Actual source code: vector.c
1: /*
2: Provides the interface functions for vector operations that do NOT have PetscScalar/PetscReal in the signature
3: These are the vector functions the user calls.
4: */
5: #include <petsc/private/vecimpl.h>
6: #include <petsc/private/deviceimpl.h>
8: /* Logging support */
9: PetscClassId VEC_CLASSID;
10: PetscLogEvent VEC_View, VEC_Max, VEC_Min, VEC_Dot, VEC_MDot, VEC_TDot;
11: PetscLogEvent VEC_Norm, VEC_Normalize, VEC_Scale, VEC_Shift, VEC_Copy, VEC_Set, VEC_AXPY, VEC_AYPX, VEC_WAXPY;
12: PetscLogEvent VEC_MTDot, VEC_MAXPY, VEC_Swap, VEC_AssemblyBegin, VEC_ScatterBegin, VEC_ScatterEnd;
13: PetscLogEvent VEC_AssemblyEnd, VEC_PointwiseMult, VEC_PointwiseDivide, VEC_SetValues, VEC_Load, VEC_SetPreallocateCOO, VEC_SetValuesCOO;
14: PetscLogEvent VEC_SetRandom, VEC_ReduceArithmetic, VEC_ReduceCommunication, VEC_ReduceBegin, VEC_ReduceEnd, VEC_Ops;
15: PetscLogEvent VEC_DotNorm2, VEC_AXPBYPCZ;
16: PetscLogEvent VEC_ViennaCLCopyFromGPU, VEC_ViennaCLCopyToGPU;
17: PetscLogEvent VEC_CUDACopyFromGPU, VEC_CUDACopyToGPU;
18: PetscLogEvent VEC_HIPCopyFromGPU, VEC_HIPCopyToGPU;
20: /*@
21: VecStashGetInfo - Gets how many values are currently in the vector stash, i.e. need
22: to be communicated to other processors during the `VecAssemblyBegin()`/`VecAssemblyEnd()` process
24: Not Collective
26: Input Parameter:
27: . vec - the vector
29: Output Parameters:
30: + nstash - the size of the stash
31: . reallocs - the number of additional mallocs incurred in building the stash
32: . bnstash - the size of the block stash
33: - breallocs - the number of additional mallocs incurred in building the block stash (from `VecSetValuesBlocked()`)
35: Level: advanced
37: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecStashSetInitialSize()`, `VecStashView()`
38: @*/
39: PetscErrorCode VecStashGetInfo(Vec vec, PetscInt *nstash, PetscInt *reallocs, PetscInt *bnstash, PetscInt *breallocs)
40: {
41: PetscFunctionBegin;
42: PetscCall(VecStashGetInfo_Private(&vec->stash, nstash, reallocs));
43: PetscCall(VecStashGetInfo_Private(&vec->bstash, bnstash, breallocs));
44: PetscFunctionReturn(PETSC_SUCCESS);
45: }
47: /*@
48: VecSetLocalToGlobalMapping - Sets a local numbering to global numbering used
49: by the routine `VecSetValuesLocal()` to allow users to insert vector entries
50: using a local (per-processor) numbering.
52: Logically Collective
54: Input Parameters:
55: + x - vector
56: - mapping - mapping created with `ISLocalToGlobalMappingCreate()` or `ISLocalToGlobalMappingCreateIS()`
58: Level: intermediate
60: Notes:
61: All vectors obtained with `VecDuplicate()` from this vector inherit the same mapping.
63: Vectors obtained with `DMCreateGlobaVector()` will often have this attribute attached to the vector so this call is not needed
65: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`, `VecSetValuesLocal()`,
66: `VecGetLocalToGlobalMapping()`, `VecSetValuesBlockedLocal()`
67: @*/
68: PetscErrorCode VecSetLocalToGlobalMapping(Vec x, ISLocalToGlobalMapping mapping)
69: {
70: PetscFunctionBegin;
73: if (x->ops->setlocaltoglobalmapping) PetscUseTypeMethod(x, setlocaltoglobalmapping, mapping);
74: else PetscCall(PetscLayoutSetISLocalToGlobalMapping(x->map, mapping));
75: PetscFunctionReturn(PETSC_SUCCESS);
76: }
78: /*@
79: VecGetLocalToGlobalMapping - Gets the local-to-global numbering set by `VecSetLocalToGlobalMapping()`
81: Not Collective
83: Input Parameter:
84: . X - the vector
86: Output Parameter:
87: . mapping - the mapping
89: Level: advanced
91: .seealso: [](ch_vectors), `Vec`, `VecSetValuesLocal()`, `VecSetLocalToGlobalMapping()`
92: @*/
93: PetscErrorCode VecGetLocalToGlobalMapping(Vec X, ISLocalToGlobalMapping *mapping)
94: {
95: PetscFunctionBegin;
98: PetscAssertPointer(mapping, 2);
99: if (X->ops->getlocaltoglobalmapping) PetscUseTypeMethod(X, getlocaltoglobalmapping, mapping);
100: else *mapping = X->map->mapping;
101: PetscFunctionReturn(PETSC_SUCCESS);
102: }
104: /*@
105: VecAssemblyBegin - Begins assembling the vector; that is ensuring all the vector's entries are stored on the correct MPI process. This routine should
106: be called after completing all calls to `VecSetValues()`.
108: Collective
110: Input Parameter:
111: . vec - the vector
113: Level: beginner
115: .seealso: [](ch_vectors), `Vec`, `VecAssemblyEnd()`, `VecSetValues()`
116: @*/
117: PetscErrorCode VecAssemblyBegin(Vec vec)
118: {
119: PetscFunctionBegin;
122: PetscCall(VecStashViewFromOptions(vec, NULL, "-vec_view_stash"));
123: PetscCall(PetscLogEventBegin(VEC_AssemblyBegin, vec, 0, 0, 0));
124: PetscTryTypeMethod(vec, assemblybegin);
125: PetscCall(PetscLogEventEnd(VEC_AssemblyBegin, vec, 0, 0, 0));
126: PetscCall(PetscObjectStateIncrease((PetscObject)vec));
127: PetscFunctionReturn(PETSC_SUCCESS);
128: }
130: /*@
131: VecAssemblyEnd - Completes assembling the vector. This routine should be called after `VecAssemblyBegin()`.
133: Collective
135: Input Parameter:
136: . vec - the vector
138: Options Database Keys:
139: + -vec_view - Prints vector in `PETSC_VIEWER_DEFAULT` format
140: . -vec_view ::ascii_matlab - Prints vector in `PETSC_VIEWER_ASCII_MATLAB` format to stdout
141: . -vec_view matlab:filename - Prints vector in MATLAB .mat file to filename (requires PETSc configured with --with-matlab)
142: . -vec_view draw - Activates vector viewing using drawing tools
143: . -display <name> - Sets display name (default is host)
144: . -draw_pause <sec> - Sets number of seconds to pause after display
145: - -vec_view socket - Activates vector viewing using a socket
147: Level: beginner
149: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecSetValues()`
150: @*/
151: PetscErrorCode VecAssemblyEnd(Vec vec)
152: {
153: PetscFunctionBegin;
155: PetscCall(PetscLogEventBegin(VEC_AssemblyEnd, vec, 0, 0, 0));
157: PetscTryTypeMethod(vec, assemblyend);
158: PetscCall(PetscLogEventEnd(VEC_AssemblyEnd, vec, 0, 0, 0));
159: PetscCall(VecViewFromOptions(vec, NULL, "-vec_view"));
160: PetscFunctionReturn(PETSC_SUCCESS);
161: }
163: /*@
164: VecSetPreallocationCOO - set preallocation for a vector using a coordinate format of the entries with global indices
166: Collective
168: Input Parameters:
169: + x - vector being preallocated
170: . ncoo - number of entries
171: - coo_i - entry indices
173: Level: beginner
175: Notes:
176: This and `VecSetValuesCOO()` provide an alternative API to using `VecSetValues()` to provide vector values.
178: This API is particularly efficient for use on GPUs.
180: Entries can be repeated, see `VecSetValuesCOO()`. Negative indices are not allowed unless vector option `VEC_IGNORE_NEGATIVE_INDICES` is set,
181: in which case they, along with the corresponding entries in `VecSetValuesCOO()`, are ignored. If vector option `VEC_NO_OFF_PROC_ENTRIES` is set,
182: remote entries are ignored, otherwise, they will be properly added or inserted to the vector.
184: The array coo_i[] may be freed immediately after calling this function.
186: .seealso: [](ch_vectors), `Vec`, `VecSetValuesCOO()`, `VecSetPreallocationCOOLocal()`
187: @*/
188: PetscErrorCode VecSetPreallocationCOO(Vec x, PetscCount ncoo, const PetscInt coo_i[])
189: {
190: PetscFunctionBegin;
193: if (ncoo) PetscAssertPointer(coo_i, 3);
194: PetscCall(PetscLogEventBegin(VEC_SetPreallocateCOO, x, 0, 0, 0));
195: PetscCall(PetscLayoutSetUp(x->map));
196: if (x->ops->setpreallocationcoo) {
197: PetscUseTypeMethod(x, setpreallocationcoo, ncoo, coo_i);
198: } else {
199: PetscInt ncoo_i;
200: IS is_coo_i;
202: PetscCall(PetscIntCast(ncoo, &ncoo_i));
203: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncoo_i, coo_i, PETSC_COPY_VALUES, &is_coo_i));
204: PetscCall(PetscObjectCompose((PetscObject)x, "__PETSc_coo_i", (PetscObject)is_coo_i));
205: PetscCall(ISDestroy(&is_coo_i));
206: }
207: PetscCall(PetscLogEventEnd(VEC_SetPreallocateCOO, x, 0, 0, 0));
208: PetscFunctionReturn(PETSC_SUCCESS);
209: }
211: /*@
212: VecSetPreallocationCOOLocal - set preallocation for vectors using a coordinate format of the entries with local indices
214: Collective
216: Input Parameters:
217: + x - vector being preallocated
218: . ncoo - number of entries
219: - coo_i - row indices (local numbering; may be modified)
221: Level: beginner
223: Notes:
224: This and `VecSetValuesCOO()` provide an alternative API to using `VecSetValuesLocal()` to provide vector values.
226: This API is particularly efficient for use on GPUs.
228: The local indices are translated using the local to global mapping, thus `VecSetLocalToGlobalMapping()` must have been
229: called prior to this function.
231: The indices coo_i may be modified within this function. They might be translated to corresponding global
232: indices, but the caller should not rely on them having any specific value after this function returns. The arrays
233: can be freed or reused immediately after this function returns.
235: Entries can be repeated. Negative indices and remote indices might be allowed. see `VecSetPreallocationCOO()`.
237: .seealso: [](ch_vectors), `Vec`, `VecSetPreallocationCOO()`, `VecSetValuesCOO()`
238: @*/
239: PetscErrorCode VecSetPreallocationCOOLocal(Vec x, PetscCount ncoo, PetscInt coo_i[])
240: {
241: PetscInt ncoo_i;
242: ISLocalToGlobalMapping ltog;
244: PetscFunctionBegin;
247: if (ncoo) PetscAssertPointer(coo_i, 3);
248: PetscCall(PetscIntCast(ncoo, &ncoo_i));
249: PetscCall(PetscLayoutSetUp(x->map));
250: PetscCall(VecGetLocalToGlobalMapping(x, <og));
251: if (ltog) PetscCall(ISLocalToGlobalMappingApply(ltog, ncoo_i, coo_i, coo_i));
252: PetscCall(VecSetPreallocationCOO(x, ncoo, coo_i));
253: PetscFunctionReturn(PETSC_SUCCESS);
254: }
256: /*@
257: VecSetValuesCOO - set values at once in a vector preallocated using `VecSetPreallocationCOO()`
259: Collective
261: Input Parameters:
262: + x - vector being set
263: . coo_v - the value array
264: - imode - the insert mode
266: Level: beginner
268: Note:
269: This and `VecSetPreallocationCOO() or ``VecSetPreallocationCOOLocal()` provide an alternative API to using `VecSetValues()` to provide vector values.
271: This API is particularly efficient for use on GPUs.
273: The values must follow the order of the indices prescribed with `VecSetPreallocationCOO()` or `VecSetPreallocationCOOLocal()`.
274: When repeated entries are specified in the COO indices the `coo_v` values are first properly summed, regardless of the value of `imode`.
275: The imode flag indicates if `coo_v` must be added to the current values of the vector (`ADD_VALUES`) or overwritten (`INSERT_VALUES`).
276: `VecAssemblyBegin()` and `VecAssemblyEnd()` do not need to be called after this routine. It automatically handles the assembly process.
278: .seealso: [](ch_vectors), `Vec`, `VecSetPreallocationCOO()`, `VecSetPreallocationCOOLocal()`, `VecSetValues()`
279: @*/
280: PetscErrorCode VecSetValuesCOO(Vec x, const PetscScalar coo_v[], InsertMode imode)
281: {
282: PetscFunctionBegin;
286: PetscCall(PetscLogEventBegin(VEC_SetValuesCOO, x, 0, 0, 0));
287: if (x->ops->setvaluescoo) {
288: PetscUseTypeMethod(x, setvaluescoo, coo_v, imode);
289: PetscCall(PetscObjectStateIncrease((PetscObject)x));
290: } else {
291: IS is_coo_i;
292: const PetscInt *coo_i;
293: PetscInt ncoo;
294: PetscMemType mtype;
296: PetscCall(PetscGetMemType(coo_v, &mtype));
297: PetscCheck(mtype == PETSC_MEMTYPE_HOST, PetscObjectComm((PetscObject)x), PETSC_ERR_ARG_WRONG, "The basic VecSetValuesCOO() only supports v[] on host");
298: PetscCall(PetscObjectQuery((PetscObject)x, "__PETSc_coo_i", (PetscObject *)&is_coo_i));
299: PetscCheck(is_coo_i, PetscObjectComm((PetscObject)x), PETSC_ERR_COR, "Missing coo_i IS");
300: PetscCall(ISGetLocalSize(is_coo_i, &ncoo));
301: PetscCall(ISGetIndices(is_coo_i, &coo_i));
302: if (imode != ADD_VALUES) PetscCall(VecZeroEntries(x));
303: PetscCall(VecSetValues(x, ncoo, coo_i, coo_v, ADD_VALUES));
304: PetscCall(ISRestoreIndices(is_coo_i, &coo_i));
305: PetscCall(VecAssemblyBegin(x));
306: PetscCall(VecAssemblyEnd(x));
307: }
308: PetscCall(PetscLogEventEnd(VEC_SetValuesCOO, x, 0, 0, 0));
309: PetscFunctionReturn(PETSC_SUCCESS);
310: }
312: static PetscErrorCode VecPointwiseApply_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx, PetscLogEvent event, const char async_name[], PetscErrorCode (*const pointwise_op)(Vec, Vec, Vec))
313: {
314: PetscErrorCode (*async_fn)(Vec, Vec, Vec, PetscDeviceContext) = NULL;
316: PetscFunctionBegin;
323: PetscCheckSameTypeAndComm(x, 2, y, 3);
324: PetscCheckSameTypeAndComm(y, 3, w, 1);
325: VecCheckSameSize(w, 1, x, 2);
326: VecCheckSameSize(w, 1, y, 3);
327: VecCheckAssembled(x);
328: VecCheckAssembled(y);
329: PetscCall(VecSetErrorIfLocked(w, 1));
332: if (dctx) PetscCall(PetscObjectQueryFunction((PetscObject)w, async_name, &async_fn));
333: if (event) PetscCall(PetscLogEventBegin(event, x, y, w, 0));
334: if (async_fn) {
335: PetscCall((*async_fn)(w, x, y, dctx));
336: } else {
337: PetscCall((*pointwise_op)(w, x, y));
338: }
339: if (event) PetscCall(PetscLogEventEnd(event, x, y, w, 0));
340: PetscCall(PetscObjectStateIncrease((PetscObject)w));
341: PetscFunctionReturn(PETSC_SUCCESS);
342: }
344: PetscErrorCode VecPointwiseMaxAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
345: {
346: PetscFunctionBegin;
347: // REVIEW ME: no log event?
348: PetscCall(VecPointwiseApply_Private(w, x, y, dctx, 0, VecAsyncFnName(PointwiseMax), w->ops->pointwisemax));
349: PetscFunctionReturn(PETSC_SUCCESS);
350: }
352: /*@
353: VecPointwiseMax - Computes the component-wise maximum `w[i] = max(x[i], y[i])`.
355: Logically Collective
357: Input Parameters:
358: + x - the first input vector
359: - y - the second input vector
361: Output Parameter:
362: . w - the result
364: Level: advanced
366: Notes:
367: Any subset of the `x`, `y`, and `w` may be the same vector.
369: For complex numbers compares only the real part
371: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMult()`, `VecPointwiseMin()`, `VecPointwiseMaxAbs()`, `VecMaxPointwiseDivide()`
372: @*/
373: PetscErrorCode VecPointwiseMax(Vec w, Vec x, Vec y)
374: {
375: PetscFunctionBegin;
376: PetscCall(VecPointwiseMaxAsync_Private(w, x, y, NULL));
377: PetscFunctionReturn(PETSC_SUCCESS);
378: }
380: PetscErrorCode VecPointwiseMinAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
381: {
382: PetscFunctionBegin;
383: // REVIEW ME: no log event?
384: PetscCall(VecPointwiseApply_Private(w, x, y, dctx, 0, VecAsyncFnName(PointwiseMin), w->ops->pointwisemin));
385: PetscFunctionReturn(PETSC_SUCCESS);
386: }
388: /*@
389: VecPointwiseMin - Computes the component-wise minimum `w[i] = min(x[i], y[i])`.
391: Logically Collective
393: Input Parameters:
394: + x - the first input vector
395: - y - the second input vector
397: Output Parameter:
398: . w - the result
400: Level: advanced
402: Notes:
403: Any subset of the `x`, `y`, and `w` may be the same vector.
405: For complex numbers compares only the real part
407: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMult()`, `VecPointwiseMaxAbs()`, `VecMaxPointwiseDivide()`
408: @*/
409: PetscErrorCode VecPointwiseMin(Vec w, Vec x, Vec y)
410: {
411: PetscFunctionBegin;
412: PetscCall(VecPointwiseMinAsync_Private(w, x, y, NULL));
413: PetscFunctionReturn(PETSC_SUCCESS);
414: }
416: PetscErrorCode VecPointwiseMaxAbsAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
417: {
418: PetscFunctionBegin;
419: // REVIEW ME: no log event?
420: PetscCall(VecPointwiseApply_Private(w, x, y, dctx, 0, VecAsyncFnName(PointwiseMaxAbs), w->ops->pointwisemaxabs));
421: PetscFunctionReturn(PETSC_SUCCESS);
422: }
424: /*@
425: VecPointwiseMaxAbs - Computes the component-wise maximum of the absolute values `w[i] = max(abs(x[i]), abs(y[i]))`.
427: Logically Collective
429: Input Parameters:
430: + x - the first input vector
431: - y - the second input vector
433: Output Parameter:
434: . w - the result
436: Level: advanced
438: Notes:
439: Any subset of the `x`, `y`, and `w` may be the same vector.
441: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMult()`, `VecPointwiseMin()`, `VecPointwiseMax()`, `VecMaxPointwiseDivide()`
442: @*/
443: PetscErrorCode VecPointwiseMaxAbs(Vec w, Vec x, Vec y)
444: {
445: PetscFunctionBegin;
446: PetscCall(VecPointwiseMaxAbsAsync_Private(w, x, y, NULL));
447: PetscFunctionReturn(PETSC_SUCCESS);
448: }
450: PetscErrorCode VecPointwiseDivideAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
451: {
452: PetscFunctionBegin;
453: PetscCall(VecPointwiseApply_Private(w, x, y, dctx, VEC_PointwiseDivide, VecAsyncFnName(PointwiseDivide), w->ops->pointwisedivide));
454: PetscFunctionReturn(PETSC_SUCCESS);
455: }
457: /*@
458: VecPointwiseDivide - Computes the component-wise division `w[i] = x[i] / y[i]`.
460: Logically Collective
462: Input Parameters:
463: + x - the numerator vector
464: - y - the denominator vector
466: Output Parameter:
467: . w - the result
469: Level: advanced
471: Note:
472: Any subset of the `x`, `y`, and `w` may be the same vector.
474: .seealso: [](ch_vectors), `Vec`, `VecPointwiseMult()`, `VecPointwiseMax()`, `VecPointwiseMin()`, `VecPointwiseMaxAbs()`, `VecMaxPointwiseDivide()`
475: @*/
476: PetscErrorCode VecPointwiseDivide(Vec w, Vec x, Vec y)
477: {
478: PetscFunctionBegin;
479: PetscCall(VecPointwiseDivideAsync_Private(w, x, y, NULL));
480: PetscFunctionReturn(PETSC_SUCCESS);
481: }
483: PetscErrorCode VecPointwiseMultAsync_Private(Vec w, Vec x, Vec y, PetscDeviceContext dctx)
484: {
485: PetscFunctionBegin;
487: PetscCall(VecPointwiseApply_Private(w, x, y, dctx, VEC_PointwiseMult, VecAsyncFnName(PointwiseMult), w->ops->pointwisemult));
488: PetscFunctionReturn(PETSC_SUCCESS);
489: }
491: /*@
492: VecPointwiseMult - Computes the component-wise multiplication `w[i] = x[i] * y[i]`.
494: Logically Collective
496: Input Parameters:
497: + x - the first vector
498: - y - the second vector
500: Output Parameter:
501: . w - the result
503: Level: advanced
505: Note:
506: Any subset of the `x`, `y`, and `w` may be the same vector.
508: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMax()`, `VecPointwiseMin()`, `VecPointwiseMaxAbs()`, `VecMaxPointwiseDivide()`
509: @*/
510: PetscErrorCode VecPointwiseMult(Vec w, Vec x, Vec y)
511: {
512: PetscFunctionBegin;
513: PetscCall(VecPointwiseMultAsync_Private(w, x, y, NULL));
514: PetscFunctionReturn(PETSC_SUCCESS);
515: }
517: /*@
518: VecDuplicate - Creates a new vector of the same type as an existing vector.
520: Collective
522: Input Parameter:
523: . v - a vector to mimic
525: Output Parameter:
526: . newv - location to put new vector
528: Level: beginner
530: Notes:
531: `VecDuplicate()` DOES NOT COPY the vector entries, but rather allocates storage
532: for the new vector. Use `VecCopy()` to copy a vector.
534: Use `VecDestroy()` to free the space. Use `VecDuplicateVecs()` to get several
535: vectors.
537: .seealso: [](ch_vectors), `Vec`, `VecDestroy()`, `VecDuplicateVecs()`, `VecCreate()`, `VecCopy()`
538: @*/
539: PetscErrorCode VecDuplicate(Vec v, Vec *newv)
540: {
541: PetscFunctionBegin;
543: PetscAssertPointer(newv, 2);
545: PetscUseTypeMethod(v, duplicate, newv);
546: #if PetscDefined(HAVE_DEVICE)
547: if (v->boundtocpu && v->bindingpropagates) {
548: PetscCall(VecSetBindingPropagates(*newv, PETSC_TRUE));
549: PetscCall(VecBindToCPU(*newv, PETSC_TRUE));
550: }
551: #endif
552: PetscCall(PetscObjectStateIncrease((PetscObject)*newv));
553: PetscFunctionReturn(PETSC_SUCCESS);
554: }
556: /*@
557: VecDestroy - Destroys a vector.
559: Collective
561: Input Parameter:
562: . v - the vector
564: Level: beginner
566: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecDuplicate()`, `VecDestroyVecs()`
567: @*/
568: PetscErrorCode VecDestroy(Vec *v)
569: {
570: PetscFunctionBegin;
571: PetscAssertPointer(v, 1);
572: if (!*v) PetscFunctionReturn(PETSC_SUCCESS);
574: if (--((PetscObject)*v)->refct > 0) {
575: *v = NULL;
576: PetscFunctionReturn(PETSC_SUCCESS);
577: }
579: PetscCall(PetscObjectSAWsViewOff((PetscObject)*v));
580: /* destroy the internal part */
581: PetscTryTypeMethod(*v, destroy);
582: PetscCall(PetscFree((*v)->defaultrandtype));
583: /* destroy the external/common part */
584: PetscCall(PetscLayoutDestroy(&(*v)->map));
585: PetscCall(PetscHeaderDestroy(v));
586: PetscFunctionReturn(PETSC_SUCCESS);
587: }
589: /*@C
590: VecDuplicateVecs - Creates several vectors of the same type as an existing vector.
592: Collective
594: Input Parameters:
595: + m - the number of vectors to obtain
596: - v - a vector to mimic
598: Output Parameter:
599: . V - location to put pointer to array of vectors
601: Level: intermediate
603: Note:
604: Use `VecDestroyVecs()` to free the space. Use `VecDuplicate()` to form a single
605: vector.
607: Fortran Note:
608: .vb
609: Vec, pointer :: V(:)
610: .ve
612: .seealso: [](ch_vectors), `Vec`, [](ch_fortran), `VecDestroyVecs()`, `VecDuplicate()`, `VecCreate()`
613: @*/
614: PetscErrorCode VecDuplicateVecs(Vec v, PetscInt m, Vec *V[])
615: {
616: PetscFunctionBegin;
618: PetscAssertPointer(V, 3);
620: PetscUseTypeMethod(v, duplicatevecs, m, V);
621: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
622: if (v->boundtocpu && v->bindingpropagates) {
623: PetscInt i;
625: for (i = 0; i < m; i++) {
626: /* Since ops->duplicatevecs might itself propagate the value of boundtocpu,
627: * avoid unnecessary overhead by only calling VecBindToCPU() if the vector isn't already bound. */
628: if (!(*V)[i]->boundtocpu) {
629: PetscCall(VecSetBindingPropagates((*V)[i], PETSC_TRUE));
630: PetscCall(VecBindToCPU((*V)[i], PETSC_TRUE));
631: }
632: }
633: }
634: #endif
635: PetscFunctionReturn(PETSC_SUCCESS);
636: }
638: /*@C
639: VecDestroyVecs - Frees a block of vectors obtained with `VecDuplicateVecs()`.
641: Collective
643: Input Parameters:
644: + m - the number of vectors previously obtained, if zero no vectors are destroyed
645: - vv - pointer to pointer to array of vector pointers, if `NULL` no vectors are destroyed
647: Level: intermediate
649: .seealso: [](ch_vectors), `Vec`, [](ch_fortran), `VecDuplicateVecs()`, `VecDestroyVecsf90()`
650: @*/
651: PetscErrorCode VecDestroyVecs(PetscInt m, Vec *vv[])
652: {
653: PetscFunctionBegin;
654: PetscAssertPointer(vv, 2);
655: PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Trying to destroy negative number of vectors %" PetscInt_FMT, m);
656: if (!m || !*vv) {
657: *vv = NULL;
658: PetscFunctionReturn(PETSC_SUCCESS);
659: }
662: PetscCall((*(**vv)->ops->destroyvecs)(m, *vv));
663: *vv = NULL;
664: PetscFunctionReturn(PETSC_SUCCESS);
665: }
667: /*@
668: VecViewFromOptions - View a vector based on values in the options database
670: Collective
672: Input Parameters:
673: + A - the vector
674: . obj - optional object that provides the options prefix for this viewing, use 'NULL' to use the prefix of `A`
675: - name - command line option
677: Level: intermediate
679: Note:
680: See `PetscObjectViewFromOptions()` to see the `PetscViewer` and PetscViewerFormat` available
682: .seealso: [](ch_vectors), `Vec`, `VecView`, `PetscObjectViewFromOptions()`, `VecCreate()`
683: @*/
684: PetscErrorCode VecViewFromOptions(Vec A, PeOp PetscObject obj, const char name[])
685: {
686: PetscFunctionBegin;
688: PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
689: PetscFunctionReturn(PETSC_SUCCESS);
690: }
692: /*@
693: VecView - Views a vector object.
695: Collective
697: Input Parameters:
698: + vec - the vector
699: - viewer - an optional `PetscViewer` visualization context
701: Level: beginner
703: Notes:
704: The available visualization contexts include
705: + `PETSC_VIEWER_STDOUT_SELF` - for sequential vectors
706: . `PETSC_VIEWER_STDOUT_WORLD` - for parallel vectors created on `PETSC_COMM_WORLD`
707: - `PETSC_VIEWER_STDOUT`_(comm) - for parallel vectors created on MPI communicator comm
709: You can change the format the vector is printed using the
710: option `PetscViewerPushFormat()`.
712: The user can open alternative viewers with
713: + `PetscViewerASCIIOpen()` - Outputs vector to a specified file
714: . `PetscViewerBinaryOpen()` - Outputs vector in binary to a
715: specified file; corresponding input uses `VecLoad()`
716: . `PetscViewerDrawOpen()` - Outputs vector to an X window display
717: . `PetscViewerSocketOpen()` - Outputs vector to Socket viewer
718: - `PetscViewerHDF5Open()` - Outputs vector to HDF5 file viewer
720: The user can call `PetscViewerPushFormat()` to specify the output
721: format of ASCII printed objects (when using `PETSC_VIEWER_STDOUT_SELF`,
722: `PETSC_VIEWER_STDOUT_WORLD` and `PetscViewerASCIIOpen()`). Available formats include
723: + `PETSC_VIEWER_DEFAULT` - default, prints vector contents
724: . `PETSC_VIEWER_ASCII_MATLAB` - prints vector contents in MATLAB format
725: . `PETSC_VIEWER_ASCII_INDEX` - prints vector contents, including indices of vector elements
726: - `PETSC_VIEWER_ASCII_COMMON` - prints vector contents, using a
727: format common among all vector types
729: You can pass any number of vector objects, or other PETSc objects to the same viewer.
731: In the debugger you can do call `VecView`(v,0) to display the vector. (The same holds for any PETSc object viewer).
733: Notes for binary viewer:
734: If you pass multiple vectors to a binary viewer you can read them back in the same order
735: with `VecLoad()`.
737: If the blocksize of the vector is greater than one then you must provide a unique prefix to
738: the vector with `PetscObjectSetOptionsPrefix`((`PetscObject`)vec,"uniqueprefix"); BEFORE calling `VecView()` on the
739: vector to be stored and then set that same unique prefix on the vector that you pass to `VecLoad()`. The blocksize
740: information is stored in an ASCII file with the same name as the binary file plus a ".info" appended to the
741: filename. If you copy the binary file, make sure you copy the associated .info file with it.
743: See the manual page for `VecLoad()` on the exact format the binary viewer stores
744: the values in the file.
746: Notes for HDF5 Viewer:
747: The name of the `Vec` (given with `PetscObjectSetName()` is the name that is used
748: for the object in the HDF5 file. If you wish to store the same Vec into multiple
749: datasets in the same file (typically with different values), you must change its
750: name each time before calling the `VecView()`. To load the same vector,
751: the name of the Vec object passed to `VecLoad()` must be the same.
753: If the block size of the vector is greater than 1 then it is used as the first dimension in the HDF5 array.
754: If the function `PetscViewerHDF5SetBaseDimension2()`is called then even if the block size is one it will
755: be used as the first dimension in the HDF5 array (that is the HDF5 array will always be two dimensional)
756: See also `PetscViewerHDF5SetTimestep()` which adds an additional complication to reading and writing `Vec`
757: with the HDF5 viewer.
759: .seealso: [](ch_vectors), `Vec`, `VecViewFromOptions()`, `PetscViewerASCIIOpen()`, `PetscViewerDrawOpen()`, `PetscDrawLGCreate()`,
760: `PetscViewerSocketOpen()`, `PetscViewerBinaryOpen()`, `VecLoad()`, `PetscViewerCreate()`,
761: `PetscRealView()`, `PetscScalarView()`, `PetscIntView()`, `PetscViewerHDF5SetTimestep()`
762: @*/
763: PetscErrorCode VecView(Vec vec, PetscViewer viewer)
764: {
765: PetscBool iascii;
766: PetscViewerFormat format;
767: PetscMPIInt size;
769: PetscFunctionBegin;
772: VecCheckAssembled(vec);
773: if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)vec), &viewer));
775: PetscCall(PetscViewerGetFormat(viewer, &format));
776: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)vec), &size));
777: if (size == 1 && format == PETSC_VIEWER_LOAD_BALANCE) PetscFunctionReturn(PETSC_SUCCESS);
779: PetscCheck(!vec->stash.n && !vec->bstash.n, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must call VecAssemblyBegin/End() before viewing this vector");
781: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
782: if (iascii) {
783: PetscInt rows, bs;
785: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)vec, viewer));
786: if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
787: PetscCall(PetscViewerASCIIPushTab(viewer));
788: PetscCall(VecGetSize(vec, &rows));
789: PetscCall(VecGetBlockSize(vec, &bs));
790: if (bs != 1) {
791: PetscCall(PetscViewerASCIIPrintf(viewer, "length=%" PetscInt_FMT ", bs=%" PetscInt_FMT "\n", rows, bs));
792: } else {
793: PetscCall(PetscViewerASCIIPrintf(viewer, "length=%" PetscInt_FMT "\n", rows));
794: }
795: PetscCall(PetscViewerASCIIPopTab(viewer));
796: }
797: }
798: PetscCall(VecLockReadPush(vec));
799: PetscCall(PetscLogEventBegin(VEC_View, vec, viewer, 0, 0));
800: if ((format == PETSC_VIEWER_NATIVE || format == PETSC_VIEWER_LOAD_BALANCE) && vec->ops->viewnative) {
801: PetscUseTypeMethod(vec, viewnative, viewer);
802: } else {
803: PetscUseTypeMethod(vec, view, viewer);
804: }
805: PetscCall(VecLockReadPop(vec));
806: PetscCall(PetscLogEventEnd(VEC_View, vec, viewer, 0, 0));
807: PetscFunctionReturn(PETSC_SUCCESS);
808: }
810: #if defined(PETSC_USE_DEBUG)
811: #include <../src/sys/totalview/tv_data_display.h>
812: PETSC_UNUSED static int TV_display_type(const struct _p_Vec *v)
813: {
814: const PetscScalar *values;
815: char type[32];
817: TV_add_row("Local rows", "int", &v->map->n);
818: TV_add_row("Global rows", "int", &v->map->N);
819: TV_add_row("Typename", TV_ascii_string_type, ((PetscObject)v)->type_name);
820: PetscCall(VecGetArrayRead((Vec)v, &values));
821: PetscCall(PetscSNPrintf(type, 32, "double[%" PetscInt_FMT "]", v->map->n));
822: TV_add_row("values", type, values);
823: PetscCall(VecRestoreArrayRead((Vec)v, &values));
824: return TV_format_OK;
825: }
826: #endif
828: /*@C
829: VecViewNative - Views a vector object with the original type specific viewer
831: Collective
833: Input Parameters:
834: + vec - the vector
835: - viewer - an optional `PetscViewer` visualization context
837: Level: developer
839: Note:
840: This can be used with, for example, vectors obtained with `DMCreateGlobalVector()` for a `DMDA` to display the vector
841: in the PETSc storage format (each MPI process values follow the previous MPI processes) instead of the "natural" grid
842: ordering.
844: .seealso: [](ch_vectors), `Vec`, `PetscViewerASCIIOpen()`, `PetscViewerDrawOpen()`, `PetscDrawLGCreate()`, `VecView()`
845: `PetscViewerSocketOpen()`, `PetscViewerBinaryOpen()`, `VecLoad()`, `PetscViewerCreate()`,
846: `PetscRealView()`, `PetscScalarView()`, `PetscIntView()`, `PetscViewerHDF5SetTimestep()`
847: @*/
848: PetscErrorCode VecViewNative(Vec vec, PetscViewer viewer)
849: {
850: PetscFunctionBegin;
853: if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)vec), &viewer));
855: PetscUseTypeMethod(vec, viewnative, viewer);
856: PetscFunctionReturn(PETSC_SUCCESS);
857: }
859: /*@
860: VecGetSize - Returns the global number of elements of the vector.
862: Not Collective
864: Input Parameter:
865: . x - the vector
867: Output Parameter:
868: . size - the global length of the vector
870: Level: beginner
872: .seealso: [](ch_vectors), `Vec`, `VecGetLocalSize()`
873: @*/
874: PetscErrorCode VecGetSize(Vec x, PetscInt *size)
875: {
876: PetscFunctionBegin;
878: PetscAssertPointer(size, 2);
880: PetscUseTypeMethod(x, getsize, size);
881: PetscFunctionReturn(PETSC_SUCCESS);
882: }
884: /*@
885: VecGetLocalSize - Returns the number of elements of the vector stored
886: in local memory (that is on this MPI process)
888: Not Collective
890: Input Parameter:
891: . x - the vector
893: Output Parameter:
894: . size - the length of the local piece of the vector
896: Level: beginner
898: .seealso: [](ch_vectors), `Vec`, `VecGetSize()`
899: @*/
900: PetscErrorCode VecGetLocalSize(Vec x, PetscInt *size)
901: {
902: PetscFunctionBegin;
904: PetscAssertPointer(size, 2);
906: PetscUseTypeMethod(x, getlocalsize, size);
907: PetscFunctionReturn(PETSC_SUCCESS);
908: }
910: /*@
911: VecGetOwnershipRange - Returns the range of indices owned by
912: this process. The vector is laid out with the
913: first `n1` elements on the first processor, next `n2` elements on the
914: second, etc. For certain parallel layouts this range may not be
915: well defined.
917: Not Collective
919: Input Parameter:
920: . x - the vector
922: Output Parameters:
923: + low - the first local element, pass in `NULL` if not interested
924: - high - one more than the last local element, pass in `NULL` if not interested
926: Level: beginner
928: Notes:
929: If the `Vec` was obtained from a `DM` with `DMCreateGlobalVector()`, then the range values are determined by the specific `DM`.
931: If the `Vec` was created directly the range values are determined by the local size passed to `VecSetSizes()` or `VecCreateMPI()`.
932: If `PETSC_DECIDE` was passed as the local size, then the vector uses default values for the range using `PetscSplitOwnership()`.
934: The high argument is one more than the last element stored locally.
936: For certain `DM`, such as `DMDA`, it is better to use `DM` specific routines, such as `DMDAGetGhostCorners()`, to determine
937: the local values in the vector.
939: .seealso: [](ch_vectors), `Vec`, `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `VecGetOwnershipRanges()`, `PetscSplitOwnership()`,
940: `VecSetSizes()`, `VecCreateMPI()`, `PetscLayout`, `DMDAGetGhostCorners()`, `DM`
941: @*/
942: PetscErrorCode VecGetOwnershipRange(Vec x, PetscInt *low, PetscInt *high)
943: {
944: PetscFunctionBegin;
947: if (low) PetscAssertPointer(low, 2);
948: if (high) PetscAssertPointer(high, 3);
949: if (low) *low = x->map->rstart;
950: if (high) *high = x->map->rend;
951: PetscFunctionReturn(PETSC_SUCCESS);
952: }
954: /*@C
955: VecGetOwnershipRanges - Returns the range of indices owned by EACH processor,
956: The vector is laid out with the
957: first `n1` elements on the first processor, next `n2` elements on the
958: second, etc. For certain parallel layouts this range may not be
959: well defined.
961: Not Collective
963: Input Parameter:
964: . x - the vector
966: Output Parameter:
967: . ranges - array of length `size` + 1 with the start and end+1 for each process
969: Level: beginner
971: Notes:
972: If the `Vec` was obtained from a `DM` with `DMCreateGlobalVector()`, then the range values are determined by the specific `DM`.
974: If the `Vec` was created directly the range values are determined by the local size passed to `VecSetSizes()` or `VecCreateMPI()`.
975: If `PETSC_DECIDE` was passed as the local size, then the vector uses default values for the range using `PetscSplitOwnership()`.
977: The high argument is one more than the last element stored locally.
979: For certain `DM`, such as `DMDA`, it is better to use `DM` specific routines, such as `DMDAGetGhostCorners()`, to determine
980: the local values in the vector.
982: The high argument is one more than the last element stored locally.
984: If `ranges` are used after all vectors that share the ranges has been destroyed, then the program will crash accessing `ranges`.
986: Fortran Note:
987: The argument `ranges` must be declared as
988: .vb
989: PetscInt, pointer :: ranges(:)
990: .ve
991: and you have to return it with a call to `VecRestoreOwnershipRanges()` when no longer needed
993: .seealso: [](ch_vectors), `Vec`, `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `VecGetOwnershipRange()`, `PetscSplitOwnership()`,
994: `VecSetSizes()`, `VecCreateMPI()`, `PetscLayout`, `DMDAGetGhostCorners()`, `DM`
995: @*/
996: PetscErrorCode VecGetOwnershipRanges(Vec x, const PetscInt *ranges[])
997: {
998: PetscFunctionBegin;
1001: PetscCall(PetscLayoutGetRanges(x->map, ranges));
1002: PetscFunctionReturn(PETSC_SUCCESS);
1003: }
1005: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
1006: /*@
1007: VecSetOption - Sets an option for controlling a vector's behavior.
1009: Collective
1011: Input Parameters:
1012: + x - the vector
1013: . op - the option
1014: - flag - turn the option on or off
1016: Supported Options:
1017: + `VEC_IGNORE_OFF_PROC_ENTRIES` - which causes `VecSetValues()` to ignore
1018: entries destined to be stored on a separate processor. This can be used
1019: to eliminate the global reduction in the `VecAssemblyBegin()` if you know
1020: that you have only used `VecSetValues()` to set local elements
1021: . `VEC_IGNORE_NEGATIVE_INDICES` - which means you can pass negative indices
1022: in ix in calls to `VecSetValues()` or `VecGetValues()`. These rows are simply
1023: ignored.
1024: - `VEC_SUBSET_OFF_PROC_ENTRIES` - which causes `VecAssemblyBegin()` to assume that the off-process
1025: entries will always be a subset (possibly equal) of the off-process entries set on the
1026: first assembly which had a true `VEC_SUBSET_OFF_PROC_ENTRIES` and the vector has not
1027: changed this flag afterwards. If this assembly is not such first assembly, then this
1028: assembly can reuse the communication pattern setup in that first assembly, thus avoiding
1029: a global reduction. Subsequent assemblies setting off-process values should use the same
1030: InsertMode as the first assembly.
1032: Level: intermediate
1034: Developer Notes:
1035: The `InsertMode` restriction could be removed by packing the stash messages out of place.
1037: .seealso: [](ch_vectors), `Vec`, `VecSetValues()`
1038: @*/
1039: PetscErrorCode VecSetOption(Vec x, VecOption op, PetscBool flag)
1040: {
1041: PetscFunctionBegin;
1044: PetscTryTypeMethod(x, setoption, op, flag);
1045: PetscFunctionReturn(PETSC_SUCCESS);
1046: }
1048: /* Default routines for obtaining and releasing; */
1049: /* may be used by any implementation */
1050: PetscErrorCode VecDuplicateVecs_Default(Vec w, PetscInt m, Vec *V[])
1051: {
1052: PetscFunctionBegin;
1053: PetscCheck(m > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "m must be > 0: m = %" PetscInt_FMT, m);
1054: PetscCall(PetscMalloc1(m, V));
1055: for (PetscInt i = 0; i < m; i++) PetscCall(VecDuplicate(w, *V + i));
1056: PetscFunctionReturn(PETSC_SUCCESS);
1057: }
1059: PetscErrorCode VecDestroyVecs_Default(PetscInt m, Vec v[])
1060: {
1061: PetscInt i;
1063: PetscFunctionBegin;
1064: PetscAssertPointer(v, 2);
1065: for (i = 0; i < m; i++) PetscCall(VecDestroy(&v[i]));
1066: PetscCall(PetscFree(v));
1067: PetscFunctionReturn(PETSC_SUCCESS);
1068: }
1070: /*@
1071: VecResetArray - Resets a vector to use its default memory. Call this
1072: after the use of `VecPlaceArray()`.
1074: Not Collective
1076: Input Parameter:
1077: . vec - the vector
1079: Level: developer
1081: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecReplaceArray()`, `VecPlaceArray()`
1082: @*/
1083: PetscErrorCode VecResetArray(Vec vec)
1084: {
1085: PetscFunctionBegin;
1088: PetscUseTypeMethod(vec, resetarray);
1089: PetscCall(PetscObjectStateIncrease((PetscObject)vec));
1090: PetscFunctionReturn(PETSC_SUCCESS);
1091: }
1093: /*@
1094: VecLoad - Loads a vector that has been stored in binary or HDF5 format
1095: with `VecView()`.
1097: Collective
1099: Input Parameters:
1100: + vec - the newly loaded vector, this needs to have been created with `VecCreate()` or
1101: some related function before the call to `VecLoad()`.
1102: - viewer - binary file viewer, obtained from `PetscViewerBinaryOpen()` or
1103: HDF5 file viewer, obtained from `PetscViewerHDF5Open()`
1105: Level: intermediate
1107: Notes:
1108: Defaults to the standard `VECSEQ` or `VECMPI`, if you want some other type of `Vec` call `VecSetFromOptions()`
1109: before calling this.
1111: The input file must contain the full global vector, as
1112: written by the routine `VecView()`.
1114: If the type or size of `vec` is not set before a call to `VecLoad()`, PETSc
1115: sets the type and the local and global sizes based on the vector it is reading in. If type and/or
1116: sizes are already set, then the same are used.
1118: If using the binary viewer and the blocksize of the vector is greater than one then you must provide a unique prefix to
1119: the vector with `PetscObjectSetOptionsPrefix`((`PetscObject`)vec,"uniqueprefix"); BEFORE calling `VecView()` on the
1120: vector to be stored and then set that same unique prefix on the vector that you pass to VecLoad(). The blocksize
1121: information is stored in an ASCII file with the same name as the binary file plus a ".info" appended to the
1122: filename. If you copy the binary file, make sure you copy the associated .info file with it.
1124: If using HDF5, you must assign the `Vec` the same name as was used in the Vec
1125: that was stored in the file using `PetscObjectSetName(). Otherwise you will
1126: get the error message: "Cannot H5DOpen2() with `Vec` name NAMEOFOBJECT".
1128: If the HDF5 file contains a two dimensional array the first dimension is treated as the block size
1129: in loading the vector. Hence, for example, using MATLAB notation h5create('vector.dat','/Test_Vec',[27 1]);
1130: will load a vector of size 27 and block size 27 thus resulting in all 27 entries being on the first process of
1131: vectors communicator and the rest of the processes having zero entries
1133: Notes for advanced users when using the binary viewer:
1134: Most users should not need to know the details of the binary storage
1135: format, since `VecLoad()` and `VecView()` completely hide these details.
1136: But for anyone who's interested, the standard binary vector storage
1137: format is
1138: .vb
1139: PetscInt VEC_FILE_CLASSID
1140: PetscInt number of rows
1141: PetscScalar *values of all entries
1142: .ve
1144: In addition, PETSc automatically uses byte swapping to work on all machines; the files
1145: are written ALWAYS using big-endian ordering. On small-endian machines the numbers
1146: are converted to the small-endian format when they are read in from the file.
1147: See PetscBinaryRead() and PetscBinaryWrite() to see how this may be done.
1149: .seealso: [](ch_vectors), `Vec`, `PetscViewerBinaryOpen()`, `VecView()`, `MatLoad()`
1150: @*/
1151: PetscErrorCode VecLoad(Vec vec, PetscViewer viewer)
1152: {
1153: PetscBool isbinary, ishdf5, isadios, isexodusii, iscgns;
1154: PetscViewerFormat format;
1156: PetscFunctionBegin;
1159: PetscCheckSameComm(vec, 1, viewer, 2);
1160: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1161: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
1162: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERCGNS, &iscgns));
1163: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERADIOS, &isadios));
1164: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWEREXODUSII, &isexodusii));
1165: PetscCheck(isbinary || ishdf5 || isadios || isexodusii || iscgns, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1167: PetscCall(VecSetErrorIfLocked(vec, 1));
1168: if (!((PetscObject)vec)->type_name && !vec->ops->create) PetscCall(VecSetType(vec, VECSTANDARD));
1169: PetscCall(PetscLogEventBegin(VEC_Load, viewer, 0, 0, 0));
1170: PetscCall(PetscViewerGetFormat(viewer, &format));
1171: if (format == PETSC_VIEWER_NATIVE && vec->ops->loadnative) {
1172: PetscUseTypeMethod(vec, loadnative, viewer);
1173: } else {
1174: PetscUseTypeMethod(vec, load, viewer);
1175: }
1176: PetscCall(PetscLogEventEnd(VEC_Load, viewer, 0, 0, 0));
1177: PetscFunctionReturn(PETSC_SUCCESS);
1178: }
1180: /*@
1181: VecReciprocal - Replaces each component of a vector by its reciprocal.
1183: Logically Collective
1185: Input Parameter:
1186: . vec - the vector
1188: Output Parameter:
1189: . vec - the vector reciprocal
1191: Level: intermediate
1193: Note:
1194: Vector entries with value 0.0 are not changed
1196: .seealso: [](ch_vectors), `Vec`, `VecLog()`, `VecExp()`, `VecSqrtAbs()`
1197: @*/
1198: PetscErrorCode VecReciprocal(Vec vec)
1199: {
1200: PetscFunctionBegin;
1201: PetscCall(VecReciprocalAsync_Private(vec, NULL));
1202: PetscFunctionReturn(PETSC_SUCCESS);
1203: }
1205: /*@C
1206: VecSetOperation - Allows the user to override a particular vector operation.
1208: Logically Collective; No Fortran Support
1210: Input Parameters:
1211: + vec - The vector to modify
1212: . op - The name of the operation
1213: - f - The function that provides the operation.
1215: Notes:
1216: `f` may be `NULL` to remove the operation from `vec`. Depending on the operation this may be
1217: allowed, however some always expect a valid function. In these cases an error will be raised
1218: when calling the interface routine in question.
1220: See `VecOperation` for an up-to-date list of override-able operations. The operations listed
1221: there have the form `VECOP_<OPERATION>`, where `<OPERATION>` is the suffix (in all capital
1222: letters) of the public interface routine (e.g., `VecView()` -> `VECOP_VIEW`).
1224: Overriding a particular `Vec`'s operation has no affect on any other `Vec`s past, present,
1225: or future. The user should also note that overriding a method is "destructive"; the previous
1226: method is not retained in any way.
1228: Level: advanced
1230: Example Usage:
1231: .vb
1232: // some new VecView() implementation, must have the same signature as the function it seeks
1233: // to replace
1234: PetscErrorCode UserVecView(Vec x, PetscViewer viewer)
1235: {
1236: PetscFunctionBeginUser;
1237: // ...
1238: PetscFunctionReturn(PETSC_SUCCESS);
1239: }
1241: // Create a VECMPI which has a pre-defined VecView() implementation
1242: VecCreateMPI(comm, n, N, &x);
1243: // Calls the VECMPI implementation for VecView()
1244: VecView(x, viewer);
1246: VecSetOperation(x, VECOP_VIEW, (void (*)(void))UserVecView);
1247: // Now calls UserVecView()
1248: VecView(x, viewer);
1249: .ve
1251: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `MatShellSetOperation()`
1252: @*/
1253: PetscErrorCode VecSetOperation(Vec vec, VecOperation op, void (*f)(void))
1254: {
1255: PetscFunctionBegin;
1257: if (op == VECOP_VIEW && !vec->ops->viewnative) {
1258: vec->ops->viewnative = vec->ops->view;
1259: } else if (op == VECOP_LOAD && !vec->ops->loadnative) {
1260: vec->ops->loadnative = vec->ops->load;
1261: }
1262: ((void (**)(void))vec->ops)[(int)op] = f;
1263: PetscFunctionReturn(PETSC_SUCCESS);
1264: }
1266: /*@
1267: VecStashSetInitialSize - sets the sizes of the vec-stash, that is
1268: used during the assembly process to store values that belong to
1269: other processors.
1271: Not Collective, different processes can have different size stashes
1273: Input Parameters:
1274: + vec - the vector
1275: . size - the initial size of the stash.
1276: - bsize - the initial size of the block-stash(if used).
1278: Options Database Keys:
1279: + -vecstash_initial_size <size> or <size0,size1,...sizep-1> - set initial size
1280: - -vecstash_block_initial_size <bsize> or <bsize0,bsize1,...bsizep-1> - set initial block size
1282: Level: intermediate
1284: Notes:
1285: The block-stash is used for values set with `VecSetValuesBlocked()` while
1286: the stash is used for values set with `VecSetValues()`
1288: Run with the option -info and look for output of the form
1289: VecAssemblyBegin_MPIXXX:Stash has MM entries, uses nn mallocs.
1290: to determine the appropriate value, MM, to use for size and
1291: VecAssemblyBegin_MPIXXX:Block-Stash has BMM entries, uses nn mallocs.
1292: to determine the value, BMM to use for bsize
1294: PETSc attempts to smartly manage the stash size so there is little likelihood setting a
1295: a specific value here will affect performance
1297: .seealso: [](ch_vectors), `Vec`, `VecSetBlockSize()`, `VecSetValues()`, `VecSetValuesBlocked()`, `VecStashView()`
1298: @*/
1299: PetscErrorCode VecStashSetInitialSize(Vec vec, PetscInt size, PetscInt bsize)
1300: {
1301: PetscFunctionBegin;
1303: PetscCall(VecStashSetInitialSize_Private(&vec->stash, size));
1304: PetscCall(VecStashSetInitialSize_Private(&vec->bstash, bsize));
1305: PetscFunctionReturn(PETSC_SUCCESS);
1306: }
1308: /*@
1309: VecSetRandom - Sets all components of a vector to random numbers.
1311: Logically Collective
1313: Input Parameters:
1314: + x - the vector
1315: - rctx - the random number context, formed by `PetscRandomCreate()`, or use `NULL` and it will create one internally.
1317: Output Parameter:
1318: . x - the vector
1320: Example of Usage:
1321: .vb
1322: PetscRandomCreate(PETSC_COMM_WORLD,&rctx);
1323: VecSetRandom(x,rctx);
1324: PetscRandomDestroy(&rctx);
1325: .ve
1327: Level: intermediate
1329: .seealso: [](ch_vectors), `Vec`, `VecSet()`, `VecSetValues()`, `PetscRandomCreate()`, `PetscRandomDestroy()`
1330: @*/
1331: PetscErrorCode VecSetRandom(Vec x, PetscRandom rctx)
1332: {
1333: PetscRandom randObj = NULL;
1335: PetscFunctionBegin;
1339: VecCheckAssembled(x);
1340: PetscCall(VecSetErrorIfLocked(x, 1));
1342: if (!rctx) {
1343: PetscCall(PetscRandomCreate(PetscObjectComm((PetscObject)x), &randObj));
1344: PetscCall(PetscRandomSetType(randObj, x->defaultrandtype));
1345: PetscCall(PetscRandomSetFromOptions(randObj));
1346: rctx = randObj;
1347: }
1349: PetscCall(PetscLogEventBegin(VEC_SetRandom, x, rctx, 0, 0));
1350: PetscUseTypeMethod(x, setrandom, rctx);
1351: PetscCall(PetscLogEventEnd(VEC_SetRandom, x, rctx, 0, 0));
1353: PetscCall(PetscRandomDestroy(&randObj));
1354: PetscCall(PetscObjectStateIncrease((PetscObject)x));
1355: PetscFunctionReturn(PETSC_SUCCESS);
1356: }
1358: /*@
1359: VecZeroEntries - puts a `0.0` in each element of a vector
1361: Logically Collective
1363: Input Parameter:
1364: . vec - The vector
1366: Level: beginner
1368: Note:
1369: If the norm of the vector is known to be zero then this skips the unneeded zeroing process
1371: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecSetOptionsPrefix()`, `VecSet()`, `VecSetValues()`
1372: @*/
1373: PetscErrorCode VecZeroEntries(Vec vec)
1374: {
1375: PetscFunctionBegin;
1376: PetscCall(VecSet(vec, 0));
1377: PetscFunctionReturn(PETSC_SUCCESS);
1378: }
1380: /*
1381: VecSetTypeFromOptions_Private - Sets the type of vector from user options. Defaults to a PETSc sequential vector on one
1382: processor and a PETSc MPI vector on more than one processor.
1384: Collective
1386: Input Parameter:
1387: . vec - The vector
1389: Level: intermediate
1391: .seealso: [](ch_vectors), `Vec`, `VecSetFromOptions()`, `VecSetType()`
1392: */
1393: static PetscErrorCode VecSetTypeFromOptions_Private(Vec vec, PetscOptionItems PetscOptionsObject)
1394: {
1395: PetscBool opt;
1396: VecType defaultType;
1397: char typeName[256];
1398: PetscMPIInt size;
1400: PetscFunctionBegin;
1401: if (((PetscObject)vec)->type_name) defaultType = ((PetscObject)vec)->type_name;
1402: else {
1403: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)vec), &size));
1404: if (size > 1) defaultType = VECMPI;
1405: else defaultType = VECSEQ;
1406: }
1408: PetscCall(VecRegisterAll());
1409: PetscCall(PetscOptionsFList("-vec_type", "Vector type", "VecSetType", VecList, defaultType, typeName, 256, &opt));
1410: if (opt) {
1411: PetscCall(VecSetType(vec, typeName));
1412: } else {
1413: PetscCall(VecSetType(vec, defaultType));
1414: }
1415: PetscFunctionReturn(PETSC_SUCCESS);
1416: }
1418: /*@
1419: VecSetFromOptions - Configures the vector from the options database.
1421: Collective
1423: Input Parameter:
1424: . vec - The vector
1426: Level: beginner
1428: Notes:
1429: To see all options, run your program with the -help option.
1431: Must be called after `VecCreate()` but before the vector is used.
1433: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecSetOptionsPrefix()`
1434: @*/
1435: PetscErrorCode VecSetFromOptions(Vec vec)
1436: {
1437: PetscBool flg;
1438: PetscInt bind_below = 0;
1440: PetscFunctionBegin;
1443: PetscObjectOptionsBegin((PetscObject)vec);
1444: /* Handle vector type options */
1445: PetscCall(VecSetTypeFromOptions_Private(vec, PetscOptionsObject));
1447: /* Handle specific vector options */
1448: PetscTryTypeMethod(vec, setfromoptions, PetscOptionsObject);
1450: /* Bind to CPU if below a user-specified size threshold.
1451: * This perhaps belongs in the options for the GPU Vec types, but VecBindToCPU() does nothing when called on non-GPU types,
1452: * and putting it here makes is more maintainable than duplicating this for all. */
1453: PetscCall(PetscOptionsInt("-vec_bind_below", "Set the size threshold (in local entries) below which the Vec is bound to the CPU", "VecBindToCPU", bind_below, &bind_below, &flg));
1454: if (flg && vec->map->n < bind_below) PetscCall(VecBindToCPU(vec, PETSC_TRUE));
1456: /* process any options handlers added with PetscObjectAddOptionsHandler() */
1457: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)vec, PetscOptionsObject));
1458: PetscOptionsEnd();
1459: PetscFunctionReturn(PETSC_SUCCESS);
1460: }
1462: /*@
1463: VecSetSizes - Sets the local and global sizes, and checks to determine compatibility of the sizes
1465: Collective
1467: Input Parameters:
1468: + v - the vector
1469: . n - the local size (or `PETSC_DECIDE` to have it set)
1470: - N - the global size (or `PETSC_DETERMINE` to have it set)
1472: Level: intermediate
1474: Notes:
1475: `N` cannot be `PETSC_DETERMINE` if `n` is `PETSC_DECIDE`
1477: If one processor calls this with `N` of `PETSC_DETERMINE` then all processors must, otherwise the program will hang.
1479: If `n` is not `PETSC_DECIDE`, then the value determines the `PetscLayout` of the vector and the ranges returned by
1480: `VecGetOwnershipRange()` and `VecGetOwnershipRanges()`
1482: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecCreateSeq()`, `VecCreateMPI()`, `VecGetSize()`, `PetscSplitOwnership()`, `PetscLayout`,
1483: `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`, `MatSetSizes()`
1484: @*/
1485: PetscErrorCode VecSetSizes(Vec v, PetscInt n, PetscInt N)
1486: {
1487: PetscFunctionBegin;
1489: if (N >= 0) {
1491: PetscCheck(n <= N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local size %" PetscInt_FMT " cannot be larger than global size %" PetscInt_FMT, n, N);
1492: }
1493: PetscCheck(!(v->map->n >= 0 || v->map->N >= 0) || !(v->map->n != n || v->map->N != N), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset vector sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", n, N,
1494: v->map->n, v->map->N);
1495: v->map->n = n;
1496: v->map->N = N;
1497: PetscTryTypeMethod(v, create);
1498: v->ops->create = NULL;
1499: PetscFunctionReturn(PETSC_SUCCESS);
1500: }
1502: /*@
1503: VecSetBlockSize - Sets the block size for future calls to `VecSetValuesBlocked()`
1504: and `VecSetValuesBlockedLocal()`.
1506: Logically Collective
1508: Input Parameters:
1509: + v - the vector
1510: - bs - the blocksize
1512: Level: advanced
1514: Note:
1515: All vectors obtained by `VecDuplicate()` inherit the same blocksize.
1517: Vectors obtained with `DMCreateGlobalVector()` and `DMCreateLocalVector()` generally already have a blocksize set based on the state of the `DM`
1519: .seealso: [](ch_vectors), `Vec`, `VecSetValuesBlocked()`, `VecSetLocalToGlobalMapping()`, `VecGetBlockSize()`
1520: @*/
1521: PetscErrorCode VecSetBlockSize(Vec v, PetscInt bs)
1522: {
1523: PetscFunctionBegin;
1526: PetscCall(PetscLayoutSetBlockSize(v->map, bs));
1527: v->bstash.bs = bs; /* use the same blocksize for the vec's block-stash */
1528: PetscFunctionReturn(PETSC_SUCCESS);
1529: }
1531: /*@
1532: VecGetBlockSize - Gets the blocksize for the vector, i.e. what is used for `VecSetValuesBlocked()`
1533: and `VecSetValuesBlockedLocal()`.
1535: Not Collective
1537: Input Parameter:
1538: . v - the vector
1540: Output Parameter:
1541: . bs - the blocksize
1543: Level: advanced
1545: Note:
1546: All vectors obtained by `VecDuplicate()` inherit the same blocksize.
1548: .seealso: [](ch_vectors), `Vec`, `VecSetValuesBlocked()`, `VecSetLocalToGlobalMapping()`, `VecSetBlockSize()`
1549: @*/
1550: PetscErrorCode VecGetBlockSize(Vec v, PetscInt *bs)
1551: {
1552: PetscFunctionBegin;
1554: PetscAssertPointer(bs, 2);
1555: PetscCall(PetscLayoutGetBlockSize(v->map, bs));
1556: PetscFunctionReturn(PETSC_SUCCESS);
1557: }
1559: /*@
1560: VecSetOptionsPrefix - Sets the prefix used for searching for all
1561: `Vec` options in the database.
1563: Logically Collective
1565: Input Parameters:
1566: + v - the `Vec` context
1567: - prefix - the prefix to prepend to all option names
1569: Level: advanced
1571: Note:
1572: A hyphen (-) must NOT be given at the beginning of the prefix name.
1573: The first character of all runtime options is AUTOMATICALLY the hyphen.
1575: .seealso: [](ch_vectors), `Vec`, `VecSetFromOptions()`
1576: @*/
1577: PetscErrorCode VecSetOptionsPrefix(Vec v, const char prefix[])
1578: {
1579: PetscFunctionBegin;
1581: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)v, prefix));
1582: PetscFunctionReturn(PETSC_SUCCESS);
1583: }
1585: /*@
1586: VecAppendOptionsPrefix - Appends to the prefix used for searching for all
1587: `Vec` options in the database.
1589: Logically Collective
1591: Input Parameters:
1592: + v - the `Vec` context
1593: - prefix - the prefix to prepend to all option names
1595: Level: advanced
1597: Note:
1598: A hyphen (-) must NOT be given at the beginning of the prefix name.
1599: The first character of all runtime options is AUTOMATICALLY the hyphen.
1601: .seealso: [](ch_vectors), `Vec`, `VecGetOptionsPrefix()`
1602: @*/
1603: PetscErrorCode VecAppendOptionsPrefix(Vec v, const char prefix[])
1604: {
1605: PetscFunctionBegin;
1607: PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)v, prefix));
1608: PetscFunctionReturn(PETSC_SUCCESS);
1609: }
1611: /*@
1612: VecGetOptionsPrefix - Sets the prefix used for searching for all
1613: Vec options in the database.
1615: Not Collective
1617: Input Parameter:
1618: . v - the `Vec` context
1620: Output Parameter:
1621: . prefix - pointer to the prefix string used
1623: Level: advanced
1625: .seealso: [](ch_vectors), `Vec`, `VecAppendOptionsPrefix()`
1626: @*/
1627: PetscErrorCode VecGetOptionsPrefix(Vec v, const char *prefix[])
1628: {
1629: PetscFunctionBegin;
1631: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)v, prefix));
1632: PetscFunctionReturn(PETSC_SUCCESS);
1633: }
1635: /*@C
1636: VecGetState - Gets the state of a `Vec`.
1638: Not Collective
1640: Input Parameter:
1641: . v - the `Vec` context
1643: Output Parameter:
1644: . state - the object state
1646: Level: advanced
1648: Note:
1649: Object state is an integer which gets increased every time
1650: the object is changed. By saving and later querying the object state
1651: one can determine whether information about the object is still current.
1653: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `PetscObjectStateGet()`
1654: @*/
1655: PetscErrorCode VecGetState(Vec v, PetscObjectState *state)
1656: {
1657: PetscFunctionBegin;
1659: PetscAssertPointer(state, 2);
1660: PetscCall(PetscObjectStateGet((PetscObject)v, state));
1661: PetscFunctionReturn(PETSC_SUCCESS);
1662: }
1664: /*@
1665: VecSetUp - Sets up the internal vector data structures for the later use.
1667: Collective
1669: Input Parameter:
1670: . v - the `Vec` context
1672: Level: advanced
1674: Notes:
1675: For basic use of the `Vec` classes the user need not explicitly call
1676: `VecSetUp()`, since these actions will happen automatically.
1678: .seealso: [](ch_vectors), `Vec`, `VecCreate()`, `VecDestroy()`
1679: @*/
1680: PetscErrorCode VecSetUp(Vec v)
1681: {
1682: PetscMPIInt size;
1684: PetscFunctionBegin;
1686: PetscCheck(v->map->n >= 0 || v->map->N >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Sizes not set");
1687: if (!((PetscObject)v)->type_name) {
1688: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)v), &size));
1689: if (size == 1) {
1690: PetscCall(VecSetType(v, VECSEQ));
1691: } else {
1692: PetscCall(VecSetType(v, VECMPI));
1693: }
1694: }
1695: PetscFunctionReturn(PETSC_SUCCESS);
1696: }
1698: /*
1699: These currently expose the PetscScalar/PetscReal in updating the
1700: cached norm. If we push those down into the implementation these
1701: will become independent of PetscScalar/PetscReal
1702: */
1704: PetscErrorCode VecCopyAsync_Private(Vec x, Vec y, PetscDeviceContext dctx)
1705: {
1706: PetscBool flgs[4];
1707: PetscReal norms[4] = {0.0, 0.0, 0.0, 0.0};
1709: PetscFunctionBegin;
1714: if (x == y) PetscFunctionReturn(PETSC_SUCCESS);
1715: VecCheckSameLocalSize(x, 1, y, 2);
1716: VecCheckAssembled(x);
1717: PetscCall(VecSetErrorIfLocked(y, 2));
1719: #if !defined(PETSC_USE_MIXED_PRECISION)
1720: for (PetscInt i = 0; i < 4; i++) PetscCall(PetscObjectComposedDataGetReal((PetscObject)x, NormIds[i], norms[i], flgs[i]));
1721: #endif
1723: PetscCall(PetscLogEventBegin(VEC_Copy, x, y, 0, 0));
1724: #if defined(PETSC_USE_MIXED_PRECISION)
1725: extern PetscErrorCode VecGetArray(Vec, double **);
1726: extern PetscErrorCode VecRestoreArray(Vec, double **);
1727: extern PetscErrorCode VecGetArray(Vec, float **);
1728: extern PetscErrorCode VecRestoreArray(Vec, float **);
1729: extern PetscErrorCode VecGetArrayRead(Vec, const double **);
1730: extern PetscErrorCode VecRestoreArrayRead(Vec, const double **);
1731: extern PetscErrorCode VecGetArrayRead(Vec, const float **);
1732: extern PetscErrorCode VecRestoreArrayRead(Vec, const float **);
1733: if ((((PetscObject)x)->precision == PETSC_PRECISION_SINGLE) && (((PetscObject)y)->precision == PETSC_PRECISION_DOUBLE)) {
1734: PetscInt i, n;
1735: const float *xx;
1736: double *yy;
1737: PetscCall(VecGetArrayRead(x, &xx));
1738: PetscCall(VecGetArray(y, &yy));
1739: PetscCall(VecGetLocalSize(x, &n));
1740: for (i = 0; i < n; i++) yy[i] = xx[i];
1741: PetscCall(VecRestoreArrayRead(x, &xx));
1742: PetscCall(VecRestoreArray(y, &yy));
1743: } else if ((((PetscObject)x)->precision == PETSC_PRECISION_DOUBLE) && (((PetscObject)y)->precision == PETSC_PRECISION_SINGLE)) {
1744: PetscInt i, n;
1745: float *yy;
1746: const double *xx;
1747: PetscCall(VecGetArrayRead(x, &xx));
1748: PetscCall(VecGetArray(y, &yy));
1749: PetscCall(VecGetLocalSize(x, &n));
1750: for (i = 0; i < n; i++) yy[i] = (float)xx[i];
1751: PetscCall(VecRestoreArrayRead(x, &xx));
1752: PetscCall(VecRestoreArray(y, &yy));
1753: } else PetscUseTypeMethod(x, copy, y);
1754: #else
1755: VecMethodDispatch(x, dctx, VecAsyncFnName(Copy), copy, (Vec, Vec, PetscDeviceContext), y);
1756: #endif
1758: PetscCall(PetscObjectStateIncrease((PetscObject)y));
1759: #if !defined(PETSC_USE_MIXED_PRECISION)
1760: for (PetscInt i = 0; i < 4; i++) {
1761: if (flgs[i]) PetscCall(PetscObjectComposedDataSetReal((PetscObject)y, NormIds[i], norms[i]));
1762: }
1763: #endif
1765: PetscCall(PetscLogEventEnd(VEC_Copy, x, y, 0, 0));
1766: PetscFunctionReturn(PETSC_SUCCESS);
1767: }
1769: /*@
1770: VecCopy - Copies a vector `y = x`
1772: Logically Collective
1774: Input Parameter:
1775: . x - the vector
1777: Output Parameter:
1778: . y - the copy
1780: Level: beginner
1782: Note:
1783: For default parallel PETSc vectors, both `x` and `y` must be distributed in
1784: the same manner; local copies are done.
1786: Developer Notes:
1787: `PetscCheckSameTypeAndComm`(x,1,y,2) is not used on these vectors because we allow one
1788: of the vectors to be sequential and one to be parallel so long as both have the same
1789: local sizes. This is used in some internal functions in PETSc.
1791: .seealso: [](ch_vectors), `Vec`, `VecDuplicate()`
1792: @*/
1793: PetscErrorCode VecCopy(Vec x, Vec y)
1794: {
1795: PetscFunctionBegin;
1796: PetscCall(VecCopyAsync_Private(x, y, NULL));
1797: PetscFunctionReturn(PETSC_SUCCESS);
1798: }
1800: PetscErrorCode VecSwapAsync_Private(Vec x, Vec y, PetscDeviceContext dctx)
1801: {
1802: PetscReal normxs[4], normys[4];
1803: PetscBool flgxs[4], flgys[4];
1805: PetscFunctionBegin;
1810: PetscCheckSameTypeAndComm(x, 1, y, 2);
1811: VecCheckSameSize(x, 1, y, 2);
1812: VecCheckAssembled(x);
1813: VecCheckAssembled(y);
1814: PetscCall(VecSetErrorIfLocked(x, 1));
1815: PetscCall(VecSetErrorIfLocked(y, 2));
1817: for (PetscInt i = 0; i < 4; i++) {
1818: PetscCall(PetscObjectComposedDataGetReal((PetscObject)x, NormIds[i], normxs[i], flgxs[i]));
1819: PetscCall(PetscObjectComposedDataGetReal((PetscObject)y, NormIds[i], normys[i], flgys[i]));
1820: }
1822: PetscCall(PetscLogEventBegin(VEC_Swap, x, y, 0, 0));
1823: VecMethodDispatch(x, dctx, VecAsyncFnName(Swap), swap, (Vec, Vec, PetscDeviceContext), y);
1824: PetscCall(PetscLogEventEnd(VEC_Swap, x, y, 0, 0));
1826: PetscCall(PetscObjectStateIncrease((PetscObject)x));
1827: PetscCall(PetscObjectStateIncrease((PetscObject)y));
1828: for (PetscInt i = 0; i < 4; i++) {
1829: if (flgxs[i]) PetscCall(PetscObjectComposedDataSetReal((PetscObject)y, NormIds[i], normxs[i]));
1830: if (flgys[i]) PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[i], normys[i]));
1831: }
1832: PetscFunctionReturn(PETSC_SUCCESS);
1833: }
1834: /*@
1835: VecSwap - Swaps the values between two vectors, `x` and `y`.
1837: Logically Collective
1839: Input Parameters:
1840: + x - the first vector
1841: - y - the second vector
1843: Level: advanced
1845: .seealso: [](ch_vectors), `Vec`, `VecSet()`
1846: @*/
1847: PetscErrorCode VecSwap(Vec x, Vec y)
1848: {
1849: PetscFunctionBegin;
1850: PetscCall(VecSwapAsync_Private(x, y, NULL));
1851: PetscFunctionReturn(PETSC_SUCCESS);
1852: }
1854: /*@
1855: VecStashViewFromOptions - Processes command line options to determine if/how a `VecStash` object is to be viewed.
1857: Collective
1859: Input Parameters:
1860: + obj - the `Vec` containing a stash
1861: . bobj - optional other object that provides the prefix
1862: - optionname - option to activate viewing
1864: Level: intermediate
1866: Developer Notes:
1867: This cannot use `PetscObjectViewFromOptions()` because it takes a `Vec` as an argument but does not use `VecView()`
1869: .seealso: [](ch_vectors), `Vec`, `VecStashSetInitialSize()`
1870: @*/
1871: PetscErrorCode VecStashViewFromOptions(Vec obj, PetscObject bobj, const char optionname[])
1872: {
1873: PetscViewer viewer;
1874: PetscBool flg;
1875: PetscViewerFormat format;
1876: char *prefix;
1878: PetscFunctionBegin;
1879: prefix = bobj ? bobj->prefix : ((PetscObject)obj)->prefix;
1880: PetscCall(PetscOptionsCreateViewer(PetscObjectComm((PetscObject)obj), ((PetscObject)obj)->options, prefix, optionname, &viewer, &format, &flg));
1881: if (flg) {
1882: PetscCall(PetscViewerPushFormat(viewer, format));
1883: PetscCall(VecStashView(obj, viewer));
1884: PetscCall(PetscViewerPopFormat(viewer));
1885: PetscCall(PetscViewerDestroy(&viewer));
1886: }
1887: PetscFunctionReturn(PETSC_SUCCESS);
1888: }
1890: /*@
1891: VecStashView - Prints the entries in the vector stash and block stash.
1893: Collective
1895: Input Parameters:
1896: + v - the vector
1897: - viewer - the viewer
1899: Level: advanced
1901: .seealso: [](ch_vectors), `Vec`, `VecSetBlockSize()`, `VecSetValues()`, `VecSetValuesBlocked()`
1902: @*/
1903: PetscErrorCode VecStashView(Vec v, PetscViewer viewer)
1904: {
1905: PetscMPIInt rank;
1906: PetscInt i, j;
1907: PetscBool match;
1908: VecStash *s;
1909: PetscScalar val;
1911: PetscFunctionBegin;
1914: PetscCheckSameComm(v, 1, viewer, 2);
1916: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &match));
1917: PetscCheck(match, PETSC_COMM_SELF, PETSC_ERR_SUP, "Stash viewer only works with ASCII viewer not %s", ((PetscObject)v)->type_name);
1918: PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1919: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)v), &rank));
1920: s = &v->bstash;
1922: /* print block stash */
1923: PetscCall(PetscViewerASCIIPushSynchronized(viewer));
1924: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d]Vector Block stash size %" PetscInt_FMT " block size %" PetscInt_FMT "\n", rank, s->n, s->bs));
1925: for (i = 0; i < s->n; i++) {
1926: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Element %" PetscInt_FMT " ", rank, s->idx[i]));
1927: for (j = 0; j < s->bs; j++) {
1928: val = s->array[i * s->bs + j];
1929: #if defined(PETSC_USE_COMPLEX)
1930: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "(%18.16e %18.16e) ", (double)PetscRealPart(val), (double)PetscImaginaryPart(val)));
1931: #else
1932: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "%18.16e ", (double)val));
1933: #endif
1934: }
1935: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "\n"));
1936: }
1937: PetscCall(PetscViewerFlush(viewer));
1939: s = &v->stash;
1941: /* print basic stash */
1942: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d]Vector stash size %" PetscInt_FMT "\n", rank, s->n));
1943: for (i = 0; i < s->n; i++) {
1944: val = s->array[i];
1945: #if defined(PETSC_USE_COMPLEX)
1946: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Element %" PetscInt_FMT " (%18.16e %18.16e) ", rank, s->idx[i], (double)PetscRealPart(val), (double)PetscImaginaryPart(val)));
1947: #else
1948: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Element %" PetscInt_FMT " %18.16e\n", rank, s->idx[i], (double)val));
1949: #endif
1950: }
1951: PetscCall(PetscViewerFlush(viewer));
1952: PetscCall(PetscViewerASCIIPopSynchronized(viewer));
1953: PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1954: PetscFunctionReturn(PETSC_SUCCESS);
1955: }
1957: PetscErrorCode PetscOptionsGetVec(PetscOptions options, const char prefix[], const char key[], Vec v, PetscBool *set)
1958: {
1959: PetscInt i, N, rstart, rend;
1960: PetscScalar *xx;
1961: PetscReal *xreal;
1962: PetscBool iset;
1964: PetscFunctionBegin;
1965: PetscCall(VecGetOwnershipRange(v, &rstart, &rend));
1966: PetscCall(VecGetSize(v, &N));
1967: PetscCall(PetscCalloc1(N, &xreal));
1968: PetscCall(PetscOptionsGetRealArray(options, prefix, key, xreal, &N, &iset));
1969: if (iset) {
1970: PetscCall(VecGetArray(v, &xx));
1971: for (i = rstart; i < rend; i++) xx[i - rstart] = xreal[i];
1972: PetscCall(VecRestoreArray(v, &xx));
1973: }
1974: PetscCall(PetscFree(xreal));
1975: if (set) *set = iset;
1976: PetscFunctionReturn(PETSC_SUCCESS);
1977: }
1979: /*@
1980: VecGetLayout - get `PetscLayout` describing a vector layout
1982: Not Collective
1984: Input Parameter:
1985: . x - the vector
1987: Output Parameter:
1988: . map - the layout
1990: Level: developer
1992: Note:
1993: The layout determines what vector elements are contained on each MPI process
1995: .seealso: [](ch_vectors), `PetscLayout`, `Vec`, `VecGetSize()`, `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`
1996: @*/
1997: PetscErrorCode VecGetLayout(Vec x, PetscLayout *map)
1998: {
1999: PetscFunctionBegin;
2001: PetscAssertPointer(map, 2);
2002: *map = x->map;
2003: PetscFunctionReturn(PETSC_SUCCESS);
2004: }
2006: /*@
2007: VecSetLayout - set `PetscLayout` describing vector layout
2009: Not Collective
2011: Input Parameters:
2012: + x - the vector
2013: - map - the layout
2015: Level: developer
2017: Note:
2018: It is normally only valid to replace the layout with a layout known to be equivalent.
2020: .seealso: [](ch_vectors), `Vec`, `PetscLayout`, `VecGetLayout()`, `VecGetSize()`, `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`
2021: @*/
2022: PetscErrorCode VecSetLayout(Vec x, PetscLayout map)
2023: {
2024: PetscFunctionBegin;
2026: PetscCall(PetscLayoutReference(map, &x->map));
2027: PetscFunctionReturn(PETSC_SUCCESS);
2028: }
2030: /*@
2031: VecFlag - set infinity into the local part of the vector on any subset of MPI processes
2033: Logically Collective
2035: Input Parameters:
2036: + xin - the vector, can be `NULL` but only if on all processes
2037: - flg - indicates if this processes portion of the vector should be set to infinity
2039: Level: developer
2041: Note:
2042: This removes the values from the vector norm cache for all processes by calling `PetscObjectIncrease()`.
2044: This is used for any subset of MPI processes to indicate an failure in a solver, after the next use of `VecNorm()` if
2045: `KSPCheckNorm()` detects an infinity and at least one of the MPI processes has a not converged reason then the `KSP`
2046: object collectively is labeled as not converged.
2048: .seealso: [](ch_vectors), `Vec`, `PetscLayout`, `VecGetLayout()`, `VecGetSize()`, `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`
2049: @*/
2050: PetscErrorCode VecFlag(Vec xin, PetscInt flg)
2051: {
2052: // MSVC gives "divide by zero" error at compile time - so declare as volatile to skip this check.
2053: volatile PetscReal one = 1.0, zero = 0.0;
2054: PetscScalar inf;
2056: PetscFunctionBegin;
2057: if (!xin) PetscFunctionReturn(PETSC_SUCCESS);
2059: PetscCall(PetscObjectStateIncrease((PetscObject)xin));
2060: if (flg) {
2061: PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
2062: inf = one / zero;
2063: PetscCall(PetscFPTrapPop());
2064: if (xin->ops->set) {
2065: PetscUseTypeMethod(xin, set, inf);
2066: } else {
2067: PetscInt n;
2068: PetscScalar *xx;
2070: PetscCall(VecGetLocalSize(xin, &n));
2071: PetscCall(VecGetArrayWrite(xin, &xx));
2072: for (PetscInt i = 0; i < n; ++i) xx[i] = inf;
2073: PetscCall(VecRestoreArrayWrite(xin, &xx));
2074: }
2075: }
2076: PetscFunctionReturn(PETSC_SUCCESS);
2077: }
2079: /*@
2080: VecSetInf - set infinity into the local part of the vector
2082: Not Collective
2084: Input Parameters:
2085: . xin - the vector
2087: Level: developer
2089: Note:
2090: Deprecated, see `VecFlag()`
2091: This is used for any subset of MPI processes to indicate an failure in a solver, after the next use of `VecNorm()` if
2092: `KSPCheckNorm()` detects an infinity and at least one of the MPI processes has a not converged reason then the `KSP`
2093: object collectively is labeled as not converged.
2095: This cannot be called if `xin` has a cached norm available
2097: .seealso: [](ch_vectors), `VecFlag()`, `Vec`, `PetscLayout`, `VecGetLayout()`, `VecGetSize()`, `VecGetOwnershipRange()`, `VecGetOwnershipRanges()`
2098: @*/
2099: PetscErrorCode VecSetInf(Vec xin)
2100: {
2101: // MSVC gives "divide by zero" error at compile time - so declare as volatile to skip this check.
2102: volatile PetscReal one = 1.0, zero = 0.0;
2103: PetscScalar inf;
2104: PetscBool flg;
2106: PetscFunctionBegin;
2107: PetscCall(VecNormAvailable(xin, NORM_2, &flg, NULL));
2108: PetscCheck(!flg, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cannot call VecSetInf() if the vector has a cached norm");
2109: PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
2110: inf = one / zero;
2111: PetscCall(PetscFPTrapPop());
2112: if (xin->ops->set) {
2113: PetscUseTypeMethod(xin, set, inf);
2114: } else {
2115: PetscInt n;
2116: PetscScalar *xx;
2118: PetscCall(VecGetLocalSize(xin, &n));
2119: PetscCall(VecGetArrayWrite(xin, &xx));
2120: for (PetscInt i = 0; i < n; ++i) xx[i] = inf;
2121: PetscCall(VecRestoreArrayWrite(xin, &xx));
2122: }
2123: PetscFunctionReturn(PETSC_SUCCESS);
2124: }
2126: /*@
2127: VecBindToCPU - marks a vector to temporarily stay on the CPU and perform computations on the CPU
2129: Logically collective
2131: Input Parameters:
2132: + v - the vector
2133: - flg - bind to the CPU if value of `PETSC_TRUE`
2135: Level: intermediate
2137: .seealso: [](ch_vectors), `Vec`, `VecBoundToCPU()`
2138: @*/
2139: PetscErrorCode VecBindToCPU(Vec v, PetscBool flg)
2140: {
2141: PetscFunctionBegin;
2144: #if defined(PETSC_HAVE_DEVICE)
2145: if (v->boundtocpu == flg) PetscFunctionReturn(PETSC_SUCCESS);
2146: v->boundtocpu = flg;
2147: PetscTryTypeMethod(v, bindtocpu, flg);
2148: #endif
2149: PetscFunctionReturn(PETSC_SUCCESS);
2150: }
2152: /*@
2153: VecBoundToCPU - query if a vector is bound to the CPU
2155: Not collective
2157: Input Parameter:
2158: . v - the vector
2160: Output Parameter:
2161: . flg - the logical flag
2163: Level: intermediate
2165: .seealso: [](ch_vectors), `Vec`, `VecBindToCPU()`
2166: @*/
2167: PetscErrorCode VecBoundToCPU(Vec v, PetscBool *flg)
2168: {
2169: PetscFunctionBegin;
2171: PetscAssertPointer(flg, 2);
2172: #if defined(PETSC_HAVE_DEVICE)
2173: *flg = v->boundtocpu;
2174: #else
2175: *flg = PETSC_TRUE;
2176: #endif
2177: PetscFunctionReturn(PETSC_SUCCESS);
2178: }
2180: /*@
2181: VecSetBindingPropagates - Sets whether the state of being bound to the CPU for a GPU vector type propagates to child and some other associated objects
2183: Input Parameters:
2184: + v - the vector
2185: - flg - flag indicating whether the boundtocpu flag should be propagated
2187: Level: developer
2189: Notes:
2190: If the value of flg is set to true, then `VecDuplicate()` and `VecDuplicateVecs()` will bind created vectors to GPU if the input vector is bound to the CPU.
2191: The created vectors will also have their bindingpropagates flag set to true.
2193: Developer Notes:
2194: If a `DMDA` has the `-dm_bind_below option` set to true, then vectors created by `DMCreateGlobalVector()` will have `VecSetBindingPropagates()` called on them to
2195: set their bindingpropagates flag to true.
2197: .seealso: [](ch_vectors), `Vec`, `MatSetBindingPropagates()`, `VecGetBindingPropagates()`
2198: @*/
2199: PetscErrorCode VecSetBindingPropagates(Vec v, PetscBool flg)
2200: {
2201: PetscFunctionBegin;
2203: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2204: v->bindingpropagates = flg;
2205: #endif
2206: PetscFunctionReturn(PETSC_SUCCESS);
2207: }
2209: /*@
2210: VecGetBindingPropagates - Gets whether the state of being bound to the CPU for a GPU vector type propagates to child and some other associated objects
2212: Input Parameter:
2213: . v - the vector
2215: Output Parameter:
2216: . flg - flag indicating whether the boundtocpu flag will be propagated
2218: Level: developer
2220: .seealso: [](ch_vectors), `Vec`, `VecSetBindingPropagates()`
2221: @*/
2222: PetscErrorCode VecGetBindingPropagates(Vec v, PetscBool *flg)
2223: {
2224: PetscFunctionBegin;
2226: PetscAssertPointer(flg, 2);
2227: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2228: *flg = v->bindingpropagates;
2229: #else
2230: *flg = PETSC_FALSE;
2231: #endif
2232: PetscFunctionReturn(PETSC_SUCCESS);
2233: }
2235: /*@C
2236: VecSetPinnedMemoryMin - Set the minimum data size for which pinned memory will be used for host (CPU) allocations.
2238: Logically Collective
2240: Input Parameters:
2241: + v - the vector
2242: - mbytes - minimum data size in bytes
2244: Options Database Key:
2245: . -vec_pinned_memory_min <size> - minimum size (in bytes) for an allocation to use pinned memory on host.
2247: Level: developer
2249: Note:
2250: Specifying -1 ensures that pinned memory will never be used.
2252: .seealso: [](ch_vectors), `Vec`, `VecGetPinnedMemoryMin()`
2253: @*/
2254: PetscErrorCode VecSetPinnedMemoryMin(Vec v, size_t mbytes)
2255: {
2256: PetscFunctionBegin;
2258: #if PetscDefined(HAVE_DEVICE)
2259: v->minimum_bytes_pinned_memory = mbytes;
2260: #endif
2261: PetscFunctionReturn(PETSC_SUCCESS);
2262: }
2264: /*@C
2265: VecGetPinnedMemoryMin - Get the minimum data size for which pinned memory will be used for host (CPU) allocations.
2267: Logically Collective
2269: Input Parameter:
2270: . v - the vector
2272: Output Parameter:
2273: . mbytes - minimum data size in bytes
2275: Level: developer
2277: .seealso: [](ch_vectors), `Vec`, `VecSetPinnedMemoryMin()`
2278: @*/
2279: PetscErrorCode VecGetPinnedMemoryMin(Vec v, size_t *mbytes)
2280: {
2281: PetscFunctionBegin;
2283: PetscAssertPointer(mbytes, 2);
2284: #if PetscDefined(HAVE_DEVICE)
2285: *mbytes = v->minimum_bytes_pinned_memory;
2286: #endif
2287: PetscFunctionReturn(PETSC_SUCCESS);
2288: }
2290: /*@
2291: VecGetOffloadMask - Get the offload mask of a `Vec`
2293: Not Collective
2295: Input Parameter:
2296: . v - the vector
2298: Output Parameter:
2299: . mask - corresponding `PetscOffloadMask` enum value.
2301: Level: intermediate
2303: .seealso: [](ch_vectors), `Vec`, `VecCreateSeqCUDA()`, `VecCreateSeqViennaCL()`, `VecGetArray()`, `VecGetType()`
2304: @*/
2305: PetscErrorCode VecGetOffloadMask(Vec v, PetscOffloadMask *mask)
2306: {
2307: PetscFunctionBegin;
2309: PetscAssertPointer(mask, 2);
2310: *mask = v->offloadmask;
2311: PetscFunctionReturn(PETSC_SUCCESS);
2312: }
2314: #if !defined(PETSC_HAVE_VIENNACL)
2315: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLContext(Vec v, PETSC_UINTPTR_T *ctx)
2316: {
2317: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_context");
2318: }
2320: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLQueue(Vec v, PETSC_UINTPTR_T *queue)
2321: {
2322: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_command_queue");
2323: }
2325: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLMem(Vec v, PETSC_UINTPTR_T *queue)
2326: {
2327: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_mem");
2328: }
2330: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLMemRead(Vec v, PETSC_UINTPTR_T *queue)
2331: {
2332: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_mem");
2333: }
2335: PETSC_EXTERN PetscErrorCode VecViennaCLGetCLMemWrite(Vec v, PETSC_UINTPTR_T *queue)
2336: {
2337: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to get a Vec's cl_mem");
2338: }
2340: PETSC_EXTERN PetscErrorCode VecViennaCLRestoreCLMemWrite(Vec v)
2341: {
2342: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "PETSc must be configured with --with-opencl to restore a Vec's cl_mem");
2343: }
2344: #endif
2346: static PetscErrorCode VecErrorWeightedNorms_Basic(Vec U, Vec Y, Vec E, NormType wnormtype, PetscReal atol, Vec vatol, PetscReal rtol, Vec vrtol, PetscReal ignore_max, PetscReal *norm, PetscInt *norm_loc, PetscReal *norma, PetscInt *norma_loc, PetscReal *normr, PetscInt *normr_loc)
2347: {
2348: const PetscScalar *u, *y;
2349: const PetscScalar *atola = NULL, *rtola = NULL, *erra = NULL;
2350: PetscInt n, n_loc = 0, na_loc = 0, nr_loc = 0;
2351: PetscReal nrm = 0, nrma = 0, nrmr = 0, err_loc[6];
2353: PetscFunctionBegin;
2354: #define SkipSmallValue(a, b, tol) \
2355: if (PetscAbsScalar(a) < tol || PetscAbsScalar(b) < tol) continue
2357: PetscCall(VecGetLocalSize(U, &n));
2358: PetscCall(VecGetArrayRead(U, &u));
2359: PetscCall(VecGetArrayRead(Y, &y));
2360: if (E) PetscCall(VecGetArrayRead(E, &erra));
2361: if (vatol) PetscCall(VecGetArrayRead(vatol, &atola));
2362: if (vrtol) PetscCall(VecGetArrayRead(vrtol, &rtola));
2363: for (PetscInt i = 0; i < n; i++) {
2364: PetscReal err, tol, tola, tolr;
2366: SkipSmallValue(y[i], u[i], ignore_max);
2367: atol = atola ? PetscRealPart(atola[i]) : atol;
2368: rtol = rtola ? PetscRealPart(rtola[i]) : rtol;
2369: err = erra ? PetscAbsScalar(erra[i]) : PetscAbsScalar(y[i] - u[i]);
2370: tola = atol;
2371: tolr = rtol * PetscMax(PetscAbsScalar(u[i]), PetscAbsScalar(y[i]));
2372: tol = tola + tolr;
2373: if (tola > 0.) {
2374: if (wnormtype == NORM_INFINITY) nrma = PetscMax(nrma, err / tola);
2375: else nrma += PetscSqr(err / tola);
2376: na_loc++;
2377: }
2378: if (tolr > 0.) {
2379: if (wnormtype == NORM_INFINITY) nrmr = PetscMax(nrmr, err / tolr);
2380: else nrmr += PetscSqr(err / tolr);
2381: nr_loc++;
2382: }
2383: if (tol > 0.) {
2384: if (wnormtype == NORM_INFINITY) nrm = PetscMax(nrm, err / tol);
2385: else nrm += PetscSqr(err / tol);
2386: n_loc++;
2387: }
2388: }
2389: if (E) PetscCall(VecRestoreArrayRead(E, &erra));
2390: if (vatol) PetscCall(VecRestoreArrayRead(vatol, &atola));
2391: if (vrtol) PetscCall(VecRestoreArrayRead(vrtol, &rtola));
2392: PetscCall(VecRestoreArrayRead(U, &u));
2393: PetscCall(VecRestoreArrayRead(Y, &y));
2394: #undef SkipSmallValue
2396: err_loc[0] = nrm;
2397: err_loc[1] = nrma;
2398: err_loc[2] = nrmr;
2399: err_loc[3] = (PetscReal)n_loc;
2400: err_loc[4] = (PetscReal)na_loc;
2401: err_loc[5] = (PetscReal)nr_loc;
2402: if (wnormtype == NORM_2) {
2403: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, err_loc, 6, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)U)));
2404: } else {
2405: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, err_loc, 3, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)U)));
2406: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, err_loc + 3, 3, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)U)));
2407: }
2408: if (wnormtype == NORM_2) {
2409: *norm = PetscSqrtReal(err_loc[0]);
2410: *norma = PetscSqrtReal(err_loc[1]);
2411: *normr = PetscSqrtReal(err_loc[2]);
2412: } else {
2413: *norm = err_loc[0];
2414: *norma = err_loc[1];
2415: *normr = err_loc[2];
2416: }
2417: *norm_loc = (PetscInt)err_loc[3];
2418: *norma_loc = (PetscInt)err_loc[4];
2419: *normr_loc = (PetscInt)err_loc[5];
2420: PetscFunctionReturn(PETSC_SUCCESS);
2421: }
2423: /*@
2424: VecErrorWeightedNorms - compute a weighted norm of the difference between two vectors
2426: Collective
2428: Input Parameters:
2429: + U - first vector to be compared
2430: . Y - second vector to be compared
2431: . E - optional third vector representing the error (if not provided, the error is ||U-Y||)
2432: . wnormtype - norm type
2433: . atol - scalar for absolute tolerance
2434: . vatol - vector representing per-entry absolute tolerances (can be ``NULL``)
2435: . rtol - scalar for relative tolerance
2436: . vrtol - vector representing per-entry relative tolerances (can be ``NULL``)
2437: - ignore_max - ignore values smaller then this value in absolute terms.
2439: Output Parameters:
2440: + norm - weighted norm
2441: . norm_loc - number of vector locations used for the weighted norm
2442: . norma - weighted norm based on the absolute tolerance
2443: . norma_loc - number of vector locations used for the absolute weighted norm
2444: . normr - weighted norm based on the relative tolerance
2445: - normr_loc - number of vector locations used for the relative weighted norm
2447: Level: developer
2449: Notes:
2450: This is primarily used for computing weighted local truncation errors in ``TS``.
2452: .seealso: [](ch_vectors), `Vec`, `NormType`, `TSErrorWeightedNorm()`, `TSErrorWeightedENorm()`
2453: @*/
2454: PetscErrorCode VecErrorWeightedNorms(Vec U, Vec Y, Vec E, NormType wnormtype, PetscReal atol, Vec vatol, PetscReal rtol, Vec vrtol, PetscReal ignore_max, PetscReal *norm, PetscInt *norm_loc, PetscReal *norma, PetscInt *norma_loc, PetscReal *normr, PetscInt *normr_loc)
2455: {
2456: PetscFunctionBegin;
2461: if (E) {
2464: }
2467: if (vatol) {
2470: }
2472: if (vrtol) {
2475: }
2477: PetscAssertPointer(norm, 10);
2478: PetscAssertPointer(norm_loc, 11);
2479: PetscAssertPointer(norma, 12);
2480: PetscAssertPointer(norma_loc, 13);
2481: PetscAssertPointer(normr, 14);
2482: PetscAssertPointer(normr_loc, 15);
2483: PetscCheck(wnormtype == NORM_2 || wnormtype == NORM_INFINITY, PetscObjectComm((PetscObject)U), PETSC_ERR_SUP, "No support for norm type %s", NormTypes[wnormtype]);
2485: /* There are potentially 5 vectors involved, some of them may happen to be of different type or bound to cpu.
2486: Here we check that they all implement the same operation and call it if so.
2487: Otherwise, we call the _Basic implementation that always works (provided VecGetArrayRead is implemented). */
2488: PetscBool sameop = (PetscBool)(U->ops->errorwnorm && U->ops->errorwnorm == Y->ops->errorwnorm);
2489: if (sameop && E) sameop = (PetscBool)(U->ops->errorwnorm == E->ops->errorwnorm);
2490: if (sameop && vatol) sameop = (PetscBool)(U->ops->errorwnorm == vatol->ops->errorwnorm);
2491: if (sameop && vrtol) sameop = (PetscBool)(U->ops->errorwnorm == vrtol->ops->errorwnorm);
2492: if (sameop) PetscUseTypeMethod(U, errorwnorm, Y, E, wnormtype, atol, vatol, rtol, vrtol, ignore_max, norm, norm_loc, norma, norma_loc, normr, normr_loc);
2493: else PetscCall(VecErrorWeightedNorms_Basic(U, Y, E, wnormtype, atol, vatol, rtol, vrtol, ignore_max, norm, norm_loc, norma, norma_loc, normr, normr_loc));
2494: PetscFunctionReturn(PETSC_SUCCESS);
2495: }