Actual source code: gcreate.c
1: #include <petsc/private/matimpl.h>
3: #include <../src/mat/impls/aij/seq/aij.h>
4: #include <../src/mat/impls/aij/mpi/mpiaij.h>
6: PetscErrorCode MatSetBlockSizes_Default(Mat mat, PetscInt rbs, PetscInt cbs)
7: {
8: PetscFunctionBegin;
9: if (!mat->preallocated) PetscFunctionReturn(PETSC_SUCCESS);
10: PetscCheck(mat->rmap->bs <= 0 || mat->rmap->bs == rbs, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Cannot change row block size %" PetscInt_FMT " to %" PetscInt_FMT, mat->rmap->bs, rbs);
11: PetscCheck(mat->cmap->bs <= 0 || mat->cmap->bs == cbs, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Cannot change column block size %" PetscInt_FMT " to %" PetscInt_FMT, mat->cmap->bs, cbs);
12: PetscFunctionReturn(PETSC_SUCCESS);
13: }
15: PetscErrorCode MatShift_Basic(Mat Y, PetscScalar a)
16: {
17: PetscInt i, start, end, oldValA = 0, oldValB = 0;
18: PetscScalar alpha = a;
19: PetscBool prevoption;
20: PetscBool isSeqAIJDerived, isMPIAIJDerived; // all classes sharing SEQAIJHEADER or MPIAIJHEADER
21: Mat A = NULL, B = NULL;
23: PetscFunctionBegin;
24: PetscCall(MatGetOption(Y, MAT_NO_OFF_PROC_ENTRIES, &prevoption));
25: PetscCall(MatSetOption(Y, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
26: PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &isSeqAIJDerived, MATSEQAIJ, MATSEQBAIJ, MATSEQSBAIJ, ""));
27: PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &isMPIAIJDerived, MATMPIAIJ, MATMPIBAIJ, MATMPISBAIJ, ""));
29: if (isSeqAIJDerived) A = Y;
30: else if (isMPIAIJDerived) {
31: Mat_MPIAIJ *mpiaij = (Mat_MPIAIJ *)Y->data;
32: A = mpiaij->A;
33: B = mpiaij->B;
34: }
36: if (A) {
37: oldValA = ((Mat_SeqAIJ *)A->data)->nonew;
38: ((Mat_SeqAIJ *)A->data)->nonew = 0; // so that new nonzero locations are allowed
39: }
40: if (B) {
41: oldValB = ((Mat_SeqAIJ *)B->data)->nonew;
42: ((Mat_SeqAIJ *)B->data)->nonew = 0;
43: }
45: PetscCall(MatGetOwnershipRange(Y, &start, &end));
46: for (i = start; i < end; i++) {
47: if (i < Y->cmap->N) PetscCall(MatSetValues(Y, 1, &i, 1, &i, &alpha, ADD_VALUES));
48: }
49: PetscCall(MatAssemblyBegin(Y, MAT_FINAL_ASSEMBLY));
50: PetscCall(MatAssemblyEnd(Y, MAT_FINAL_ASSEMBLY));
51: PetscCall(MatSetOption(Y, MAT_NO_OFF_PROC_ENTRIES, prevoption));
52: if (A) ((Mat_SeqAIJ *)A->data)->nonew = oldValA;
53: if (B) ((Mat_SeqAIJ *)B->data)->nonew = oldValB;
54: PetscFunctionReturn(PETSC_SUCCESS);
55: }
57: /*@
58: MatCreate - Creates a matrix where the type is determined
59: from either a call to `MatSetType()` or from the options database
60: with a call to `MatSetFromOptions()`.
62: Collective
64: Input Parameter:
65: . comm - MPI communicator
67: Output Parameter:
68: . A - the matrix
70: Options Database Keys:
71: + -mat_type seqaij - `MATSEQAIJ` type, uses `MatCreateSeqAIJ()`
72: . -mat_type mpiaij - `MATMPIAIJ` type, uses `MatCreateAIJ()`
73: . -mat_type seqdense - `MATSEQDENSE`, uses `MatCreateSeqDense()`
74: . -mat_type mpidense - `MATMPIDENSE` type, uses `MatCreateDense()`
75: . -mat_type seqbaij - `MATSEQBAIJ` type, uses `MatCreateSeqBAIJ()`
76: - -mat_type mpibaij - `MATMPIBAIJ` type, uses `MatCreateBAIJ()`
78: See the manpages for particular formats (e.g., `MATSEQAIJ`)
79: for additional format-specific options.
81: Level: beginner
83: Notes:
84: The default matrix type is `MATAIJ`, using the routines `MatCreateSeqAIJ()` or
85: `MatCreateAIJ()` if you do not set a type in the options database. If you never call
86: `MatSetType()` or `MatSetFromOptions()` it will generate an error when you try to use the
87: matrix.
89: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
90: `MatCreateSeqDense()`, `MatCreateDense()`,
91: `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
92: `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
93: `MatConvert()`
94: @*/
95: PetscErrorCode MatCreate(MPI_Comm comm, Mat *A)
96: {
97: Mat B;
99: PetscFunctionBegin;
100: PetscAssertPointer(A, 2);
101: PetscCall(MatInitializePackage());
103: PetscCall(PetscHeaderCreate(B, MAT_CLASSID, "Mat", "Matrix", "Mat", comm, MatDestroy, MatView));
104: PetscCall(PetscLayoutCreate(comm, &B->rmap));
105: PetscCall(PetscLayoutCreate(comm, &B->cmap));
106: PetscCall(PetscStrallocpy(VECSTANDARD, &B->defaultvectype));
107: PetscCall(PetscStrallocpy(PETSCRANDER48, &B->defaultrandtype));
109: B->symmetric = PETSC_BOOL3_UNKNOWN;
110: B->hermitian = PETSC_BOOL3_UNKNOWN;
111: B->structurally_symmetric = PETSC_BOOL3_UNKNOWN;
112: B->spd = PETSC_BOOL3_UNKNOWN;
113: B->symmetry_eternal = PETSC_FALSE;
114: B->structural_symmetry_eternal = PETSC_FALSE;
116: B->congruentlayouts = PETSC_DECIDE;
117: B->preallocated = PETSC_FALSE;
118: #if defined(PETSC_HAVE_DEVICE)
119: B->boundtocpu = PETSC_TRUE;
120: #endif
121: *A = B;
122: PetscFunctionReturn(PETSC_SUCCESS);
123: }
125: /*@
126: MatCreateFromOptions - Creates a matrix whose type is set from the options database
128: Collective
130: Input Parameters:
131: + comm - MPI communicator
132: . prefix - [optional] prefix for the options database
133: . bs - the blocksize (commonly 1)
134: . m - the local number of rows (or `PETSC_DECIDE`)
135: . n - the local number of columns (or `PETSC_DECIDE` or `PETSC_DETERMINE`)
136: . M - the global number of rows (or `PETSC_DETERMINE`)
137: - N - the global number of columns (or `PETSC_DETERMINE`)
139: Output Parameter:
140: . A - the matrix
142: Options Database Key:
143: . -mat_type - see `MatType`, for example `aij`, `aijcusparse`, `baij`, `sbaij`, dense, defaults to `aij`
145: Level: beginner
147: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
148: `MatCreateSeqDense()`, `MatCreateDense()`,
149: `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
150: `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
151: `MatConvert()`, `MatCreate()`
152: @*/
153: PetscErrorCode MatCreateFromOptions(MPI_Comm comm, const char *prefix, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, Mat *A)
154: {
155: PetscFunctionBegin;
156: PetscAssertPointer(A, 8);
157: PetscCall(MatCreate(comm, A));
158: if (prefix) PetscCall(MatSetOptionsPrefix(*A, prefix));
159: PetscCall(MatSetBlockSize(*A, bs));
160: PetscCall(MatSetSizes(*A, m, n, M, N));
161: PetscCall(MatSetFromOptions(*A));
162: PetscFunctionReturn(PETSC_SUCCESS);
163: }
165: /*@
166: MatSetErrorIfFailure - Causes `Mat` to generate an immediate error, for example a zero pivot, is detected.
168: Logically Collective
170: Input Parameters:
171: + mat - matrix obtained from `MatCreate()`
172: - flg - `PETSC_TRUE` indicates you want the error generated
174: Level: advanced
176: Note:
177: If this flag is not set then the matrix operation will note the error and continue. The error may cause a later `PC` or `KSP` error
178: or result in a `KSPConvergedReason` indicating the method did not converge.
180: .seealso: [](ch_matrices), `Mat`, `PCSetErrorIfFailure()`, `KSPConvergedReason`, `SNESConvergedReason`
181: @*/
182: PetscErrorCode MatSetErrorIfFailure(Mat mat, PetscBool flg)
183: {
184: PetscFunctionBegin;
187: mat->erroriffailure = flg;
188: PetscFunctionReturn(PETSC_SUCCESS);
189: }
191: /*@
192: MatSetSizes - Sets the local and global sizes, and checks to determine compatibility
194: Collective
196: Input Parameters:
197: + A - the matrix
198: . m - number of local rows (or `PETSC_DECIDE`)
199: . n - number of local columns (or `PETSC_DECIDE`)
200: . M - number of global rows (or `PETSC_DETERMINE`)
201: - N - number of global columns (or `PETSC_DETERMINE`)
203: Level: beginner
205: Notes:
206: `m` (`n`) and `M` (`N`) cannot be both `PETSC_DECIDE`
207: If one processor calls this with `M` (`N`) of `PETSC_DECIDE` then all processors must, otherwise the program will hang.
209: If `PETSC_DECIDE` is not used for the arguments 'm' and 'n', then the
210: user must ensure that they are chosen to be compatible with the
211: vectors. To do this, one first considers the matrix-vector product
212: 'y = A x'. The `m` that is used in the above routine must match the
213: local size of 'y'. Likewise, the `n` used must match the local size of 'x'.
215: If `m` and `n` are not `PETSC_DECIDE`, then the values determine the `PetscLayout` of the matrix and the ranges returned by
216: `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, and `MatGetOwnershipRangesColumn()`.
218: You cannot change the sizes once they have been set.
220: The sizes must be set before `MatSetUp()` or MatXXXSetPreallocation() is called.
222: .seealso: [](ch_matrices), `Mat`, `MatGetSize()`, `PetscSplitOwnership()`, `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`,
223: `MatGetOwnershipRangeColumn()`, `MatGetOwnershipRangesColumn()`, `PetscLayout`, `VecSetSizes()`
224: @*/
225: PetscErrorCode MatSetSizes(Mat A, PetscInt m, PetscInt n, PetscInt M, PetscInt N)
226: {
227: PetscFunctionBegin;
231: PetscCheck(M <= 0 || m <= M, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local row size %" PetscInt_FMT " cannot be larger than global row size %" PetscInt_FMT, m, M);
232: PetscCheck(N <= 0 || n <= N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local column size %" PetscInt_FMT " cannot be larger than global column size %" PetscInt_FMT, n, N);
233: PetscCheck((A->rmap->n < 0 || A->rmap->N < 0) || (A->rmap->n == m && (M <= 0 || A->rmap->N == M)), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset row sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", m, M,
234: A->rmap->n, A->rmap->N);
235: PetscCheck((A->cmap->n < 0 || A->cmap->N < 0) || (A->cmap->n == n && (N <= 0 || A->cmap->N == N)), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset column sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", n, N,
236: A->cmap->n, A->cmap->N);
237: A->rmap->n = m;
238: A->cmap->n = n;
239: A->rmap->N = M > -1 ? M : A->rmap->N;
240: A->cmap->N = N > -1 ? N : A->cmap->N;
241: PetscFunctionReturn(PETSC_SUCCESS);
242: }
244: /*@
245: MatSetFromOptions - Creates a matrix where the type is determined
246: from the options database.
248: Collective
250: Input Parameter:
251: . B - the matrix
253: Options Database Keys:
254: + -mat_type seqaij - `MATSEQAIJ` type, uses `MatCreateSeqAIJ()`
255: . -mat_type mpiaij - `MATMPIAIJ` type, uses `MatCreateAIJ()`
256: . -mat_type seqdense - `MATSEQDENSE` type, uses `MatCreateSeqDense()`
257: . -mat_type mpidense - `MATMPIDENSE`, uses `MatCreateDense()`
258: . -mat_type seqbaij - `MATSEQBAIJ`, uses `MatCreateSeqBAIJ()`
259: - -mat_type mpibaij - `MATMPIBAIJ`, uses `MatCreateBAIJ()`
261: See the manpages for particular formats (e.g., `MATSEQAIJ`)
262: for additional format-specific options.
264: Level: beginner
266: Notes:
267: Generates a parallel MPI matrix if the communicator has more than one processor. The default
268: matrix type is `MATAIJ`, using the routines `MatCreateSeqAIJ()` and `MatCreateAIJ()` if you
269: do not select a type in the options database.
271: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
272: `MatCreateSeqDense()`, `MatCreateDense()`,
273: `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
274: `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
275: `MatConvert()`
276: @*/
277: PetscErrorCode MatSetFromOptions(Mat B)
278: {
279: const char *deft = MATAIJ;
280: char type[256];
281: PetscBool flg, set;
282: PetscInt bind_below = 0;
284: PetscFunctionBegin;
287: PetscObjectOptionsBegin((PetscObject)B);
289: if (B->rmap->bs < 0) {
290: PetscInt newbs = -1;
291: PetscCall(PetscOptionsInt("-mat_block_size", "Set the blocksize used to store the matrix", "MatSetBlockSize", newbs, &newbs, &flg));
292: if (flg) {
293: PetscCall(PetscLayoutSetBlockSize(B->rmap, newbs));
294: PetscCall(PetscLayoutSetBlockSize(B->cmap, newbs));
295: }
296: }
298: PetscCall(PetscOptionsFList("-mat_type", "Matrix type", "MatSetType", MatList, deft, type, 256, &flg));
299: if (flg) {
300: PetscCall(MatSetType(B, type));
301: } else if (!((PetscObject)B)->type_name) {
302: PetscCall(MatSetType(B, deft));
303: }
305: PetscCall(PetscOptionsName("-mat_is_symmetric", "Checks if mat is symmetric on MatAssemblyEnd()", "MatIsSymmetric", &B->checksymmetryonassembly));
306: PetscCall(PetscOptionsReal("-mat_is_symmetric", "Checks if mat is symmetric on MatAssemblyEnd()", "MatIsSymmetric", B->checksymmetrytol, &B->checksymmetrytol, NULL));
307: PetscCall(PetscOptionsBool("-mat_null_space_test", "Checks if provided null space is correct in MatAssemblyEnd()", "MatSetNullSpaceTest", B->checknullspaceonassembly, &B->checknullspaceonassembly, NULL));
308: PetscCall(PetscOptionsBool("-mat_error_if_failure", "Generate an error if an error occurs when factoring the matrix", "MatSetErrorIfFailure", B->erroriffailure, &B->erroriffailure, NULL));
310: PetscTryTypeMethod(B, setfromoptions, PetscOptionsObject);
312: flg = PETSC_FALSE;
313: PetscCall(PetscOptionsBool("-mat_new_nonzero_location_err", "Generate an error if new nonzeros are created in the matrix nonzero structure (useful to test preallocation)", "MatSetOption", flg, &flg, &set));
314: if (set) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, flg));
315: flg = PETSC_FALSE;
316: PetscCall(PetscOptionsBool("-mat_new_nonzero_allocation_err", "Generate an error if new nonzeros are allocated in the matrix nonzero structure (useful to test preallocation)", "MatSetOption", flg, &flg, &set));
317: if (set) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, flg));
318: flg = PETSC_FALSE;
319: PetscCall(PetscOptionsBool("-mat_ignore_zero_entries", "For AIJ/IS matrices this will stop zero values from creating a zero location in the matrix", "MatSetOption", flg, &flg, &set));
320: if (set) PetscCall(MatSetOption(B, MAT_IGNORE_ZERO_ENTRIES, flg));
322: flg = PETSC_FALSE;
323: PetscCall(PetscOptionsBool("-mat_form_explicit_transpose", "Hint to form an explicit transpose for operations like MatMultTranspose", "MatSetOption", flg, &flg, &set));
324: if (set) PetscCall(MatSetOption(B, MAT_FORM_EXPLICIT_TRANSPOSE, flg));
326: /* Bind to CPU if below a user-specified size threshold.
327: * This perhaps belongs in the options for the GPU Mat types, but MatBindToCPU() does nothing when called on non-GPU types,
328: * and putting it here makes is more maintainable than duplicating this for all. */
329: PetscCall(PetscOptionsInt("-mat_bind_below", "Set the size threshold (in local rows) below which the Mat is bound to the CPU", "MatBindToCPU", bind_below, &bind_below, &flg));
330: if (flg && B->rmap->n < bind_below) PetscCall(MatBindToCPU(B, PETSC_TRUE));
332: /* process any options handlers added with PetscObjectAddOptionsHandler() */
333: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)B, PetscOptionsObject));
334: PetscOptionsEnd();
335: PetscFunctionReturn(PETSC_SUCCESS);
336: }
338: /*@
339: MatXAIJSetPreallocation - set preallocation for serial and parallel `MATAIJ`, `MATBAIJ`, and `MATSBAIJ` matrices and their unassembled versions.
341: Collective
343: Input Parameters:
344: + A - matrix being preallocated
345: . bs - block size
346: . dnnz - number of nonzero column blocks per block row of diagonal part of parallel matrix
347: . onnz - number of nonzero column blocks per block row of off-diagonal part of parallel matrix
348: . dnnzu - number of nonzero column blocks per block row of upper-triangular part of diagonal part of parallel matrix
349: - onnzu - number of nonzero column blocks per block row of upper-triangular part of off-diagonal part of parallel matrix
351: Level: beginner
353: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocation()`,
354: `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`,
355: `PetscSplitOwnership()`
356: @*/
357: PetscErrorCode MatXAIJSetPreallocation(Mat A, PetscInt bs, const PetscInt dnnz[], const PetscInt onnz[], const PetscInt dnnzu[], const PetscInt onnzu[])
358: {
359: PetscInt cbs;
360: void (*aij)(void);
361: void (*is)(void);
362: void (*hyp)(void) = NULL;
364: PetscFunctionBegin;
365: if (bs != PETSC_DECIDE) { /* don't mess with an already set block size */
366: PetscCall(MatSetBlockSize(A, bs));
367: }
368: PetscCall(PetscLayoutSetUp(A->rmap));
369: PetscCall(PetscLayoutSetUp(A->cmap));
370: PetscCall(MatGetBlockSizes(A, &bs, &cbs));
371: /* these routines assumes bs == cbs, this should be checked somehow */
372: PetscCall(MatSeqBAIJSetPreallocation(A, bs, 0, dnnz));
373: PetscCall(MatMPIBAIJSetPreallocation(A, bs, 0, dnnz, 0, onnz));
374: PetscCall(MatSeqSBAIJSetPreallocation(A, bs, 0, dnnzu));
375: PetscCall(MatMPISBAIJSetPreallocation(A, bs, 0, dnnzu, 0, onnzu));
376: /*
377: In general, we have to do extra work to preallocate for scalar (AIJ) or unassembled (IS) matrices so we check whether it will do any
378: good before going on with it.
379: */
380: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatMPIAIJSetPreallocation_C", &aij));
381: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatISSetPreallocation_C", &is));
382: #if defined(PETSC_HAVE_HYPRE)
383: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatHYPRESetPreallocation_C", &hyp));
384: #endif
385: if (!aij && !is && !hyp) PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSeqAIJSetPreallocation_C", &aij));
386: if (aij || is || hyp) {
387: if (bs == cbs && bs == 1) {
388: PetscCall(MatSeqAIJSetPreallocation(A, 0, dnnz));
389: PetscCall(MatMPIAIJSetPreallocation(A, 0, dnnz, 0, onnz));
390: PetscCall(MatISSetPreallocation(A, 0, dnnz, 0, onnz));
391: #if defined(PETSC_HAVE_HYPRE)
392: PetscCall(MatHYPRESetPreallocation(A, 0, dnnz, 0, onnz));
393: #endif
394: } else { /* Convert block-row precallocation to scalar-row */
395: PetscInt i, m, *sdnnz, *sonnz;
396: PetscCall(MatGetLocalSize(A, &m, NULL));
397: PetscCall(PetscMalloc2((!!dnnz) * m, &sdnnz, (!!onnz) * m, &sonnz));
398: for (i = 0; i < m; i++) {
399: if (dnnz) sdnnz[i] = dnnz[i / bs] * cbs;
400: if (onnz) sonnz[i] = onnz[i / bs] * cbs;
401: }
402: PetscCall(MatSeqAIJSetPreallocation(A, 0, dnnz ? sdnnz : NULL));
403: PetscCall(MatMPIAIJSetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
404: PetscCall(MatISSetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
405: #if defined(PETSC_HAVE_HYPRE)
406: PetscCall(MatHYPRESetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
407: #endif
408: PetscCall(PetscFree2(sdnnz, sonnz));
409: }
410: }
411: PetscFunctionReturn(PETSC_SUCCESS);
412: }
414: /*@C
415: MatHeaderMerge - Merges some information from the header of `C` to `A`; the `C` object is then destroyed
417: Collective, No Fortran Support
419: Input Parameters:
420: + A - a `Mat` being merged into
421: - C - the `Mat` providing the merge information
423: Level: developer
425: Notes:
426: `A` and `C` must be of the same type.
427: The object list and query function list in `A` are retained, as well as the object name, and prefix.
428: The object state of `A` is increased by 1.
430: Developer Note:
431: This is somewhat different from `MatHeaderReplace()`, it would be nice to merge the code
433: .seealso: `Mat`, `MatHeaderReplace()`
434: @*/
435: PetscErrorCode MatHeaderMerge(Mat A, Mat *C)
436: {
437: PetscInt refct;
438: PetscOps Abops;
439: struct _MatOps Aops;
440: char *mtype, *mname, *mprefix;
441: Mat_Product *product;
442: Mat_Redundant *redundant;
443: PetscObjectState state;
444: PetscObjectList olist;
445: PetscFunctionList qlist;
447: PetscFunctionBegin;
450: if (A == *C) PetscFunctionReturn(PETSC_SUCCESS);
451: PetscCheckSameTypeAndComm(A, 1, *C, 2);
452: /* save the parts of A we need */
453: Abops = ((PetscObject)A)->bops[0];
454: Aops = A->ops[0];
455: refct = ((PetscObject)A)->refct;
456: mtype = ((PetscObject)A)->type_name;
457: mname = ((PetscObject)A)->name;
458: state = ((PetscObject)A)->state;
459: mprefix = ((PetscObject)A)->prefix;
460: product = A->product;
461: redundant = A->redundant;
462: qlist = ((PetscObject)A)->qlist;
463: olist = ((PetscObject)A)->olist;
465: /* zero these so the destroy below does not free them */
466: ((PetscObject)A)->type_name = NULL;
467: ((PetscObject)A)->name = NULL;
468: ((PetscObject)A)->qlist = NULL;
469: ((PetscObject)A)->olist = NULL;
471: /*
472: free all the interior data structures from mat
473: cannot use PetscUseTypeMethod(A,destroy); because compiler
474: thinks it may print NULL type_name and name
475: */
476: PetscTryTypeMethod(A, destroy);
478: PetscCall(PetscFree(A->defaultvectype));
479: PetscCall(PetscFree(A->defaultrandtype));
480: PetscCall(PetscLayoutDestroy(&A->rmap));
481: PetscCall(PetscLayoutDestroy(&A->cmap));
482: PetscCall(PetscComposedQuantitiesDestroy((PetscObject)A));
484: /* copy C over to A */
485: PetscCall(PetscFree(A->factorprefix));
486: PetscCall(PetscMemcpy(A, *C, sizeof(struct _p_Mat)));
488: /* return the parts of A we saved */
489: ((PetscObject)A)->bops[0] = Abops;
490: A->ops[0] = Aops;
491: ((PetscObject)A)->refct = refct;
492: ((PetscObject)A)->type_name = mtype;
493: ((PetscObject)A)->name = mname;
494: ((PetscObject)A)->prefix = mprefix;
495: ((PetscObject)A)->state = state + 1;
496: A->product = product;
497: A->redundant = redundant;
499: /* Append the saved lists */
500: PetscCall(PetscFunctionListDuplicate(qlist, &((PetscObject)A)->qlist));
501: PetscCall(PetscObjectListDuplicate(olist, &((PetscObject)A)->olist));
502: PetscCall(PetscFunctionListDestroy(&qlist));
503: PetscCall(PetscObjectListDestroy(&olist));
505: /* since these two are copied into A we do not want them destroyed in C */
506: ((PetscObject)*C)->qlist = NULL;
507: ((PetscObject)*C)->olist = NULL;
508: PetscCall(PetscHeaderDestroy(C));
509: PetscFunctionReturn(PETSC_SUCCESS);
510: }
512: /*@
513: MatHeaderReplace - Replaces the internal data of matrix `A` by the internal data of matrix `C` while deleting the outer wrapper of `C`
515: Input Parameters:
516: + A - a `Mat` whose internal data is to be replaced
517: - C - the `Mat` providing new internal data for `A`
519: Level: advanced
521: Example Usage\:
522: .vb
523: Mat C;
524: MatCreateSeqAIJWithArrays(..., &C);
525: MatHeaderReplace(A, &C);
526: // C has been destroyed and A contains the matrix entries of C
527: .ve
529: Note:
530: This can be used inside a function provided to `SNESSetJacobian()`, `TSSetRHSJacobian()`, or `TSSetIJacobian()` in cases where the user code
531: computes an entirely new sparse matrix (generally with a different matrix nonzero structure/pattern) for each Newton update.
532: It is usually better to reuse the matrix nonzero structure of `A` instead of constructing an entirely new one.
534: Developer Note:
535: This is somewhat different from `MatHeaderMerge()` it would be nice to merge the code
537: .seealso: `Mat`, `MatHeaderMerge()`
538: @*/
539: PetscErrorCode MatHeaderReplace(Mat A, Mat *C)
540: {
541: PetscInt refct;
542: PetscObjectState state;
543: struct _p_Mat buffer;
544: MatStencilInfo stencil;
546: PetscFunctionBegin;
549: if (A == *C) PetscFunctionReturn(PETSC_SUCCESS);
550: PetscCheckSameComm(A, 1, *C, 2);
551: PetscCheck(((PetscObject)*C)->refct == 1, PetscObjectComm((PetscObject)C), PETSC_ERR_ARG_WRONGSTATE, "Object C has refct %" PetscInt_FMT " > 1, would leave hanging reference", ((PetscObject)*C)->refct);
553: /* swap C and A */
554: refct = ((PetscObject)A)->refct;
555: state = ((PetscObject)A)->state;
556: stencil = A->stencil;
557: PetscCall(PetscMemcpy(&buffer, A, sizeof(struct _p_Mat)));
558: PetscCall(PetscMemcpy(A, *C, sizeof(struct _p_Mat)));
559: PetscCall(PetscMemcpy(*C, &buffer, sizeof(struct _p_Mat)));
560: ((PetscObject)A)->refct = refct;
561: ((PetscObject)A)->state = state + 1;
562: A->stencil = stencil;
564: ((PetscObject)*C)->refct = 1;
565: PetscCall(MatDestroy(C));
566: PetscFunctionReturn(PETSC_SUCCESS);
567: }
569: /*@
570: MatBindToCPU - marks a matrix to temporarily stay on the CPU and perform computations on the CPU
572: Logically Collective
574: Input Parameters:
575: + A - the matrix
576: - flg - bind to the CPU if value of `PETSC_TRUE`
578: Level: intermediate
580: .seealso: [](ch_matrices), `Mat`, `MatBoundToCPU()`
581: @*/
582: PetscErrorCode MatBindToCPU(Mat A, PetscBool flg)
583: {
584: PetscFunctionBegin;
587: #if defined(PETSC_HAVE_DEVICE)
588: if (A->boundtocpu == flg) PetscFunctionReturn(PETSC_SUCCESS);
589: A->boundtocpu = flg;
590: PetscTryTypeMethod(A, bindtocpu, flg);
591: #endif
592: PetscFunctionReturn(PETSC_SUCCESS);
593: }
595: /*@
596: MatBoundToCPU - query if a matrix is bound to the CPU
598: Input Parameter:
599: . A - the matrix
601: Output Parameter:
602: . flg - the logical flag
604: Level: intermediate
606: .seealso: [](ch_matrices), `Mat`, `MatBindToCPU()`
607: @*/
608: PetscErrorCode MatBoundToCPU(Mat A, PetscBool *flg)
609: {
610: PetscFunctionBegin;
612: PetscAssertPointer(flg, 2);
613: #if defined(PETSC_HAVE_DEVICE)
614: *flg = A->boundtocpu;
615: #else
616: *flg = PETSC_TRUE;
617: #endif
618: PetscFunctionReturn(PETSC_SUCCESS);
619: }
621: PetscErrorCode MatSetValuesCOO_Basic(Mat A, const PetscScalar coo_v[], InsertMode imode)
622: {
623: IS is_coo_i, is_coo_j;
624: const PetscInt *coo_i, *coo_j;
625: PetscInt n, n_i, n_j;
626: PetscScalar zero = 0.;
628: PetscFunctionBegin;
629: PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_coo_i", (PetscObject *)&is_coo_i));
630: PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_coo_j", (PetscObject *)&is_coo_j));
631: PetscCheck(is_coo_i, PetscObjectComm((PetscObject)A), PETSC_ERR_COR, "Missing coo_i IS");
632: PetscCheck(is_coo_j, PetscObjectComm((PetscObject)A), PETSC_ERR_COR, "Missing coo_j IS");
633: PetscCall(ISGetLocalSize(is_coo_i, &n_i));
634: PetscCall(ISGetLocalSize(is_coo_j, &n_j));
635: PetscCheck(n_i == n_j, PETSC_COMM_SELF, PETSC_ERR_COR, "Wrong local size %" PetscInt_FMT " != %" PetscInt_FMT, n_i, n_j);
636: PetscCall(ISGetIndices(is_coo_i, &coo_i));
637: PetscCall(ISGetIndices(is_coo_j, &coo_j));
638: if (imode != ADD_VALUES) PetscCall(MatZeroEntries(A));
639: for (n = 0; n < n_i; n++) PetscCall(MatSetValue(A, coo_i[n], coo_j[n], coo_v ? coo_v[n] : zero, ADD_VALUES));
640: PetscCall(ISRestoreIndices(is_coo_i, &coo_i));
641: PetscCall(ISRestoreIndices(is_coo_j, &coo_j));
642: PetscFunctionReturn(PETSC_SUCCESS);
643: }
645: PetscErrorCode MatSetPreallocationCOO_Basic(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
646: {
647: Mat preallocator;
648: IS is_coo_i, is_coo_j;
649: PetscScalar zero = 0.0;
651: PetscFunctionBegin;
652: PetscCheck(ncoo <= PETSC_INT_MAX, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
653: PetscCall(PetscLayoutSetUp(A->rmap));
654: PetscCall(PetscLayoutSetUp(A->cmap));
655: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &preallocator));
656: PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
657: PetscCall(MatSetSizes(preallocator, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
658: PetscCall(MatSetLayouts(preallocator, A->rmap, A->cmap));
659: PetscCall(MatSetUp(preallocator));
660: for (PetscCount n = 0; n < ncoo; n++) PetscCall(MatSetValue(preallocator, coo_i[n], coo_j[n], zero, INSERT_VALUES));
661: PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
662: PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
663: PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_TRUE, A));
664: PetscCall(MatDestroy(&preallocator));
665: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, (PetscInt)ncoo, coo_i, PETSC_COPY_VALUES, &is_coo_i));
666: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, (PetscInt)ncoo, coo_j, PETSC_COPY_VALUES, &is_coo_j));
667: PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_coo_i", (PetscObject)is_coo_i));
668: PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_coo_j", (PetscObject)is_coo_j));
669: PetscCall(ISDestroy(&is_coo_i));
670: PetscCall(ISDestroy(&is_coo_j));
671: PetscFunctionReturn(PETSC_SUCCESS);
672: }
674: /*@C
675: MatSetPreallocationCOO - set preallocation for matrices using a coordinate format of the entries with global indices
677: Collective
679: Input Parameters:
680: + A - matrix being preallocated
681: . ncoo - number of entries
682: . coo_i - row indices
683: - coo_j - column indices
685: Level: beginner
687: Notes:
688: The indices within `coo_i` and `coo_j` may be modified within this function. The caller should not rely on them
689: having any specific value after this function returns. The arrays can be freed or reused immediately
690: after this function returns.
692: Entries can be repeated, see `MatSetValuesCOO()`. Entries with negative row or column indices are allowed
693: but will be ignored. The corresponding entries in `MatSetValuesCOO()` will be ignored too. Remote entries
694: are allowed and will be properly added or inserted to the matrix, unless the matrix option `MAT_IGNORE_OFF_PROC_ENTRIES`
695: is set, in which case remote entries are ignored, or `MAT_NO_OFF_PROC_ENTRIES` is set, in which case an error will be generated.
697: If you just want to create a sequential AIJ matrix (`MATSEQAIJ`), and your matrix entries in COO format are unique, you can also use
698: `MatCreateSeqAIJFromTriple()`. But that is not recommended for iterative applications.
700: .seealso: [](ch_matrices), `Mat`, `MatSetValuesCOO()`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`,
701: `MatMPIBAIJSetPreallocation()`, `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`, `MatSetPreallocationCOOLocal()`,
702: `DMSetMatrixPreallocateSkip()`, `MatCreateSeqAIJFromTriple()`
703: @*/
704: PetscErrorCode MatSetPreallocationCOO(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
705: {
706: PetscErrorCode (*f)(Mat, PetscCount, PetscInt[], PetscInt[]) = NULL;
708: PetscFunctionBegin;
711: if (ncoo) PetscAssertPointer(coo_i, 3);
712: if (ncoo) PetscAssertPointer(coo_j, 4);
713: PetscCall(PetscLayoutSetUp(A->rmap));
714: PetscCall(PetscLayoutSetUp(A->cmap));
715: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetPreallocationCOO_C", &f));
717: PetscCall(PetscLogEventBegin(MAT_PreallCOO, A, 0, 0, 0));
718: if (f) {
719: PetscCall((*f)(A, ncoo, coo_i, coo_j));
720: } else { /* allow fallback, very slow */
721: PetscCall(MatSetPreallocationCOO_Basic(A, ncoo, coo_i, coo_j));
722: }
723: PetscCall(PetscLogEventEnd(MAT_PreallCOO, A, 0, 0, 0));
724: A->preallocated = PETSC_TRUE;
725: A->nonzerostate++;
726: PetscFunctionReturn(PETSC_SUCCESS);
727: }
729: /*@C
730: MatSetPreallocationCOOLocal - set preallocation for matrices using a coordinate format of the entries with local indices
732: Collective
734: Input Parameters:
735: + A - matrix being preallocated
736: . ncoo - number of entries
737: . coo_i - row indices (local numbering; may be modified)
738: - coo_j - column indices (local numbering; may be modified)
740: Level: beginner
742: Notes:
743: The local indices are translated using the local to global mapping, thus `MatSetLocalToGlobalMapping()` must have been
744: called prior to this function. For matrices created with `DMCreateMatrix()` the local to global mapping is often already provided.
746: The indices `coo_i` and `coo_j` may be modified within this function. They might be translated to corresponding global
747: indices, but the caller should not rely on them having any specific value after this function returns. The arrays
748: can be freed or reused immediately after this function returns.
750: Entries can be repeated, see `MatSetValuesCOO()`. Entries with negative row or column indices are allowed
751: but will be ignored. The corresponding entries in `MatSetValuesCOO()` will be ignored too. Remote entries
752: are allowed and will be properly added or inserted to the matrix.
754: .seealso: [](ch_matrices), `Mat`, `MatSetValuesCOO()`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`,
755: `MatMPIBAIJSetPreallocation()`, `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`, `MatSetPreallocationCOO()`,
756: `DMSetMatrixPreallocateSkip()`
757: @*/
758: PetscErrorCode MatSetPreallocationCOOLocal(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
759: {
760: PetscErrorCode (*f)(Mat, PetscCount, PetscInt[], PetscInt[]) = NULL;
762: PetscFunctionBegin;
765: if (ncoo) PetscAssertPointer(coo_i, 3);
766: if (ncoo) PetscAssertPointer(coo_j, 4);
767: PetscCheck(ncoo <= PETSC_INT_MAX, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
768: PetscCall(PetscLayoutSetUp(A->rmap));
769: PetscCall(PetscLayoutSetUp(A->cmap));
771: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetPreallocationCOOLocal_C", &f));
772: if (f) {
773: PetscCall((*f)(A, ncoo, coo_i, coo_j));
774: A->nonzerostate++;
775: } else {
776: ISLocalToGlobalMapping ltog_row, ltog_col;
778: PetscCall(MatGetLocalToGlobalMapping(A, <og_row, <og_col));
779: if (ltog_row) PetscCall(ISLocalToGlobalMappingApply(ltog_row, (PetscInt)ncoo, coo_i, coo_i));
780: if (ltog_col) PetscCall(ISLocalToGlobalMappingApply(ltog_col, (PetscInt)ncoo, coo_j, coo_j));
781: PetscCall(MatSetPreallocationCOO(A, ncoo, coo_i, coo_j));
782: }
783: A->preallocated = PETSC_TRUE;
784: PetscFunctionReturn(PETSC_SUCCESS);
785: }
787: /*@
788: MatSetValuesCOO - set values at once in a matrix preallocated using `MatSetPreallocationCOO()`
790: Collective
792: Input Parameters:
793: + A - matrix being preallocated
794: . coo_v - the matrix values (can be `NULL`)
795: - imode - the insert mode
797: Level: beginner
799: Notes:
800: The values must follow the order of the indices prescribed with `MatSetPreallocationCOO()` or `MatSetPreallocationCOOLocal()`.
802: When repeated entries are specified in the COO indices the `coo_v` values are first properly summed, regardless of the value of imode.
803: The imode flag indicates if coo_v must be added to the current values of the matrix (`ADD_VALUES`) or overwritten (`INSERT_VALUES`).
805: `MatAssemblyBegin()` and `MatAssemblyEnd()` do not need to be called after this routine. It automatically handles the assembly process.
807: .seealso: [](ch_matrices), `Mat`, `MatSetPreallocationCOO()`, `MatSetPreallocationCOOLocal()`, `InsertMode`, `INSERT_VALUES`, `ADD_VALUES`
808: @*/
809: PetscErrorCode MatSetValuesCOO(Mat A, const PetscScalar coo_v[], InsertMode imode)
810: {
811: PetscErrorCode (*f)(Mat, const PetscScalar[], InsertMode) = NULL;
812: PetscBool oldFlg;
814: PetscFunctionBegin;
817: MatCheckPreallocated(A, 1);
819: PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetValuesCOO_C", &f));
820: PetscCall(PetscLogEventBegin(MAT_SetVCOO, A, 0, 0, 0));
821: if (f) {
822: PetscCall((*f)(A, coo_v, imode)); // all known COO implementations do not use MatStash. They do their own off-proc communication
823: PetscCall(MatGetOption(A, MAT_NO_OFF_PROC_ENTRIES, &oldFlg));
824: PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE)); // set A->nooffprocentries to avoid costly MatStash scatter in MatAssembly
825: } else {
826: PetscCall(MatSetValuesCOO_Basic(A, coo_v, imode)); // fall back to MatSetValues, which might use MatStash
827: }
828: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
829: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
830: if (f) PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, oldFlg));
831: PetscCall(PetscLogEventEnd(MAT_SetVCOO, A, 0, 0, 0));
832: PetscFunctionReturn(PETSC_SUCCESS);
833: }
835: /*@
836: MatSetBindingPropagates - Sets whether the state of being bound to the CPU for a GPU matrix type propagates to child and some other associated objects
838: Input Parameters:
839: + A - the matrix
840: - flg - flag indicating whether the boundtocpu flag should be propagated
842: Level: developer
844: Notes:
845: If the value of flg is set to true, the following will occur
846: + `MatCreateSubMatrices()` and `MatCreateRedundantMatrix()` - bind created matrices to CPU if the input matrix is bound to the CPU.
847: - `MatCreateVecs()` - bind created vectors to CPU if the input matrix is bound to the CPU.
849: The bindingpropagates flag itself is also propagated by the above routines.
851: Developer Notes:
852: If the fine-scale `DMDA` has the `-dm_bind_below` option set to true, then `DMCreateInterpolationScale()` calls `MatSetBindingPropagates()`
853: on the restriction/interpolation operator to set the bindingpropagates flag to true.
855: .seealso: [](ch_matrices), `Mat`, `VecSetBindingPropagates()`, `MatGetBindingPropagates()`
856: @*/
857: PetscErrorCode MatSetBindingPropagates(Mat A, PetscBool flg)
858: {
859: PetscFunctionBegin;
861: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
862: A->bindingpropagates = flg;
863: #endif
864: PetscFunctionReturn(PETSC_SUCCESS);
865: }
867: /*@
868: MatGetBindingPropagates - Gets whether the state of being bound to the CPU for a GPU matrix type propagates to child and some other associated objects
870: Input Parameter:
871: . A - the matrix
873: Output Parameter:
874: . flg - flag indicating whether the boundtocpu flag will be propagated
876: Level: developer
878: .seealso: [](ch_matrices), `Mat`, `MatSetBindingPropagates()`
879: @*/
880: PetscErrorCode MatGetBindingPropagates(Mat A, PetscBool *flg)
881: {
882: PetscFunctionBegin;
884: PetscAssertPointer(flg, 2);
885: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
886: *flg = A->bindingpropagates;
887: #else
888: *flg = PETSC_FALSE;
889: #endif
890: PetscFunctionReturn(PETSC_SUCCESS);
891: }