormIds[i], normys[i], flgys[i]));
1822:   }

1824:   PetscCall(PetscLogEventBegin(VEC_Swap, x, y, 0, 0));
1825:   VecMethodDispatch(x, dctx, VecAsyncFnName(Swap), swap, (Vec, Vec, PetscDeviceContext), y);
1826:   PetscCall(PetscLogEventEnd(VEC_Swap, x, y, 0, 0));

1828:   PetscCall(PetscObjectStateIncrease((PetscObject)x));
1829:   PetscCall(PetscObjectStateIncrease((PetscObject)y));
1830:   for (PetscInt i = 0; i < 4; i++) {
1831:     if (flgxs[i]) PetscCall(PetscObjectComposedDataSetReal((PetscObject)y, NormIds[i], normxs[i]));
1832:     if (flgys[i]) PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[i], normys[i]));
1833:   }
1834:   PetscFunctionReturn(PETSC_SUCCESS);
1835: }
1836: /*@
1837:   VecSwap - Swaps the values between two vectors, `x` and `y`.

1839:   Logically Collective

1841:   Input Parameters:
1842: + x - the first vector
1843: - y - the second vector

1845:   Level: advanced

1847: .seealso: [](ch_vectors), `Vec`, `VecSet()`
1848: @*/
1849: PetscErrorCode VecSwap(Vec x, Vec y)
1850: {
1851:   PetscFunctionBegin;
1852:   PetscCall(VecSwapAsync_Private(x, y, NULL));
1853:   PetscFunctionReturn(PETSC_SUCCESS);
1854: }

1856: /*@
1857:   VecStashViewFromOptions - Processes command line options to determine if/how a `VecStash` object is to be viewed.

1859:   Collective

1861:   Input Parameters:
1862: + obj        - the `Vec` containing a stash
1863: . bobj       - optional other object that provides the prefix
1864: - optionname - option to activate viewing

1866:   Level: intermediate

1868:   Developer Notes:
1869:   This cannot use `PetscObjectViewFromOptions()` because it takes a `Vec` as an argument but does not use `VecView()`

1871: .seealso: [](ch_vectors), `Vec`, `VecStashSetInitialSize()`
1872: @*/
1873: PetscErrorCode VecStashViewFromOptions(Vec obj, PetscObject bobj, const char optionname[])
1874: {
1875:   PetscViewer       viewer;
1876:   PetscBool         flg;
1877:   PetscViewerFormat format;
1878:   char             *prefix;

1880:   PetscFunctionBegin;
1881:   prefix = bobj ? bobj->prefix : ((PetscObject)obj)->prefix;
1882:   PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)obj), ((PetscObject)obj)->options, prefix, optionname, &viewer, &format, &flg));
1883:   if (flg) {
1884:     PetscCall(PetscViewerPushFormat(viewer, format));
1885:     PetscCall(VecStashView(obj, viewer));
1886:     PetscCall(PetscViewerPopFormat(viewer));
1887:     PetscCall(PetscViewerDestroy(&viewer));
1888:   }
1889:   PetscFunctionReturn(PETSC_SUCCESS);
1890: }

1892: /*@
1893:   VecStashView - Prints the entries in the vector stash and block stash.

1895:   Collective

1897:   Input Parameters:
1898: + v      - the vector
1899: - viewer - the viewer

1901:   Level: advanced

1903: .seealso: [](ch_vectors), `Vec`, `VecSetBlockSize()`, `VecSetValues()`, `VecSetValuesBlocked()`
1904: @*/
1905: PetscErrorCode VecStashView(Vec v, PetscViewer viewer)
1906: {
1907:   PetscMPIInt rank;
1908:   PetscInt    i, j;
1909:   PetscBool   match;
1910:   VecStash   *s;
1911:   PetscScalar val;

1913:   PetscFunctionBegin;
1916:   PetscCheckSameComm(v, 1, viewer, 2);

1918:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &match));
1919:   PetscCheck(match, PETSC_COMM_SELF, PETSC_ERR_SUP, "Stash viewer only works with ASCII viewer not %s", ((PetscObject)v)->type_name);
1920:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1921:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)v), &rank));
1922:   s = &v->bstash;

1924:   /* print block stash */
1925:   PetscCall(PetscViewerASCIIPushSynchronized(viewer));
1926:   PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d]Vector Block stash size %" PetscInt_FMT " block size %" PetscInt_FMT "\n", rank, s->n, s->bs));
1927:   for (i = 0; i < s->n; i++) {
1928:     PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Element %" PetscInt_FMT " ", rank, s->idx[i]));
1929:     for (j = 0; j < s->bs; j++) {
1930:       val = s->array[i * s->bs + j];
1931: #if defined(PETSC_USE_COMPLEX)
1932:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "(%18.16e %18.16e) ", (double)PetscRealPart(val), (double)PetscImaginaryPart(val)));
1933: #else
1934:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "%18.16e ", (double)val));
1935: #endif
1936:     }
1937:     PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "\n"));
1938:   }
1939:   PetscCall(PetscViewerFlush(viewer));

1941:   s = &v->stash;

1943:   /* print basic stash */
1944:   PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d]Vector stash size %" PetscInt_FMT "\n", rank, s->n));
1945:   for (i = 0; i < s->n; i++) {
1946:     val = s->array[i];
1947: #if defined(PETSC_USE_COMPLEX)
1948:     PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Element %" PetscInt_FMT " (%18.16e %18.16e) ", rank, s->idx[i], (double)PetscRealPart(val), (double)PetscImaginaryPart(val)));
1949: #else
1950:     PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Element %" PetscInt_FMT " %18.16e\n", rank, s->idx[i], (double)val));
1951: #endif
1952:   }
1953:   PetscCall(PetscViewerFlush(viewer));
1954:   PetscCall(PetscViewerASCIIPopSynchronized(viewer));
1955:   PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1956:   PetscFunctionReturn(PETSC_SUCCESS);
1957: }

1959: PetscErrorCode PetscOptionsGetVec(PetscOptions options, const char prefix[], const char key[], Vec v, PetscBool *set)
1960: {
1961:   PetscInt     i, N, rstart, rend;
1962:   PetscScalar *xx;
1963:   PetscReal   *xreal;
1964:   PetscBool    iset;

1966:   PetscFunctionBegin;
1967:   PetscCall(VecGetOwnershipRange(v, &rstart, &rend));
1968:   PetscCall(VecGetSize(v, &N));
1969:   PetscCall(PetscCalloc1(N, &xreal));
1970:   PetscCall(PetscOptionsGetRealArray(options, prefix, key, xreal, &N, &iset));
1971:   if (iset) {
1972:     PetscCall(VecGetArray(v, &xx));
1973:     for (i = rstart; i < rend; i++) xx[i - rstart] = xreal[i];
1974:     PetscCall(VecRestoreArray(v, &xx));
1975:   }
1976:   PetscCall(PetscFree(xreal));
1977:   if (set) *set = iset;
1978:   PetscFunctionReturn(PETSC_SUCCESS);
1979: }

1981: /*@
1982:   VecGetLayout - get `PetscLayout` describing a vector layout

1984:   Not Collective

1986:   Input Parameter:
1987: . x - the vector

1989:   Output Parameter:
1990: . map - the layout

1992:   Level: developer

1994:   Note:
1995:   The layout determines what vector elements are contained on each MPI process

1997: .seealso: [](ch_vectors), `PetscLayout`, `Vec`, `VecGetSizes()`, `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`
1998: @*/
1999: PetscErrorCode VecGetLayout(Vec x, PetscLayout *map)
2000: {
2001:   PetscFunctionBegin;
2003:   PetscAssertPointer(map, 2);
2004:   *map = x->map;
2005:   PetscFunctionReturn(PETSC_SUCCESS);
2006: }

2008: /*@
2009:   VecSetLayout - set `PetscLayout` describing vector layout

2011:   Not Collective

2013:   Input Parameters:
2014: + x   - the vector
2015: - map - the layout

2017:   Level: developer

2019:   Note:
2020:   It is normally only valid to replace the layout with a layout known to be equivalent.

2022: .seealso: [](ch_vectors), `Vec`, `PetscLayout`, `VecGetLayout()`, `VecGetSizes()`, `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`
2023: @*/
2024: PetscErrorCode VecSetLayout(Vec x, PetscLayout map)
2025: {
2026:   PetscFunctionBegin;
2028:   PetscCall(PetscLayoutReference(map, &x->map));
2029:   PetscFunctionReturn(PETSC_SUCCESS);
2030: }

2032: /*@
2033:   VecFlag - set infinity into the local part of the vector on any subset of MPI processes

2035:   Logically Collective

2037:   Input Parameters:
2038: + xin - the vector, can be `NULL` but only if on all processes
2039: - flg - indicates if this processes portion of the vector should be set to infinity

2041:   Level: developer

2043:   Note:
2044:   This removes the values from the vector norm cache for all processes by calling `PetscObjectIncrease()`.

2046:   This is used for any subset of MPI processes to indicate an failure in a solver, after the next use of `VecNorm()` if
2047:   `KSPCheckNorm()` detects an infinity and at least one of the MPI processes has a not converged reason then the `KSP`
2048:   object collectively is labeled as not converged.

2050: .seealso: [](ch_vectors), `Vec`, `PetscLayout`, `VecGetLayout()`, `VecGetSizes()`, `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`
2051: @*/
2052: PetscErrorCode VecFlag(Vec xin, PetscInt flg)
2053: {
2054:   // use of variables one and zero over just doing 1.0/0.0 is deliberate. MSVC complains that
2055:   // we are dividing by zero in the latter case (ostensibly because dividing by 0 is UB, but
2056:   // only for *integers* not floats).
2057:   const PetscScalar one = 1.0, zero = 0.0;
2058:   PetscScalar       inf;

2060:   PetscFunctionBegin;
2061:   if (!xin) PetscFunctionReturn(PETSC_SUCCESS);
2063:   PetscCall(PetscObjectStateIncrease((PetscObject)xin));
2064:   if (flg) {
2065:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
2066:     inf = one / zero;
2067:     PetscCall(PetscFPTrapPop());
2068:     if (xin->ops->set) {
2069:       PetscUseTypeMethod(xin, set, inf);
2070:     } else {
2071:       PetscInt     n;
2072:       PetscScalar *xx;

2074:       PetscCall(VecGetLocalSize(xin, &n));
2075:       PetscCall(VecGetArrayWrite(xin, &xx));
2076:       for (PetscInt i = 0; i < n; ++i) xx[i] = inf;
2077:       PetscCall(VecRestoreArrayWrite(xin, &xx));
2078:     }
2079:   }
2080:   PetscFunctionReturn(PETSC_SUCCESS);
2081: }

2083: /*@
2084:   VecSetInf - set infinity into the local part of the vector

2086:   Not Collective

2088:   Input Parameters:
2089: . xin - the vector

2091:   Level: developer

2093:   Note:
2094:   Deprecated, see  `VecFlag()`
2095:   This is used for any subset of MPI processes to indicate an failure in a solver, after the next use of `VecNorm()` if
2096:   `KSPCheckNorm()` detects an infinity and at least one of the MPI processes has a not converged reason then the `KSP`
2097:   object collectively is labeled as not converged.

2099:   This cannot be called if `xin` has a cached norm available

2101: .seealso: [](ch_vectors), `VecFlag()`, `Vec`, `PetscLayout`, `VecGetLayout()`, `VecGetSizes()`, `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`
2102: @*/
2103: PetscErrorCode VecSetInf(Vec xin)
2104: {
2105:   // use of variables one and zero over just doing 1.0/0.0 is deliberate. MSVC complains that
2106:   // we are dividing by zero in the latter case (ostensibly because dividing by 0 is UB, but
2107:   // only for *integers* not floats).
2108:   const PetscScalar one = 1.0, zero = 0.0;
2109:   PetscScalar       inf;
2110:   PetscBool         flg;

2112:   PetscFunctionBegin;
2113:   PetscCall(VecNormAvailable(xin, NORM_2, &flg, NULL));
2114:   PetscCheck(!flg, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot call VecSetInf() if the vector has a cached norm");
2115:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
2116:   inf = one / zero;
2117:   PetscCall(PetscFPTrapPop());
2118:   if (xin->ops->set) {
2119:     PetscUseTypeMethod(xin, set, inf);
2120:   } else {
2121:     PetscInt     n;
2122:     PetscScalar *xx;

2124:     PetscCall(VecGetLocalSize(xin, &n));
2125:     PetscCall(VecGetArrayWrite(xin, &xx));
2126:     for (PetscInt i = 0; i < n; ++i) xx[i] = inf;
2127:     PetscCall(VecRestoreArrayWrite(xin, &xx));
2128:   }
2129:   PetscFunctionReturn(PETSC_SUCCESS);
2130: }

2132: /*@
2133:   VecBindToCPU - marks a vector to temporarily stay on the CPU and perform computations on the CPU

2135:   Logically collective

2137:   Input Parameters:
2138: + v   - the vector
2139: - flg - bind to the CPU if value of `PETSC_TRUE`

2141:   Level: intermediate

2143: .seealso: [](ch_vectors), `Vec`, `VecBoundToCPU()`
2144: @*/
2145: PetscErrorCode VecBindToCPU(Vec v, PetscBool flg)
2146: {
2147:   PetscFunctionBegin;
2150: #if defined(PETSC_HAVE_DEVICE)
2151:   if (v->boundtocpu == flg) PetscFunctionReturn(PETSC_SUCCESS);
2152:   v->boundtocpu = flg;
2153:   PetscTryTypeMethod(v, bindtocpu, flg);
2154: #endif
2155:   PetscFunctionReturn(PETSC_SUCCESS);
2156: }

2158: /*@
2159:   VecBoundToCPU - query if a vector is bound to the CPU

2161:   Not collective

2163:   Input Parameter:
2164: . v - the vector

2166:   Output Parameter:
2167: . flg - the logical flag

2169:   Level: intermediate

2171: .seealso: [](ch_vectors), `Vec`, `VecBindToCPU()`
2172: @*/
2173: PetscErrorCode VecBoundToCPU(Vec v, PetscBool *flg)
2174: {
2175:   PetscFunctionBegin;
2177:   PetscAssertPointer(flg, 2);
2178: #if defined(PETSC_HAVE_DEVICE)
2179:   *flg = v->boundtocpu;
2180: #else
2181:   *flg = PETSC_TRUE;
2182: #endif
2183:   PetscFunctionReturn(PETSC_SUCCESS);
2184: }

2186: /*@
2187:   VecSetBindingPropagates - Sets whether the state of being bound to the CPU for a GPU vector type propagates to child and some other associated objects

2189:   Input Parameters:
2190: + v   - the vector
2191: - flg - flag indicating whether the boundtocpu flag should be propagated

2193:   Level: developer

2195:   Notes:
2196:   If the value of flg is set to true, then `VecDuplicate()` and `VecDuplicateVecs()` will bind created vectors to GPU if the input vector is bound to the CPU.
2197:   The created vectors will also have their bindingpropagates flag set to true.

2199:   Developer Notes:
2200:   If a `DMDA` has the `-dm_bind_below option` set to true, then vectors created by `DMCreateGlobalVector()` will have `VecSetBindingPropagates()` called on them to
2201:   set their bindingpropagates flag to true.

2203: .seealso: [](ch_vectors), `Vec`, `MatSetBindingPropagates()`, `VecGetBindingPropagates()`
2204: @*/
2205: PetscErrorCode VecSetBindingPropagates(Vec v, PetscBool flg)
2206: {
2207:   PetscFunctionBegin;
2209: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2210:   v->bindingpropagates = flg;
2211: #endif
2212:   PetscFunctionReturn(PETSC_SUCCESS);
2213: }

2215: /*@
2216:   VecGetBindingPropagates - Gets whether the state of being bound to the CPU for a GPU vector type propagates to child and some other associated objects

2218:   Input Parameter:
2219: . v - the vector

2221:   Output Parameter:
2222: . flg - flag indicating whether the boundtocpu flag will be propagated

2224:   Level: developer

2226: .seealso: [](ch_vectors), `Vec`, `VecSetBindingPropagates()`
2227: @*/
2228: PetscErrorCode VecGetBindingPropagates(Vec v, PetscBool *flg)
2229: {
2230:   PetscFunctionBegin;
2232:   PetscAssertPointer(flg, 2);
2233: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2234:   *flg = v->bindingpropagates;
2235: #else
2236:   *flg = PETSC_FALSE;
2237: #endif
2238:   PetscFunctionReturn(PETSC_SUCCESS);
2239: }

2241: /*@C
2242:   VecSetPinnedMemoryMin - Set the minimum data size for which pinned memory will be used for host (CPU) allocations.

2244:   Logically Collective

2246:   Input Parameters:
2247: + v      - the vector
2248: - mbytes - minimum data size in bytes

2250:   Options Database Key:
2251: . -vec_pinned_memory_min <size> - minimum size (in bytes) for an allocation to use pinned memory on host.

2253:   Level: developer

2255:   Note:
2256:   Specifying -1 ensures that pinned memory will never be used.

2258: .seealso: [](ch_vectors), `Vec`, `VecGetPinnedMemoryMin()`
2259: @*/
2260: PetscErrorCode VecSetPinnedMemoryMin(Vec v, size_t mbytes)
2261: {
2262:   PetscFunctionBegin;
2264: #if PetscDefined(HAVE_DEVICE)
2265:   v->minimum_bytes_pinned_memory = mbytes;
2266: #endif
2267:   PetscFunctionReturn(PETSC_SUCCESS);
2268: }

2270: /*@C
2271:   VecGetPinnedMemoryMin - Get the minimum data size for which pinned memory will be used for host (CPU) allocations.

2273:   Logically Collective

2275:   Input Parameter:
2276: . v - the vector

2278:   Output Parameter:
2279: . mbytes - minimum data size in bytes

2281:   Level: developer

2283: .seealso: [](ch_vectors), `Vec`, `VecSetPinnedMemoryMin()`
2284: @*/
2285: PetscErrorCode VecGetPinnedMemoryMin(Vec v, size_t *mbytes)
2286: {
2287:   PetscFunctionBegin;
2289:   PetscAssertPointer(mbytes, 2);
2290: #if PetscDefined(HAVE_DEVICE)
2291:   *mbytes = v->minimum_bytes_pinned_memory;
2292: #endif
2293:   PetscFunctionReturn(PETSC_SUCCESS);
2294: }

2296: /*@
2297:   VecGetOffloadMask - Get the offload mask of a `Vec`

2299:   Not Collective

2301:   Input Parameter:
2302: . v - the vector

2304:   Output Parameter:
2305: . mask - corresponding `PetscOffloadMask` enum value.

2307:   Level: intermediate

2309: .seealso: [](ch_vectors), `Vec`, `VecCreateSeqCUDA()`, `VecCreateSeqViennaCL()`, `VecGetArray()`, `VecGetType()`
2310: @*/
2311: PetscErrorCode VecGetOffloadMask(Vec v, PetscOffloadMask *mask)
2312: {
2313:   PetscFunctionBegin;
2315:   PetscAssertPointer(mask, 2);
2316:   *mask = v->offloadmask;
2317:   PetscFunctionReturn(PETSC_SUCCESS);
2318: }

2320: #if !defined(PETSC_HAVE_VIENNACL)
2321: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLContext(Vec v, PETSC_UINTPTR_T *ctx)
2322: {
2323:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_context");
2324: }

2326: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLQueue(Vec v, PETSC_UINTPTR_T *queue)
2327: {
2328:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_command_queue");
2329: }

2331: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLMem(Vec v, PETSC_UINTPTR_T *queue)
2332: {
2333:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_mem");
2334: }

2336: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLMemRead(Vec v, PETSC_UINTPTR_T *queue)
2337: {
2338:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_mem");
2339: }

2341: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLMemWrite(Vec v, PETSC_UINTPTR_T *queue)
2342: {
2343:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_mem");
2344: }

2346: PETSC_EXTERN PetscErrorCode VecViennaCLRestoreCLMemWrite(Vec v)
2347: {
2348:   SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to restore a Vec's cl_mem");
2349: }
2350: #endif

2352: static PetscErrorCode VecErrorWeightedNorms_Basic(Vec U, Vec Y, Vec E, NormType wnormtype, PetscReal atol, Vec vatol, PetscReal rtol, Vec vrtol, PetscReal ignore_max, PetscReal *norm, PetscInt *norm_loc, PetscReal *norma, PetscInt *norma_loc, PetscReal *normr, PetscInt *normr_loc)
2353: {
2354:   const PetscScalar *u, *y;
2355:   const PetscScalar *atola = NULL, *rtola = NULL, *erra = NULL;
2356:   PetscInt           n, n_loc = 0, na_loc = 0, nr_loc = 0;
2357:   PetscReal          nrm = 0, nrma = 0, nrmr = 0, err_loc[6];

2359:   PetscFunctionBegin;
2360: #define SkipSmallValue(a, b, tol) \
2361:   if (PetscAbsScalar(a) < tol || PetscAbsScalar(b) < tol) continue

2363:   PetscCall(VecGetLocalSize(U, &n));
2364:   PetscCall(VecGetArrayRead(U, &u));
2365:   PetscCall(VecGetArrayRead(Y, &y));
2366:   if (E) PetscCall(VecGetArrayRead(E, &erra));
2367:   if (vatol) PetscCall(VecGetArrayRead(vatol, &atola));
2368:   if (vrtol) PetscCall(VecGetArrayRead(vrtol, &rtola));
2369:   for (PetscInt i = 0; i < n; i++) {
2370:     PetscReal err, tol, tola, tolr;

2372:     SkipSmallValue(y[i], u[i], ignore_max);
2373:     atol = atola ? PetscRealPart(atola[i]) : atol;
2374:     rtol = rtola ? PetscRealPart(rtola[i]) : rtol;
2375:     err  = erra ? PetscAbsScalar(erra[i]) : PetscAbsScalar(y[i] - u[i]);
2376:     tola = atol;
2377:     tolr = rtol * PetscMax(PetscAbsScalar(u[i]), PetscAbsScalar(y[i]));
2378:     tol  = tola + tolr;
2379:     if (tola > 0.) {
2380:       if (wnormtype == NORM_INFINITY) nrma = PetscMax(nrma, err / tola);
2381:       else nrma += PetscSqr(err / tola);
2382:       na_loc++;
2383:     }
2384:     if (tolr > 0.) {
2385:       if (wnormtype == NORM_INFINITY) nrmr = PetscMax(nrmr, err / tolr);
2386:       else nrmr += PetscSqr(err / tolr);
2387:       nr_loc++;
2388:     }
2389:     if (tol > 0.) {
2390:       if (wnormtype == NORM_INFINITY) nrm = PetscMax(nrm, err / tol);
2391:       else nrm += PetscSqr(err / tol);
2392:       n_loc++;
2393:     }
2394:   }
2395:   if (E) PetscCall(VecRestoreArrayRead(E, &erra));
2396:   if (vatol) PetscCall(VecRestoreArrayRead(vatol, &atola));
2397:   if (vrtol) PetscCall(VecRestoreArrayRead(vrtol, &rtola));
2398:   PetscCall(VecRestoreArrayRead(U, &u));
2399:   PetscCall(VecRestoreArrayRead(Y, &y));
2400: #undef SkipSmallValue

2402:   err_loc[0] = nrm;
2403:   err_loc[1] = nrma;
2404:   err_loc[2] = nrmr;
2405:   err_loc[3] = (PetscReal)n_loc;
2406:   err_loc[4] = (PetscReal)na_loc;
2407:   err_loc[5] = (PetscReal)nr_loc;
2408:   if (wnormtype == NORM_2) {
2409:     PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, err_loc, 6, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)U)));
2410:   } else {
2411:     PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, err_loc, 3, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)U)));
2412:     PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, err_loc + 3, 3, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)U)));
2413:   }
2414:   if (wnormtype == NORM_2) {
2415:     *norm  = PetscSqrtReal(err_loc[0]);
2416:     *norma = PetscSqrtReal(err_loc[1]);
2417:     *normr = PetscSqrtReal(err_loc[2]);
2418:   } else {
2419:     *norm  = err_loc[0];
2420:     *norma = err_loc[1];
2421:     *normr = err_loc[2];
2422:   }
2423:   *norm_loc  = (PetscInt)err_loc[3];
2424:   *norma_loc = (PetscInt)err_loc[4];
2425:   *normr_loc = (PetscInt)err_loc[5];
2426:   PetscFunctionReturn(PETSC_SUCCESS);
2427: }

2429: /*@
2430:   VecErrorWeightedNorms - compute a weighted norm of the difference between two vectors

2432:   Collective

2434:   Input Parameters:
2435: + U          - first vector to be compared
2436: . Y          - second vector to be compared
2437: . E          - optional third vector representing the error (if not provided, the error is ||U-Y||)
2438: . wnormtype  - norm type
2439: . atol       - scalar for absolute tolerance
2440: . vatol      - vector representing per-entry absolute tolerances (can be ``NULL``)
2441: . rtol       - scalar for relative tolerance
2442: . vrtol      - vector representing per-entry relative tolerances (can be ``NULL``)
2443: - ignore_max - ignore values smaller then this value in absolute terms.

2445:   Output Parameters:
2446: + norm      - weighted norm
2447: . norm_loc  - number of vector locations used for the weighted norm
2448: . norma     - weighted norm based on the absolute tolerance
2449: . norma_loc - number of vector locations used for the absolute weighted norm
2450: . normr     - weighted norm based on the relative tolerance
2451: - normr_loc - number of vector locations used for the relative weighted norm

2453:   Level: developer

2455:   Notes:
2456:   This is primarily used for computing weighted local truncation errors in ``TS``.

2458: .seealso: [](ch_vectors), `Vec`, `NormType`, `TSErrorWeightedNorm()`, `TSErrorWeightedENorm()`
2459: @*/
2460: PetscErrorCode VecErrorWeightedNorms(Vec U, Vec Y, Vec E, NormType wnormtype, PetscReal atol, Vec vatol, PetscReal rtol, Vec vrtol, PetscReal ignore_max, PetscReal *norm, PetscInt *norm_loc, PetscReal *norma, PetscInt *norma_loc, PetscReal *normr, PetscInt *normr_loc)
2461: {
2462:   PetscFunctionBegin;
2467:   if (E) {
2470:   }
2473:   if (vatol) {
2476:   }
2478:   if (vrtol) {
2481:   }
2483:   PetscAssertPointer(norm, 10);
2484:   PetscAssertPointer(norm_loc, 11);
2485:   PetscAssertPointer(norma, 12);
2486:   PetscAssertPointer(norma_loc, 13);
2487:   PetscAssertPointer(normr, 14);
2488:   PetscAssertPointer(normr_loc, 15);
2489:   PetscCheck(wnormtype == NORM_2 || wnormtype == NORM_INFINITY, PetscObjectComm((PetscObject)U), PETSC_ERR_SUP, "No support for norm type %s", NormTypes[wnormtype]);

2491:   /* There are potentially 5 vectors involved, some of them may happen to be of different type or bound to cpu.
2492:      Here we check that they all implement the same operation and call it if so.
2493:      Otherwise, we call the _Basic implementation that always works (provided VecGetArrayRead is implemented). */
2494:   PetscBool sameop = (PetscBool)(U->ops->errorwnorm && U->ops->errorwnorm == Y->ops->errorwnorm);
2495:   if (sameop && E) sameop = (PetscBool)(U->ops->errorwnorm == E->ops->errorwnorm);
2496:   if (sameop && vatol) sameop = (PetscBool)(U->ops->errorwnorm == vatol->ops->errorwnorm);
2497:   if (sameop && vrtol) sameop = (PetscBool)(U->ops->errorwnorm == vrtol->ops->errorwnorm);
2498:   if (sameop) PetscUseTypeMethod(U, errorwnorm, Y, E, wnormtype, atol, vatol, rtol, vrtol, ignore_max, norm, norm_loc, norma, norma_loc, normr, normr_loc);
2499:   else PetscCall(VecErrorWeightedNorms_Basic(U, Y, E, wnormtype, atol, vatol, rtol, vrtol, ignore_max, norm, norm_loc, norma, norma_loc, normr, normr_loc));
2500:   PetscFunctionReturn(PETSC_SUCCESS);
2501: }