Actual source code: plexfem.c
1: #include <petsc/private/dmpleximpl.h>
2: #include <petscsf.h>
4: #include <petscblaslapack.h>
5: #include <petsc/private/hashsetij.h>
6: #include <petsc/private/petscfeimpl.h>
7: #include <petsc/private/petscfvimpl.h>
9: PetscBool Clementcite = PETSC_FALSE;
10: const char ClementCitation[] = "@article{clement1975approximation,\n"
11: " title = {Approximation by finite element functions using local regularization},\n"
12: " author = {Philippe Cl{\\'e}ment},\n"
13: " journal = {Revue fran{\\c{c}}aise d'automatique, informatique, recherche op{\\'e}rationnelle. Analyse num{\\'e}rique},\n"
14: " volume = {9},\n"
15: " number = {R2},\n"
16: " pages = {77--84},\n"
17: " year = {1975}\n}\n";
19: static PetscErrorCode DMPlexConvertPlex(DM dm, DM *plex, PetscBool copy)
20: {
21: PetscBool isPlex;
23: PetscFunctionBegin;
24: PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
25: if (isPlex) {
26: *plex = dm;
27: PetscCall(PetscObjectReference((PetscObject)dm));
28: } else {
29: PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
30: if (!*plex) {
31: PetscCall(DMConvert(dm, DMPLEX, plex));
32: PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
33: } else {
34: PetscCall(PetscObjectReference((PetscObject)*plex));
35: }
36: if (copy) {
37: DMSubDomainHookLink link;
39: PetscCall(DMCopyDS(dm, PETSC_DETERMINE, PETSC_DETERMINE, *plex));
40: PetscCall(DMCopyAuxiliaryVec(dm, *plex));
41: /* Run the subdomain hook (this will copy the DMSNES/DMTS) */
42: for (link = dm->subdomainhook; link; link = link->next) {
43: if (link->ddhook) PetscCall((*link->ddhook)(dm, *plex, link->ctx));
44: }
45: }
46: }
47: PetscFunctionReturn(PETSC_SUCCESS);
48: }
50: static PetscErrorCode PetscContainerUserDestroy_PetscFEGeom(void *ctx)
51: {
52: PetscFEGeom *geom = (PetscFEGeom *)ctx;
54: PetscFunctionBegin;
55: PetscCall(PetscFEGeomDestroy(&geom));
56: PetscFunctionReturn(PETSC_SUCCESS);
57: }
59: static PetscErrorCode DMPlexGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
60: {
61: char composeStr[33] = {0};
62: PetscObjectId id;
63: PetscContainer container;
65: PetscFunctionBegin;
66: PetscCall(PetscObjectGetId((PetscObject)quad, &id));
67: PetscCall(PetscSNPrintf(composeStr, 32, "DMPlexGetFEGeom_%" PetscInt64_FMT "\n", id));
68: PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
69: if (container) {
70: PetscCall(PetscContainerGetPointer(container, (void **)geom));
71: } else {
72: PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom));
73: PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
74: PetscCall(PetscContainerSetPointer(container, (void *)*geom));
75: PetscCall(PetscContainerSetUserDestroy(container, PetscContainerUserDestroy_PetscFEGeom));
76: PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
77: PetscCall(PetscContainerDestroy(&container));
78: }
79: PetscFunctionReturn(PETSC_SUCCESS);
80: }
82: static PetscErrorCode DMPlexRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
83: {
84: PetscFunctionBegin;
85: *geom = NULL;
86: PetscFunctionReturn(PETSC_SUCCESS);
87: }
89: /*@
90: DMPlexGetScale - Get the scale for the specified fundamental unit
92: Not Collective
94: Input Parameters:
95: + dm - the `DM`
96: - unit - The SI unit
98: Output Parameter:
99: . scale - The value used to scale all quantities with this unit
101: Level: advanced
103: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetScale()`, `PetscUnit`
104: @*/
105: PetscErrorCode DMPlexGetScale(DM dm, PetscUnit unit, PetscReal *scale)
106: {
107: DM_Plex *mesh = (DM_Plex *)dm->data;
109: PetscFunctionBegin;
111: PetscAssertPointer(scale, 3);
112: *scale = mesh->scale[unit];
113: PetscFunctionReturn(PETSC_SUCCESS);
114: }
116: /*@
117: DMPlexSetScale - Set the scale for the specified fundamental unit
119: Not Collective
121: Input Parameters:
122: + dm - the `DM`
123: . unit - The SI unit
124: - scale - The value used to scale all quantities with this unit
126: Level: advanced
128: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetScale()`, `PetscUnit`
129: @*/
130: PetscErrorCode DMPlexSetScale(DM dm, PetscUnit unit, PetscReal scale)
131: {
132: DM_Plex *mesh = (DM_Plex *)dm->data;
134: PetscFunctionBegin;
136: mesh->scale[unit] = scale;
137: PetscFunctionReturn(PETSC_SUCCESS);
138: }
140: PetscErrorCode DMPlexGetUseCeed_Plex(DM dm, PetscBool *useCeed)
141: {
142: DM_Plex *mesh = (DM_Plex *)dm->data;
144: PetscFunctionBegin;
145: *useCeed = mesh->useCeed;
146: PetscFunctionReturn(PETSC_SUCCESS);
147: }
148: PetscErrorCode DMPlexSetUseCeed_Plex(DM dm, PetscBool useCeed)
149: {
150: DM_Plex *mesh = (DM_Plex *)dm->data;
152: PetscFunctionBegin;
153: mesh->useCeed = useCeed;
154: PetscFunctionReturn(PETSC_SUCCESS);
155: }
157: /*@
158: DMPlexGetUseCeed - Get flag for using the LibCEED backend
160: Not collective
162: Input Parameter:
163: . dm - The `DM`
165: Output Parameter:
166: . useCeed - The flag
168: Level: intermediate
170: .seealso: `DMPlexSetUseCeed()`
171: @*/
172: PetscErrorCode DMPlexGetUseCeed(DM dm, PetscBool *useCeed)
173: {
174: PetscFunctionBegin;
176: PetscAssertPointer(useCeed, 2);
177: *useCeed = PETSC_FALSE;
178: PetscTryMethod(dm, "DMPlexGetUseCeed_C", (DM, PetscBool *), (dm, useCeed));
179: PetscFunctionReturn(PETSC_SUCCESS);
180: }
182: /*@
183: DMPlexSetUseCeed - Set flag for using the LibCEED backend
185: Not collective
187: Input Parameters:
188: + dm - The `DM`
189: - useCeed - The flag
191: Level: intermediate
193: .seealso: `DMPlexGetUseCeed()`
194: @*/
195: PetscErrorCode DMPlexSetUseCeed(DM dm, PetscBool useCeed)
196: {
197: PetscFunctionBegin;
200: PetscUseMethod(dm, "DMPlexSetUseCeed_C", (DM, PetscBool), (dm, useCeed));
201: PetscFunctionReturn(PETSC_SUCCESS);
202: }
204: /*@
205: DMPlexGetUseMatClosurePermutation - Get flag for using a closure permutation for matrix insertion
207: Not collective
209: Input Parameter:
210: . dm - The `DM`
212: Output Parameter:
213: . useClPerm - The flag
215: Level: intermediate
217: .seealso: `DMPlexSetUseMatClosurePermutation()`
218: @*/
219: PetscErrorCode DMPlexGetUseMatClosurePermutation(DM dm, PetscBool *useClPerm)
220: {
221: DM_Plex *mesh = (DM_Plex *)dm->data;
223: PetscFunctionBegin;
225: PetscAssertPointer(useClPerm, 2);
226: *useClPerm = mesh->useMatClPerm;
227: PetscFunctionReturn(PETSC_SUCCESS);
228: }
230: /*@
231: DMPlexSetUseMatClosurePermutation - Set flag for using a closure permutation for matrix insertion
233: Not collective
235: Input Parameters:
236: + dm - The `DM`
237: - useClPerm - The flag
239: Level: intermediate
241: .seealso: `DMPlexGetUseMatClosurePermutation()`
242: @*/
243: PetscErrorCode DMPlexSetUseMatClosurePermutation(DM dm, PetscBool useClPerm)
244: {
245: DM_Plex *mesh = (DM_Plex *)dm->data;
247: PetscFunctionBegin;
250: mesh->useMatClPerm = useClPerm;
251: PetscFunctionReturn(PETSC_SUCCESS);
252: }
254: static PetscErrorCode DMPlexProjectRigidBody_Private(PetscInt dim, PetscReal t, const PetscReal X[], PetscInt Nc, PetscScalar *mode, void *ctx)
255: {
256: const PetscInt eps[3][3][3] = {
257: {{0, 0, 0}, {0, 0, 1}, {0, -1, 0}},
258: {{0, 0, -1}, {0, 0, 0}, {1, 0, 0} },
259: {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0} }
260: };
261: PetscInt *ctxInt = (PetscInt *)ctx;
262: PetscInt dim2 = ctxInt[0];
263: PetscInt d = ctxInt[1];
264: PetscInt i, j, k = dim > 2 ? d - dim : d;
266: PetscFunctionBegin;
267: PetscCheck(dim == dim2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input dimension %" PetscInt_FMT " does not match context dimension %" PetscInt_FMT, dim, dim2);
268: for (i = 0; i < dim; i++) mode[i] = 0.;
269: if (d < dim) {
270: mode[d] = 1.; /* Translation along axis d */
271: } else {
272: for (i = 0; i < dim; i++) {
273: for (j = 0; j < dim; j++) { mode[j] += eps[i][j][k] * X[i]; /* Rotation about axis d */ }
274: }
275: }
276: PetscFunctionReturn(PETSC_SUCCESS);
277: }
279: /*@
280: DMPlexCreateRigidBody - For the default global section, create rigid body modes by function space interpolation
282: Collective
284: Input Parameters:
285: + dm - the `DM`
286: - field - The field number for the rigid body space, or 0 for the default
288: Output Parameter:
289: . sp - the null space
291: Level: advanced
293: Note:
294: This is necessary to provide a suitable coarse space for algebraic multigrid
296: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`, `PCGAMG`
297: @*/
298: PetscErrorCode DMPlexCreateRigidBody(DM dm, PetscInt field, MatNullSpace *sp)
299: {
300: PetscErrorCode (**func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *);
301: MPI_Comm comm;
302: Vec mode[6];
303: PetscSection section, globalSection;
304: PetscInt dim, dimEmbed, Nf, n, m, mmin, d, i, j;
305: void **ctxs;
307: PetscFunctionBegin;
308: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
309: PetscCall(DMGetDimension(dm, &dim));
310: PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
311: PetscCall(DMGetNumFields(dm, &Nf));
312: PetscCheck(!Nf || !(field < 0 || field >= Nf), comm, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", field, Nf);
313: if (dim == 1 && Nf < 2) {
314: PetscCall(MatNullSpaceCreate(comm, PETSC_TRUE, 0, NULL, sp));
315: PetscFunctionReturn(PETSC_SUCCESS);
316: }
317: PetscCall(DMGetLocalSection(dm, §ion));
318: PetscCall(DMGetGlobalSection(dm, &globalSection));
319: PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
320: PetscCall(PetscCalloc2(Nf, &func, Nf, &ctxs));
321: m = (dim * (dim + 1)) / 2;
322: PetscCall(VecCreate(comm, &mode[0]));
323: PetscCall(VecSetType(mode[0], dm->vectype));
324: PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
325: PetscCall(VecSetUp(mode[0]));
326: PetscCall(VecGetSize(mode[0], &n));
327: mmin = PetscMin(m, n);
328: func[field] = DMPlexProjectRigidBody_Private;
329: for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
330: for (d = 0; d < m; d++) {
331: PetscInt ctx[2];
333: ctxs[field] = (void *)(&ctx[0]);
334: ctx[0] = dimEmbed;
335: ctx[1] = d;
336: PetscCall(DMProjectFunction(dm, 0.0, func, ctxs, INSERT_VALUES, mode[d]));
337: }
338: /* Orthonormalize system */
339: for (i = 0; i < mmin; ++i) {
340: PetscScalar dots[6];
342: PetscCall(VecNormalize(mode[i], NULL));
343: PetscCall(VecMDot(mode[i], mmin - i - 1, mode + i + 1, dots + i + 1));
344: for (j = i + 1; j < mmin; ++j) {
345: dots[j] *= -1.0;
346: PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
347: }
348: }
349: PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, mmin, mode, sp));
350: for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
351: PetscCall(PetscFree2(func, ctxs));
352: PetscFunctionReturn(PETSC_SUCCESS);
353: }
355: /*@
356: DMPlexCreateRigidBodies - For the default global section, create rigid body modes by function space interpolation
358: Collective
360: Input Parameters:
361: + dm - the `DM`
362: . nb - The number of bodies
363: . label - The `DMLabel` marking each domain
364: . nids - The number of ids per body
365: - ids - An array of the label ids in sequence for each domain
367: Output Parameter:
368: . sp - the null space
370: Level: advanced
372: Note:
373: This is necessary to provide a suitable coarse space for algebraic multigrid
375: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`
376: @*/
377: PetscErrorCode DMPlexCreateRigidBodies(DM dm, PetscInt nb, DMLabel label, const PetscInt nids[], const PetscInt ids[], MatNullSpace *sp)
378: {
379: MPI_Comm comm;
380: PetscSection section, globalSection;
381: Vec *mode;
382: PetscScalar *dots;
383: PetscInt dim, dimEmbed, n, m, b, d, i, j, off;
385: PetscFunctionBegin;
386: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
387: PetscCall(DMGetDimension(dm, &dim));
388: PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
389: PetscCall(DMGetLocalSection(dm, §ion));
390: PetscCall(DMGetGlobalSection(dm, &globalSection));
391: PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
392: m = nb * (dim * (dim + 1)) / 2;
393: PetscCall(PetscMalloc2(m, &mode, m, &dots));
394: PetscCall(VecCreate(comm, &mode[0]));
395: PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
396: PetscCall(VecSetUp(mode[0]));
397: for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
398: for (b = 0, off = 0; b < nb; ++b) {
399: for (d = 0; d < m / nb; ++d) {
400: PetscInt ctx[2];
401: PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *) = DMPlexProjectRigidBody_Private;
402: void *voidctx = (void *)(&ctx[0]);
404: ctx[0] = dimEmbed;
405: ctx[1] = d;
406: PetscCall(DMProjectFunctionLabel(dm, 0.0, label, nids[b], &ids[off], 0, NULL, &func, &voidctx, INSERT_VALUES, mode[d]));
407: off += nids[b];
408: }
409: }
410: /* Orthonormalize system */
411: for (i = 0; i < m; ++i) {
412: PetscScalar dots[6];
414: PetscCall(VecNormalize(mode[i], NULL));
415: PetscCall(VecMDot(mode[i], m - i - 1, mode + i + 1, dots + i + 1));
416: for (j = i + 1; j < m; ++j) {
417: dots[j] *= -1.0;
418: PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
419: }
420: }
421: PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, m, mode, sp));
422: for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
423: PetscCall(PetscFree2(mode, dots));
424: PetscFunctionReturn(PETSC_SUCCESS);
425: }
427: /*@
428: DMPlexSetMaxProjectionHeight - In DMPlexProjectXXXLocal() functions, the projected values of a basis function's dofs
429: are computed by associating the basis function with one of the mesh points in its transitively-closed support, and
430: evaluating the dual space basis of that point.
432: Input Parameters:
433: + dm - the `DMPLEX` object
434: - height - the maximum projection height >= 0
436: Level: advanced
438: Notes:
439: A basis function is associated with the point in its transitively-closed support whose mesh
440: height is highest (w.r.t. DAG height), but not greater than the maximum projection height,
441: which is set with this function. By default, the maximum projection height is zero, which
442: means that only mesh cells are used to project basis functions. A height of one, for
443: example, evaluates a cell-interior basis functions using its cells dual space basis, but all
444: other basis functions with the dual space basis of a face.
446: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
447: @*/
448: PetscErrorCode DMPlexSetMaxProjectionHeight(DM dm, PetscInt height)
449: {
450: DM_Plex *plex = (DM_Plex *)dm->data;
452: PetscFunctionBegin;
454: plex->maxProjectionHeight = height;
455: PetscFunctionReturn(PETSC_SUCCESS);
456: }
458: /*@
459: DMPlexGetMaxProjectionHeight - Get the maximum height (w.r.t. DAG) of mesh points used to evaluate dual bases in
460: DMPlexProjectXXXLocal() functions.
462: Input Parameter:
463: . dm - the `DMPLEX` object
465: Output Parameter:
466: . height - the maximum projection height
468: Level: intermediate
470: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
471: @*/
472: PetscErrorCode DMPlexGetMaxProjectionHeight(DM dm, PetscInt *height)
473: {
474: DM_Plex *plex = (DM_Plex *)dm->data;
476: PetscFunctionBegin;
478: *height = plex->maxProjectionHeight;
479: PetscFunctionReturn(PETSC_SUCCESS);
480: }
482: typedef struct {
483: PetscReal alpha; /* The first Euler angle, and in 2D the only one */
484: PetscReal beta; /* The second Euler angle */
485: PetscReal gamma; /* The third Euler angle */
486: PetscInt dim; /* The dimension of R */
487: PetscScalar *R; /* The rotation matrix, transforming a vector in the local basis to the global basis */
488: PetscScalar *RT; /* The transposed rotation matrix, transforming a vector in the global basis to the local basis */
489: } RotCtx;
491: /*
492: Note: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
493: we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows:
494: $ The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
495: $ The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
496: $ The XYZ system rotates a third time about the z axis by gamma.
497: */
498: static PetscErrorCode DMPlexBasisTransformSetUp_Rotation_Internal(DM dm, void *ctx)
499: {
500: RotCtx *rc = (RotCtx *)ctx;
501: PetscInt dim = rc->dim;
502: PetscReal c1, s1, c2, s2, c3, s3;
504: PetscFunctionBegin;
505: PetscCall(PetscMalloc2(PetscSqr(dim), &rc->R, PetscSqr(dim), &rc->RT));
506: switch (dim) {
507: case 2:
508: c1 = PetscCosReal(rc->alpha);
509: s1 = PetscSinReal(rc->alpha);
510: rc->R[0] = c1;
511: rc->R[1] = s1;
512: rc->R[2] = -s1;
513: rc->R[3] = c1;
514: PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
515: DMPlex_Transpose2D_Internal(rc->RT);
516: break;
517: case 3:
518: c1 = PetscCosReal(rc->alpha);
519: s1 = PetscSinReal(rc->alpha);
520: c2 = PetscCosReal(rc->beta);
521: s2 = PetscSinReal(rc->beta);
522: c3 = PetscCosReal(rc->gamma);
523: s3 = PetscSinReal(rc->gamma);
524: rc->R[0] = c1 * c3 - c2 * s1 * s3;
525: rc->R[1] = c3 * s1 + c1 * c2 * s3;
526: rc->R[2] = s2 * s3;
527: rc->R[3] = -c1 * s3 - c2 * c3 * s1;
528: rc->R[4] = c1 * c2 * c3 - s1 * s3;
529: rc->R[5] = c3 * s2;
530: rc->R[6] = s1 * s2;
531: rc->R[7] = -c1 * s2;
532: rc->R[8] = c2;
533: PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
534: DMPlex_Transpose3D_Internal(rc->RT);
535: break;
536: default:
537: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Dimension %" PetscInt_FMT " not supported", dim);
538: }
539: PetscFunctionReturn(PETSC_SUCCESS);
540: }
542: static PetscErrorCode DMPlexBasisTransformDestroy_Rotation_Internal(DM dm, void *ctx)
543: {
544: RotCtx *rc = (RotCtx *)ctx;
546: PetscFunctionBegin;
547: PetscCall(PetscFree2(rc->R, rc->RT));
548: PetscCall(PetscFree(rc));
549: PetscFunctionReturn(PETSC_SUCCESS);
550: }
552: static PetscErrorCode DMPlexBasisTransformGetMatrix_Rotation_Internal(DM dm, const PetscReal x[], PetscBool l2g, const PetscScalar **A, void *ctx)
553: {
554: RotCtx *rc = (RotCtx *)ctx;
556: PetscFunctionBeginHot;
557: PetscAssertPointer(ctx, 5);
558: if (l2g) {
559: *A = rc->R;
560: } else {
561: *A = rc->RT;
562: }
563: PetscFunctionReturn(PETSC_SUCCESS);
564: }
566: PetscErrorCode DMPlexBasisTransformApplyReal_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscReal *y, PetscReal *z, void *ctx)
567: {
568: PetscFunctionBegin;
569: #if defined(PETSC_USE_COMPLEX)
570: switch (dim) {
571: case 2: {
572: PetscScalar yt[2] = {y[0], y[1]}, zt[2] = {0.0, 0.0};
574: PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
575: z[0] = PetscRealPart(zt[0]);
576: z[1] = PetscRealPart(zt[1]);
577: } break;
578: case 3: {
579: PetscScalar yt[3] = {y[0], y[1], y[2]}, zt[3] = {0.0, 0.0, 0.0};
581: PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
582: z[0] = PetscRealPart(zt[0]);
583: z[1] = PetscRealPart(zt[1]);
584: z[2] = PetscRealPart(zt[2]);
585: } break;
586: }
587: #else
588: PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, y, z, ctx));
589: #endif
590: PetscFunctionReturn(PETSC_SUCCESS);
591: }
593: PetscErrorCode DMPlexBasisTransformApply_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscScalar *y, PetscScalar *z, void *ctx)
594: {
595: const PetscScalar *A;
597: PetscFunctionBeginHot;
598: PetscCall((*dm->transformGetMatrix)(dm, x, l2g, &A, ctx));
599: switch (dim) {
600: case 2:
601: DMPlex_Mult2D_Internal(A, 1, y, z);
602: break;
603: case 3:
604: DMPlex_Mult3D_Internal(A, 1, y, z);
605: break;
606: }
607: PetscFunctionReturn(PETSC_SUCCESS);
608: }
610: static PetscErrorCode DMPlexBasisTransformField_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscInt f, PetscBool l2g, PetscScalar *a)
611: {
612: PetscSection ts;
613: const PetscScalar *ta, *tva;
614: PetscInt dof;
616: PetscFunctionBeginHot;
617: PetscCall(DMGetLocalSection(tdm, &ts));
618: PetscCall(PetscSectionGetFieldDof(ts, p, f, &dof));
619: PetscCall(VecGetArrayRead(tv, &ta));
620: PetscCall(DMPlexPointLocalFieldRead(tdm, p, f, ta, &tva));
621: if (l2g) {
622: switch (dof) {
623: case 4:
624: DMPlex_Mult2D_Internal(tva, 1, a, a);
625: break;
626: case 9:
627: DMPlex_Mult3D_Internal(tva, 1, a, a);
628: break;
629: }
630: } else {
631: switch (dof) {
632: case 4:
633: DMPlex_MultTranspose2D_Internal(tva, 1, a, a);
634: break;
635: case 9:
636: DMPlex_MultTranspose3D_Internal(tva, 1, a, a);
637: break;
638: }
639: }
640: PetscCall(VecRestoreArrayRead(tv, &ta));
641: PetscFunctionReturn(PETSC_SUCCESS);
642: }
644: static PetscErrorCode DMPlexBasisTransformFieldTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt pf, PetscInt f, PetscInt pg, PetscInt g, PetscBool l2g, PetscInt lda, PetscScalar *a)
645: {
646: PetscSection s, ts;
647: const PetscScalar *ta, *tvaf, *tvag;
648: PetscInt fdof, gdof, fpdof, gpdof;
650: PetscFunctionBeginHot;
651: PetscCall(DMGetLocalSection(dm, &s));
652: PetscCall(DMGetLocalSection(tdm, &ts));
653: PetscCall(PetscSectionGetFieldDof(s, pf, f, &fpdof));
654: PetscCall(PetscSectionGetFieldDof(s, pg, g, &gpdof));
655: PetscCall(PetscSectionGetFieldDof(ts, pf, f, &fdof));
656: PetscCall(PetscSectionGetFieldDof(ts, pg, g, &gdof));
657: PetscCall(VecGetArrayRead(tv, &ta));
658: PetscCall(DMPlexPointLocalFieldRead(tdm, pf, f, ta, &tvaf));
659: PetscCall(DMPlexPointLocalFieldRead(tdm, pg, g, ta, &tvag));
660: if (l2g) {
661: switch (fdof) {
662: case 4:
663: DMPlex_MatMult2D_Internal(tvaf, gpdof, lda, a, a);
664: break;
665: case 9:
666: DMPlex_MatMult3D_Internal(tvaf, gpdof, lda, a, a);
667: break;
668: }
669: switch (gdof) {
670: case 4:
671: DMPlex_MatMultTransposeLeft2D_Internal(tvag, fpdof, lda, a, a);
672: break;
673: case 9:
674: DMPlex_MatMultTransposeLeft3D_Internal(tvag, fpdof, lda, a, a);
675: break;
676: }
677: } else {
678: switch (fdof) {
679: case 4:
680: DMPlex_MatMultTranspose2D_Internal(tvaf, gpdof, lda, a, a);
681: break;
682: case 9:
683: DMPlex_MatMultTranspose3D_Internal(tvaf, gpdof, lda, a, a);
684: break;
685: }
686: switch (gdof) {
687: case 4:
688: DMPlex_MatMultLeft2D_Internal(tvag, fpdof, lda, a, a);
689: break;
690: case 9:
691: DMPlex_MatMultLeft3D_Internal(tvag, fpdof, lda, a, a);
692: break;
693: }
694: }
695: PetscCall(VecRestoreArrayRead(tv, &ta));
696: PetscFunctionReturn(PETSC_SUCCESS);
697: }
699: PetscErrorCode DMPlexBasisTransformPoint_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool fieldActive[], PetscBool l2g, PetscScalar *a)
700: {
701: PetscSection s;
702: PetscSection clSection;
703: IS clPoints;
704: const PetscInt *clp;
705: PetscInt *points = NULL;
706: PetscInt Nf, f, Np, cp, dof, d = 0;
708: PetscFunctionBegin;
709: PetscCall(DMGetLocalSection(dm, &s));
710: PetscCall(PetscSectionGetNumFields(s, &Nf));
711: PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
712: for (f = 0; f < Nf; ++f) {
713: for (cp = 0; cp < Np * 2; cp += 2) {
714: PetscCall(PetscSectionGetFieldDof(s, points[cp], f, &dof));
715: if (!dof) continue;
716: if (fieldActive[f]) PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, points[cp], f, l2g, &a[d]));
717: d += dof;
718: }
719: }
720: PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
721: PetscFunctionReturn(PETSC_SUCCESS);
722: }
724: PetscErrorCode DMPlexBasisTransformPointTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool l2g, PetscInt lda, PetscScalar *a)
725: {
726: PetscSection s;
727: PetscSection clSection;
728: IS clPoints;
729: const PetscInt *clp;
730: PetscInt *points = NULL;
731: PetscInt Nf, f, g, Np, cpf, cpg, fdof, gdof, r, c = 0;
733: PetscFunctionBegin;
734: PetscCall(DMGetLocalSection(dm, &s));
735: PetscCall(PetscSectionGetNumFields(s, &Nf));
736: PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
737: for (f = 0, r = 0; f < Nf; ++f) {
738: for (cpf = 0; cpf < Np * 2; cpf += 2) {
739: PetscCall(PetscSectionGetFieldDof(s, points[cpf], f, &fdof));
740: for (g = 0, c = 0; g < Nf; ++g) {
741: for (cpg = 0; cpg < Np * 2; cpg += 2) {
742: PetscCall(PetscSectionGetFieldDof(s, points[cpg], g, &gdof));
743: PetscCall(DMPlexBasisTransformFieldTensor_Internal(dm, tdm, tv, points[cpf], f, points[cpg], g, l2g, lda, &a[r * lda + c]));
744: c += gdof;
745: }
746: }
747: PetscCheck(c == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of columns %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
748: r += fdof;
749: }
750: }
751: PetscCheck(r == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of rows %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
752: PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
753: PetscFunctionReturn(PETSC_SUCCESS);
754: }
756: static PetscErrorCode DMPlexBasisTransform_Internal(DM dm, Vec lv, PetscBool l2g)
757: {
758: DM tdm;
759: Vec tv;
760: PetscSection ts, s;
761: const PetscScalar *ta;
762: PetscScalar *a, *va;
763: PetscInt pStart, pEnd, p, Nf, f;
765: PetscFunctionBegin;
766: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
767: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
768: PetscCall(DMGetLocalSection(tdm, &ts));
769: PetscCall(DMGetLocalSection(dm, &s));
770: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
771: PetscCall(PetscSectionGetNumFields(s, &Nf));
772: PetscCall(VecGetArray(lv, &a));
773: PetscCall(VecGetArrayRead(tv, &ta));
774: for (p = pStart; p < pEnd; ++p) {
775: for (f = 0; f < Nf; ++f) {
776: PetscCall(DMPlexPointLocalFieldRef(dm, p, f, a, &va));
777: PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, p, f, l2g, va));
778: }
779: }
780: PetscCall(VecRestoreArray(lv, &a));
781: PetscCall(VecRestoreArrayRead(tv, &ta));
782: PetscFunctionReturn(PETSC_SUCCESS);
783: }
785: /*@
786: DMPlexGlobalToLocalBasis - Transform the values in the given local vector from the global basis to the local basis
788: Input Parameters:
789: + dm - The `DM`
790: - lv - A local vector with values in the global basis
792: Output Parameter:
793: . lv - A local vector with values in the local basis
795: Level: developer
797: Note:
798: This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user will have a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.
800: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexLocalToGlobalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
801: @*/
802: PetscErrorCode DMPlexGlobalToLocalBasis(DM dm, Vec lv)
803: {
804: PetscFunctionBegin;
807: PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_FALSE));
808: PetscFunctionReturn(PETSC_SUCCESS);
809: }
811: /*@
812: DMPlexLocalToGlobalBasis - Transform the values in the given local vector from the local basis to the global basis
814: Input Parameters:
815: + dm - The `DM`
816: - lv - A local vector with values in the local basis
818: Output Parameter:
819: . lv - A local vector with values in the global basis
821: Level: developer
823: Note:
824: This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user would want a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.
826: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
827: @*/
828: PetscErrorCode DMPlexLocalToGlobalBasis(DM dm, Vec lv)
829: {
830: PetscFunctionBegin;
833: PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_TRUE));
834: PetscFunctionReturn(PETSC_SUCCESS);
835: }
837: /*@
838: DMPlexCreateBasisRotation - Create an internal transformation from the global basis, used to specify boundary conditions
839: and global solutions, to a local basis, appropriate for discretization integrals and assembly.
841: Input Parameters:
842: + dm - The `DM`
843: . alpha - The first Euler angle, and in 2D the only one
844: . beta - The second Euler angle
845: - gamma - The third Euler angle
847: Level: developer
849: Note:
850: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
851: we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows
852: .vb
853: The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
854: The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
855: The XYZ system rotates a third time about the z axis by gamma.
856: .ve
858: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMPlexLocalToGlobalBasis()`
859: @*/
860: PetscErrorCode DMPlexCreateBasisRotation(DM dm, PetscReal alpha, PetscReal beta, PetscReal gamma)
861: {
862: RotCtx *rc;
863: PetscInt cdim;
865: PetscFunctionBegin;
866: PetscCall(DMGetCoordinateDim(dm, &cdim));
867: PetscCall(PetscMalloc1(1, &rc));
868: dm->transformCtx = rc;
869: dm->transformSetUp = DMPlexBasisTransformSetUp_Rotation_Internal;
870: dm->transformDestroy = DMPlexBasisTransformDestroy_Rotation_Internal;
871: dm->transformGetMatrix = DMPlexBasisTransformGetMatrix_Rotation_Internal;
872: rc->dim = cdim;
873: rc->alpha = alpha;
874: rc->beta = beta;
875: rc->gamma = gamma;
876: PetscCall((*dm->transformSetUp)(dm, dm->transformCtx));
877: PetscCall(DMConstructBasisTransform_Internal(dm));
878: PetscFunctionReturn(PETSC_SUCCESS);
879: }
881: /*@C
882: DMPlexInsertBoundaryValuesEssential - Insert boundary values into a local vector using a function of the coordinates
884: Input Parameters:
885: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
886: . time - The time
887: . field - The field to constrain
888: . Nc - The number of constrained field components, or 0 for all components
889: . comps - An array of constrained component numbers, or `NULL` for all components
890: . label - The `DMLabel` defining constrained points
891: . numids - The number of `DMLabel` ids for constrained points
892: . ids - An array of ids for constrained points
893: . func - A pointwise function giving boundary values
894: - ctx - An optional user context for bcFunc
896: Output Parameter:
897: . locX - A local vector to receives the boundary values
899: Level: developer
901: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMLabel`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
902: @*/
903: PetscErrorCode DMPlexInsertBoundaryValuesEssential(DM dm, PetscReal time, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, Vec locX)
904: {
905: PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
906: void **ctxs;
907: PetscInt numFields;
909: PetscFunctionBegin;
910: PetscCall(DMGetNumFields(dm, &numFields));
911: PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
912: funcs[field] = func;
913: ctxs[field] = ctx;
914: PetscCall(DMProjectFunctionLabelLocal(dm, time, label, numids, ids, Nc, comps, funcs, ctxs, INSERT_BC_VALUES, locX));
915: PetscCall(PetscFree2(funcs, ctxs));
916: PetscFunctionReturn(PETSC_SUCCESS);
917: }
919: /*@C
920: DMPlexInsertBoundaryValuesEssentialField - Insert boundary values into a local vector using a function of the coordinates and field data
922: Input Parameters:
923: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
924: . time - The time
925: . locU - A local vector with the input solution values
926: . field - The field to constrain
927: . Nc - The number of constrained field components, or 0 for all components
928: . comps - An array of constrained component numbers, or `NULL` for all components
929: . label - The `DMLabel` defining constrained points
930: . numids - The number of `DMLabel` ids for constrained points
931: . ids - An array of ids for constrained points
932: . func - A pointwise function giving boundary values
933: - ctx - An optional user context for bcFunc
935: Output Parameter:
936: . locX - A local vector to receives the boundary values
938: Level: developer
940: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
941: @*/
942: PetscErrorCode DMPlexInsertBoundaryValuesEssentialField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
943: {
944: void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
945: void **ctxs;
946: PetscInt numFields;
948: PetscFunctionBegin;
949: PetscCall(DMGetNumFields(dm, &numFields));
950: PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
951: funcs[field] = func;
952: ctxs[field] = ctx;
953: PetscCall(DMProjectFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
954: PetscCall(PetscFree2(funcs, ctxs));
955: PetscFunctionReturn(PETSC_SUCCESS);
956: }
958: /*@C
959: DMPlexInsertBoundaryValuesEssentialBdField - Insert boundary values into a local vector using a function of the coordinates and boundary field data
961: Collective
963: Input Parameters:
964: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
965: . time - The time
966: . locU - A local vector with the input solution values
967: . field - The field to constrain
968: . Nc - The number of constrained field components, or 0 for all components
969: . comps - An array of constrained component numbers, or `NULL` for all components
970: . label - The `DMLabel` defining constrained points
971: . numids - The number of `DMLabel` ids for constrained points
972: . ids - An array of ids for constrained points
973: . func - A pointwise function giving boundary values, the calling sequence is given in `DMProjectBdFieldLabelLocal()`
974: - ctx - An optional user context for `func`
976: Output Parameter:
977: . locX - A local vector to receive the boundary values
979: Level: developer
981: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectBdFieldLabelLocal()`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
982: @*/
983: PetscErrorCode DMPlexInsertBoundaryValuesEssentialBdField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
984: {
985: void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
986: void **ctxs;
987: PetscInt numFields;
989: PetscFunctionBegin;
990: PetscCall(DMGetNumFields(dm, &numFields));
991: PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
992: funcs[field] = func;
993: ctxs[field] = ctx;
994: PetscCall(DMProjectBdFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
995: PetscCall(PetscFree2(funcs, ctxs));
996: PetscFunctionReturn(PETSC_SUCCESS);
997: }
999: /*@C
1000: DMPlexInsertBoundaryValuesRiemann - Insert boundary values into a local vector
1002: Input Parameters:
1003: + dm - The `DM`, with a `PetscDS` that matches the problem being constrained
1004: . time - The time
1005: . faceGeometry - A vector with the FVM face geometry information
1006: . cellGeometry - A vector with the FVM cell geometry information
1007: . Grad - A vector with the FVM cell gradient information
1008: . field - The field to constrain
1009: . Nc - The number of constrained field components, or 0 for all components
1010: . comps - An array of constrained component numbers, or `NULL` for all components
1011: . label - The `DMLabel` defining constrained points
1012: . numids - The number of `DMLabel` ids for constrained points
1013: . ids - An array of ids for constrained points
1014: . func - A pointwise function giving boundary values
1015: - ctx - An optional user context for bcFunc
1017: Output Parameter:
1018: . locX - A local vector to receives the boundary values
1020: Level: developer
1022: Note:
1023: This implementation currently ignores the numcomps/comps argument from `DMAddBoundary()`
1025: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
1026: @*/
1027: PetscErrorCode DMPlexInsertBoundaryValuesRiemann(DM dm, PetscReal time, Vec faceGeometry, Vec cellGeometry, Vec Grad, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *), void *ctx, Vec locX)
1028: {
1029: PetscDS prob;
1030: PetscSF sf;
1031: DM dmFace, dmCell, dmGrad;
1032: const PetscScalar *facegeom, *cellgeom = NULL, *grad;
1033: const PetscInt *leaves;
1034: PetscScalar *x, *fx;
1035: PetscInt dim, nleaves, loc, fStart, fEnd, pdim, i;
1036: PetscErrorCode ierru = PETSC_SUCCESS;
1038: PetscFunctionBegin;
1039: PetscCall(DMGetPointSF(dm, &sf));
1040: PetscCall(PetscSFGetGraph(sf, NULL, &nleaves, &leaves, NULL));
1041: nleaves = PetscMax(0, nleaves);
1042: PetscCall(DMGetDimension(dm, &dim));
1043: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1044: PetscCall(DMGetDS(dm, &prob));
1045: PetscCall(VecGetDM(faceGeometry, &dmFace));
1046: PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
1047: if (cellGeometry) {
1048: PetscCall(VecGetDM(cellGeometry, &dmCell));
1049: PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
1050: }
1051: if (Grad) {
1052: PetscFV fv;
1054: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fv));
1055: PetscCall(VecGetDM(Grad, &dmGrad));
1056: PetscCall(VecGetArrayRead(Grad, &grad));
1057: PetscCall(PetscFVGetNumComponents(fv, &pdim));
1058: PetscCall(DMGetWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1059: }
1060: PetscCall(VecGetArray(locX, &x));
1061: for (i = 0; i < numids; ++i) {
1062: IS faceIS;
1063: const PetscInt *faces;
1064: PetscInt numFaces, f;
1066: PetscCall(DMLabelGetStratumIS(label, ids[i], &faceIS));
1067: if (!faceIS) continue; /* No points with that id on this process */
1068: PetscCall(ISGetLocalSize(faceIS, &numFaces));
1069: PetscCall(ISGetIndices(faceIS, &faces));
1070: for (f = 0; f < numFaces; ++f) {
1071: const PetscInt face = faces[f], *cells;
1072: PetscFVFaceGeom *fg;
1074: if ((face < fStart) || (face >= fEnd)) continue; /* Refinement adds non-faces to labels */
1075: PetscCall(PetscFindInt(face, nleaves, (PetscInt *)leaves, &loc));
1076: if (loc >= 0) continue;
1077: PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
1078: PetscCall(DMPlexGetSupport(dm, face, &cells));
1079: if (Grad) {
1080: PetscFVCellGeom *cg;
1081: PetscScalar *cx, *cgrad;
1082: PetscScalar *xG;
1083: PetscReal dx[3];
1084: PetscInt d;
1086: PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cg));
1087: PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &cx));
1088: PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], grad, &cgrad));
1089: PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1090: DMPlex_WaxpyD_Internal(dim, -1, cg->centroid, fg->centroid, dx);
1091: for (d = 0; d < pdim; ++d) fx[d] = cx[d] + DMPlex_DotD_Internal(dim, &cgrad[d * dim], dx);
1092: PetscCall((*func)(time, fg->centroid, fg->normal, fx, xG, ctx));
1093: } else {
1094: PetscScalar *xI;
1095: PetscScalar *xG;
1097: PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &xI));
1098: PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1099: ierru = (*func)(time, fg->centroid, fg->normal, xI, xG, ctx);
1100: if (ierru) {
1101: PetscCall(ISRestoreIndices(faceIS, &faces));
1102: PetscCall(ISDestroy(&faceIS));
1103: goto cleanup;
1104: }
1105: }
1106: }
1107: PetscCall(ISRestoreIndices(faceIS, &faces));
1108: PetscCall(ISDestroy(&faceIS));
1109: }
1110: cleanup:
1111: PetscCall(VecRestoreArray(locX, &x));
1112: if (Grad) {
1113: PetscCall(DMRestoreWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1114: PetscCall(VecRestoreArrayRead(Grad, &grad));
1115: }
1116: if (cellGeometry) PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
1117: PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
1118: PetscCall(ierru);
1119: PetscFunctionReturn(PETSC_SUCCESS);
1120: }
1122: static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
1123: {
1124: PetscInt c;
1125: for (c = 0; c < Nc; ++c) u[c] = 0.0;
1126: return PETSC_SUCCESS;
1127: }
1129: PetscErrorCode DMPlexInsertBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1130: {
1131: PetscObject isZero;
1132: PetscDS prob;
1133: PetscInt numBd, b;
1135: PetscFunctionBegin;
1136: PetscCall(DMGetDS(dm, &prob));
1137: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1138: PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1139: PetscCall(PetscDSUpdateBoundaryLabels(prob, dm));
1140: for (b = 0; b < numBd; ++b) {
1141: PetscWeakForm wf;
1142: DMBoundaryConditionType type;
1143: const char *name;
1144: DMLabel label;
1145: PetscInt field, Nc;
1146: const PetscInt *comps;
1147: PetscObject obj;
1148: PetscClassId id;
1149: void (*bvfunc)(void);
1150: PetscInt numids;
1151: const PetscInt *ids;
1152: void *ctx;
1154: PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, &bvfunc, NULL, &ctx));
1155: if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1156: PetscCall(DMGetField(dm, field, NULL, &obj));
1157: PetscCall(PetscObjectGetClassId(obj, &id));
1158: if (id == PETSCFE_CLASSID) {
1159: switch (type) {
1160: /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1161: case DM_BC_ESSENTIAL: {
1162: PetscSimplePointFn *func = (PetscSimplePointFn *)bvfunc;
1164: if (isZero) func = zero;
1165: PetscCall(DMPlexLabelAddCells(dm, label));
1166: PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func, ctx, locX));
1167: PetscCall(DMPlexLabelClearCells(dm, label));
1168: } break;
1169: case DM_BC_ESSENTIAL_FIELD: {
1170: PetscPointFunc func = (PetscPointFunc)bvfunc;
1172: PetscCall(DMPlexLabelAddCells(dm, label));
1173: PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func, ctx, locX));
1174: PetscCall(DMPlexLabelClearCells(dm, label));
1175: } break;
1176: default:
1177: break;
1178: }
1179: } else if (id == PETSCFV_CLASSID) {
1180: {
1181: PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *) = (PetscErrorCode (*)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *))bvfunc;
1183: if (!faceGeomFVM) continue;
1184: PetscCall(DMPlexInsertBoundaryValuesRiemann(dm, time, faceGeomFVM, cellGeomFVM, gradFVM, field, Nc, comps, label, numids, ids, func, ctx, locX));
1185: }
1186: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1187: }
1188: PetscFunctionReturn(PETSC_SUCCESS);
1189: }
1191: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1192: {
1193: PetscObject isZero;
1194: PetscDS prob;
1195: PetscInt numBd, b;
1197: PetscFunctionBegin;
1198: if (!locX) PetscFunctionReturn(PETSC_SUCCESS);
1199: PetscCall(DMGetDS(dm, &prob));
1200: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1201: PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1202: for (b = 0; b < numBd; ++b) {
1203: PetscWeakForm wf;
1204: DMBoundaryConditionType type;
1205: const char *name;
1206: DMLabel label;
1207: PetscInt field, Nc;
1208: const PetscInt *comps;
1209: PetscObject obj;
1210: PetscClassId id;
1211: PetscInt numids;
1212: const PetscInt *ids;
1213: void (*bvfunc)(void);
1214: void *ctx;
1216: PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, NULL, &bvfunc, &ctx));
1217: if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1218: PetscCall(DMGetField(dm, field, NULL, &obj));
1219: PetscCall(PetscObjectGetClassId(obj, &id));
1220: if (id == PETSCFE_CLASSID) {
1221: switch (type) {
1222: /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1223: case DM_BC_ESSENTIAL: {
1224: PetscSimplePointFn *func_t = (PetscSimplePointFn *)bvfunc;
1226: if (isZero) func_t = zero;
1227: PetscCall(DMPlexLabelAddCells(dm, label));
1228: PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1229: PetscCall(DMPlexLabelClearCells(dm, label));
1230: } break;
1231: case DM_BC_ESSENTIAL_FIELD: {
1232: PetscPointFunc func_t = (PetscPointFunc)bvfunc;
1234: PetscCall(DMPlexLabelAddCells(dm, label));
1235: PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1236: PetscCall(DMPlexLabelClearCells(dm, label));
1237: } break;
1238: default:
1239: break;
1240: }
1241: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1242: }
1243: PetscFunctionReturn(PETSC_SUCCESS);
1244: }
1246: /*@
1247: DMPlexInsertBoundaryValues - Puts coefficients which represent boundary values into the local solution vector
1249: Not Collective
1251: Input Parameters:
1252: + dm - The `DM`
1253: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1254: . time - The time
1255: . faceGeomFVM - Face geometry data for FV discretizations
1256: . cellGeomFVM - Cell geometry data for FV discretizations
1257: - gradFVM - Gradient reconstruction data for FV discretizations
1259: Output Parameter:
1260: . locX - Solution updated with boundary values
1262: Level: intermediate
1264: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`, `DMAddBoundary()`
1265: @*/
1266: PetscErrorCode DMPlexInsertBoundaryValues(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1267: {
1268: PetscFunctionBegin;
1274: PetscTryMethod(dm, "DMPlexInsertBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX, time, faceGeomFVM, cellGeomFVM, gradFVM));
1275: PetscFunctionReturn(PETSC_SUCCESS);
1276: }
1278: /*@
1279: DMPlexInsertTimeDerivativeBoundaryValues - Puts coefficients which represent boundary values of the time derivative into the local solution vector
1281: Input Parameters:
1282: + dm - The `DM`
1283: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1284: . time - The time
1285: . faceGeomFVM - Face geometry data for FV discretizations
1286: . cellGeomFVM - Cell geometry data for FV discretizations
1287: - gradFVM - Gradient reconstruction data for FV discretizations
1289: Output Parameter:
1290: . locX_t - Solution updated with boundary values
1292: Level: developer
1294: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`
1295: @*/
1296: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues(DM dm, PetscBool insertEssential, Vec locX_t, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1297: {
1298: PetscFunctionBegin;
1304: PetscTryMethod(dm, "DMPlexInsertTimeDerivativeBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX_t, time, faceGeomFVM, cellGeomFVM, gradFVM));
1305: PetscFunctionReturn(PETSC_SUCCESS);
1306: }
1308: // Handle non-essential (e.g. outflow) boundary values
1309: PetscErrorCode DMPlexInsertBoundaryValuesFVM(DM dm, PetscFV fv, Vec locX, PetscReal time, Vec *locGradient)
1310: {
1311: DM dmGrad;
1312: Vec cellGeometryFVM, faceGeometryFVM, locGrad = NULL;
1314: PetscFunctionBegin;
1318: if (locGradient) {
1319: PetscAssertPointer(locGradient, 5);
1320: *locGradient = NULL;
1321: }
1322: PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
1323: /* Reconstruct and limit cell gradients */
1324: PetscCall(DMPlexGetGradientDM(dm, fv, &dmGrad));
1325: if (dmGrad) {
1326: Vec grad;
1327: PetscInt fStart, fEnd;
1329: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1330: PetscCall(DMGetGlobalVector(dmGrad, &grad));
1331: PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
1332: /* Communicate gradient values */
1333: PetscCall(DMGetLocalVector(dmGrad, &locGrad));
1334: PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
1335: PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
1336: PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
1337: }
1338: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, time, faceGeometryFVM, cellGeometryFVM, locGrad));
1339: if (locGradient) *locGradient = locGrad;
1340: else if (locGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
1341: PetscFunctionReturn(PETSC_SUCCESS);
1342: }
1344: PetscErrorCode DMComputeL2Diff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1345: {
1346: Vec localX;
1348: PetscFunctionBegin;
1349: PetscCall(DMGetLocalVector(dm, &localX));
1350: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, localX, time, NULL, NULL, NULL));
1351: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1352: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1353: PetscCall(DMPlexComputeL2DiffLocal(dm, time, funcs, ctxs, localX, diff));
1354: PetscCall(DMRestoreLocalVector(dm, &localX));
1355: PetscFunctionReturn(PETSC_SUCCESS);
1356: }
1358: /*@C
1359: DMPlexComputeL2DiffLocal - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h.
1361: Collective
1363: Input Parameters:
1364: + dm - The `DM`
1365: . time - The time
1366: . funcs - The functions to evaluate for each field component
1367: . ctxs - Optional array of contexts to pass to each function, or `NULL`.
1368: - localX - The coefficient vector u_h, a local vector
1370: Output Parameter:
1371: . diff - The diff ||u - u_h||_2
1373: Level: developer
1375: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1376: @*/
1377: PetscErrorCode DMPlexComputeL2DiffLocal(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec localX, PetscReal *diff)
1378: {
1379: const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1380: DM tdm;
1381: Vec tv;
1382: PetscSection section;
1383: PetscQuadrature quad;
1384: PetscFEGeom fegeom;
1385: PetscScalar *funcVal, *interpolant;
1386: PetscReal *coords, *gcoords;
1387: PetscReal localDiff = 0.0;
1388: const PetscReal *quadWeights;
1389: PetscInt dim, coordDim, numFields, numComponents = 0, qNc, Nq, cellHeight, cStart, cEnd, c, field, fieldOffset;
1390: PetscBool transform;
1392: PetscFunctionBegin;
1393: PetscCall(DMGetDimension(dm, &dim));
1394: PetscCall(DMGetCoordinateDim(dm, &coordDim));
1395: fegeom.dimEmbed = coordDim;
1396: PetscCall(DMGetLocalSection(dm, §ion));
1397: PetscCall(PetscSectionGetNumFields(section, &numFields));
1398: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1399: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1400: PetscCall(DMHasBasisTransform(dm, &transform));
1401: PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
1402: for (field = 0; field < numFields; ++field) {
1403: PetscObject obj;
1404: PetscClassId id;
1405: PetscInt Nc;
1407: PetscCall(DMGetField(dm, field, NULL, &obj));
1408: PetscCall(PetscObjectGetClassId(obj, &id));
1409: if (id == PETSCFE_CLASSID) {
1410: PetscFE fe = (PetscFE)obj;
1412: PetscCall(PetscFEGetQuadrature(fe, &quad));
1413: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1414: } else if (id == PETSCFV_CLASSID) {
1415: PetscFV fv = (PetscFV)obj;
1417: PetscCall(PetscFVGetQuadrature(fv, &quad));
1418: PetscCall(PetscFVGetNumComponents(fv, &Nc));
1419: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1420: numComponents += Nc;
1421: }
1422: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1423: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1424: PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * (Nq + 1), &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1425: PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
1426: PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
1427: for (c = cStart; c < cEnd; ++c) {
1428: PetscScalar *x = NULL;
1429: PetscReal elemDiff = 0.0;
1430: PetscInt qc = 0;
1432: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1433: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));
1435: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1436: PetscObject obj;
1437: PetscClassId id;
1438: void *const ctx = ctxs ? ctxs[field] : NULL;
1439: PetscInt Nb, Nc, q, fc;
1441: PetscCall(DMGetField(dm, field, NULL, &obj));
1442: PetscCall(PetscObjectGetClassId(obj, &id));
1443: if (id == PETSCFE_CLASSID) {
1444: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1445: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1446: } else if (id == PETSCFV_CLASSID) {
1447: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1448: Nb = 1;
1449: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1450: if (debug) {
1451: char title[1024];
1452: PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1453: PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1454: }
1455: for (q = 0; q < Nq; ++q) {
1456: PetscFEGeom qgeom;
1457: PetscErrorCode ierr;
1459: qgeom.dimEmbed = fegeom.dimEmbed;
1460: qgeom.J = &fegeom.J[q * coordDim * coordDim];
1461: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
1462: qgeom.detJ = &fegeom.detJ[q];
1463: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", point %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1464: if (transform) {
1465: gcoords = &coords[coordDim * Nq];
1466: PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1467: } else {
1468: gcoords = &coords[coordDim * q];
1469: }
1470: PetscCall(PetscArrayzero(funcVal, Nc));
1471: ierr = (*funcs[field])(coordDim, time, gcoords, Nc, funcVal, ctx);
1472: if (ierr) {
1473: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1474: PetscCall(DMRestoreLocalVector(dm, &localX));
1475: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1476: }
1477: if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1478: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1479: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1480: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1481: for (fc = 0; fc < Nc; ++fc) {
1482: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1483: if (debug)
1484: PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g (%g, %g)\n", c, field, fc, (double)(coordDim > 0 ? coords[coordDim * q] : 0.), (double)(coordDim > 1 ? coords[coordDim * q + 1] : 0.), (double)(coordDim > 2 ? coords[coordDim * q + 2] : 0.),
1485: (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q]), (double)PetscRealPart(interpolant[fc]), (double)PetscRealPart(funcVal[fc])));
1486: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1487: }
1488: }
1489: fieldOffset += Nb;
1490: qc += Nc;
1491: }
1492: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1493: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1494: localDiff += elemDiff;
1495: }
1496: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1497: PetscCallMPI(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1498: *diff = PetscSqrtReal(*diff);
1499: PetscFunctionReturn(PETSC_SUCCESS);
1500: }
1502: PetscErrorCode DMComputeL2GradientDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, const PetscReal n[], PetscReal *diff)
1503: {
1504: const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1505: DM tdm;
1506: PetscSection section;
1507: PetscQuadrature quad;
1508: Vec localX, tv;
1509: PetscScalar *funcVal, *interpolant;
1510: const PetscReal *quadWeights;
1511: PetscFEGeom fegeom;
1512: PetscReal *coords, *gcoords;
1513: PetscReal localDiff = 0.0;
1514: PetscInt dim, coordDim, qNc = 0, Nq = 0, numFields, numComponents = 0, cStart, cEnd, c, field, fieldOffset;
1515: PetscBool transform;
1517: PetscFunctionBegin;
1518: PetscCall(DMGetDimension(dm, &dim));
1519: PetscCall(DMGetCoordinateDim(dm, &coordDim));
1520: fegeom.dimEmbed = coordDim;
1521: PetscCall(DMGetLocalSection(dm, §ion));
1522: PetscCall(PetscSectionGetNumFields(section, &numFields));
1523: PetscCall(DMGetLocalVector(dm, &localX));
1524: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1525: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1526: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1527: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1528: PetscCall(DMHasBasisTransform(dm, &transform));
1529: for (field = 0; field < numFields; ++field) {
1530: PetscFE fe;
1531: PetscInt Nc;
1533: PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1534: PetscCall(PetscFEGetQuadrature(fe, &quad));
1535: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1536: numComponents += Nc;
1537: }
1538: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1539: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1540: /* PetscCall(DMProjectFunctionLocal(dm, fe, funcs, INSERT_BC_VALUES, localX)); */
1541: PetscCall(PetscMalloc6(numComponents, &funcVal, coordDim * (Nq + 1), &coords, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ, numComponents * coordDim, &interpolant, Nq, &fegeom.detJ));
1542: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1543: for (c = cStart; c < cEnd; ++c) {
1544: PetscScalar *x = NULL;
1545: PetscReal elemDiff = 0.0;
1546: PetscInt qc = 0;
1548: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1549: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));
1551: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1552: PetscFE fe;
1553: void *const ctx = ctxs ? ctxs[field] : NULL;
1554: PetscInt Nb, Nc, q, fc;
1556: PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1557: PetscCall(PetscFEGetDimension(fe, &Nb));
1558: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1559: if (debug) {
1560: char title[1024];
1561: PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1562: PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1563: }
1564: for (q = 0; q < Nq; ++q) {
1565: PetscFEGeom qgeom;
1566: PetscErrorCode ierr;
1568: qgeom.dimEmbed = fegeom.dimEmbed;
1569: qgeom.J = &fegeom.J[q * coordDim * coordDim];
1570: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
1571: qgeom.detJ = &fegeom.detJ[q];
1572: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1573: if (transform) {
1574: gcoords = &coords[coordDim * Nq];
1575: PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1576: } else {
1577: gcoords = &coords[coordDim * q];
1578: }
1579: PetscCall(PetscArrayzero(funcVal, Nc));
1580: ierr = (*funcs[field])(coordDim, time, gcoords, n, Nc, funcVal, ctx);
1581: if (ierr) {
1582: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1583: PetscCall(DMRestoreLocalVector(dm, &localX));
1584: PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1585: }
1586: if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1587: PetscCall(PetscFEInterpolateGradient_Static(fe, 1, &x[fieldOffset], &qgeom, q, interpolant));
1588: /* Overwrite with the dot product if the normal is given */
1589: if (n) {
1590: for (fc = 0; fc < Nc; ++fc) {
1591: PetscScalar sum = 0.0;
1592: PetscInt d;
1593: for (d = 0; d < dim; ++d) sum += interpolant[fc * dim + d] * n[d];
1594: interpolant[fc] = sum;
1595: }
1596: }
1597: for (fc = 0; fc < Nc; ++fc) {
1598: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1599: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " fieldDer %" PetscInt_FMT ",%" PetscInt_FMT " diff %g\n", c, field, fc, (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1600: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1601: }
1602: }
1603: fieldOffset += Nb;
1604: qc += Nc;
1605: }
1606: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1607: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1608: localDiff += elemDiff;
1609: }
1610: PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1611: PetscCall(DMRestoreLocalVector(dm, &localX));
1612: PetscCallMPI(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1613: *diff = PetscSqrtReal(*diff);
1614: PetscFunctionReturn(PETSC_SUCCESS);
1615: }
1617: PetscErrorCode DMComputeL2FieldDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1618: {
1619: const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1620: DM tdm;
1621: DMLabel depthLabel;
1622: PetscSection section;
1623: Vec localX, tv;
1624: PetscReal *localDiff;
1625: PetscInt dim, depth, dE, Nf, f, Nds, s;
1626: PetscBool transform;
1628: PetscFunctionBegin;
1629: PetscCall(DMGetDimension(dm, &dim));
1630: PetscCall(DMGetCoordinateDim(dm, &dE));
1631: PetscCall(DMGetLocalSection(dm, §ion));
1632: PetscCall(DMGetLocalVector(dm, &localX));
1633: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1634: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1635: PetscCall(DMHasBasisTransform(dm, &transform));
1636: PetscCall(DMGetNumFields(dm, &Nf));
1637: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
1638: PetscCall(DMLabelGetNumValues(depthLabel, &depth));
1640: PetscCall(VecSet(localX, 0.0));
1641: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1642: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1643: PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1644: PetscCall(DMGetNumDS(dm, &Nds));
1645: PetscCall(PetscCalloc1(Nf, &localDiff));
1646: for (s = 0; s < Nds; ++s) {
1647: PetscDS ds;
1648: DMLabel label;
1649: IS fieldIS, pointIS;
1650: const PetscInt *fields, *points = NULL;
1651: PetscQuadrature quad;
1652: const PetscReal *quadPoints, *quadWeights;
1653: PetscFEGeom fegeom;
1654: PetscReal *coords, *gcoords;
1655: PetscScalar *funcVal, *interpolant;
1656: PetscBool isCohesive;
1657: PetscInt qNc, Nq, totNc, cStart = 0, cEnd, c, dsNf;
1659: PetscCall(DMGetRegionNumDS(dm, s, &label, &fieldIS, &ds, NULL));
1660: PetscCall(ISGetIndices(fieldIS, &fields));
1661: PetscCall(PetscDSIsCohesive(ds, &isCohesive));
1662: PetscCall(PetscDSGetNumFields(ds, &dsNf));
1663: PetscCall(PetscDSGetTotalComponents(ds, &totNc));
1664: PetscCall(PetscDSGetQuadrature(ds, &quad));
1665: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1666: PetscCheck(!(qNc != 1) || !(qNc != totNc), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, totNc);
1667: PetscCall(PetscCalloc6(totNc, &funcVal, totNc, &interpolant, dE * (Nq + 1), &coords, Nq, &fegeom.detJ, dE * dE * Nq, &fegeom.J, dE * dE * Nq, &fegeom.invJ));
1668: if (!label) {
1669: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1670: } else {
1671: PetscCall(DMLabelGetStratumIS(label, 1, &pointIS));
1672: PetscCall(ISGetLocalSize(pointIS, &cEnd));
1673: PetscCall(ISGetIndices(pointIS, &points));
1674: }
1675: for (c = cStart; c < cEnd; ++c) {
1676: const PetscInt cell = points ? points[c] : c;
1677: PetscScalar *x = NULL;
1678: const PetscInt *cone;
1679: PetscInt qc = 0, fOff = 0, dep;
1681: PetscCall(DMLabelGetValue(depthLabel, cell, &dep));
1682: if (dep != depth - 1) continue;
1683: if (isCohesive) {
1684: PetscCall(DMPlexGetCone(dm, cell, &cone));
1685: PetscCall(DMPlexComputeCellGeometryFEM(dm, cone[0], quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1686: } else {
1687: PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1688: }
1689: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, cell, 0, NULL, &x));
1690: for (f = 0; f < dsNf; ++f) {
1691: PetscObject obj;
1692: PetscClassId id;
1693: void *const ctx = ctxs ? ctxs[fields[f]] : NULL;
1694: PetscInt Nb, Nc, q, fc;
1695: PetscReal elemDiff = 0.0;
1696: PetscBool cohesive;
1698: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
1699: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
1700: PetscCall(PetscObjectGetClassId(obj, &id));
1701: if (id == PETSCFE_CLASSID) {
1702: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1703: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1704: } else if (id == PETSCFV_CLASSID) {
1705: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1706: Nb = 1;
1707: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1708: if (isCohesive && !cohesive) {
1709: fOff += Nb * 2;
1710: qc += Nc;
1711: continue;
1712: }
1713: if (debug) {
1714: char title[1024];
1715: PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, fields[f]));
1716: PetscCall(DMPrintCellVector(cell, title, Nb, &x[fOff]));
1717: }
1718: for (q = 0; q < Nq; ++q) {
1719: PetscFEGeom qgeom;
1720: PetscErrorCode ierr;
1722: qgeom.dimEmbed = fegeom.dimEmbed;
1723: qgeom.J = &fegeom.J[q * dE * dE];
1724: qgeom.invJ = &fegeom.invJ[q * dE * dE];
1725: qgeom.detJ = &fegeom.detJ[q];
1726: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for cell %" PetscInt_FMT ", quadrature point %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
1727: if (transform) {
1728: gcoords = &coords[dE * Nq];
1729: PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[dE * q], PETSC_TRUE, dE, &coords[dE * q], gcoords, dm->transformCtx));
1730: } else {
1731: gcoords = &coords[dE * q];
1732: }
1733: for (fc = 0; fc < Nc; ++fc) funcVal[fc] = 0.;
1734: ierr = (*funcs[fields[f]])(dE, time, gcoords, Nc, funcVal, ctx);
1735: if (ierr) {
1736: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1737: PetscCall(DMRestoreLocalVector(dm, &localX));
1738: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1739: }
1740: if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[dE * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1741: /* Call once for each face, except for lagrange field */
1742: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fOff], &qgeom, q, interpolant));
1743: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fOff], q, interpolant));
1744: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1745: for (fc = 0; fc < Nc; ++fc) {
1746: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1747: if (debug)
1748: PetscCall(PetscPrintf(PETSC_COMM_SELF, " cell %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g\n", cell, fields[f], fc, (double)(dE > 0 ? coords[dE * q] : 0.), (double)(dE > 1 ? coords[dE * q + 1] : 0.), (double)(dE > 2 ? coords[dE * q + 2] : 0.),
1749: (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1750: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1751: }
1752: }
1753: fOff += Nb;
1754: qc += Nc;
1755: localDiff[fields[f]] += elemDiff;
1756: if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, " cell %" PetscInt_FMT " field %" PetscInt_FMT " cum diff %g\n", cell, fields[f], (double)localDiff[fields[f]]));
1757: }
1758: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1759: }
1760: if (label) {
1761: PetscCall(ISRestoreIndices(pointIS, &points));
1762: PetscCall(ISDestroy(&pointIS));
1763: }
1764: PetscCall(ISRestoreIndices(fieldIS, &fields));
1765: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1766: }
1767: PetscCall(DMRestoreLocalVector(dm, &localX));
1768: PetscCallMPI(MPIU_Allreduce(localDiff, diff, (PetscMPIInt)Nf, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1769: PetscCall(PetscFree(localDiff));
1770: for (f = 0; f < Nf; ++f) diff[f] = PetscSqrtReal(diff[f]);
1771: PetscFunctionReturn(PETSC_SUCCESS);
1772: }
1774: /*@C
1775: DMPlexComputeL2DiffVec - This function computes the cellwise L_2 difference between a function u and an FEM interpolant solution u_h, and stores it in a Vec.
1777: Collective
1779: Input Parameters:
1780: + dm - The `DM`
1781: . time - The time
1782: . funcs - The functions to evaluate for each field component: `NULL` means that component does not contribute to error calculation
1783: . ctxs - Optional array of contexts to pass to each function, or `NULL`.
1784: - X - The coefficient vector u_h
1786: Output Parameter:
1787: . D - A `Vec` which holds the difference ||u - u_h||_2 for each cell
1789: Level: developer
1791: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1792: @*/
1793: PetscErrorCode DMPlexComputeL2DiffVec(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, Vec D)
1794: {
1795: PetscSection section;
1796: PetscQuadrature quad;
1797: Vec localX;
1798: PetscFEGeom fegeom;
1799: PetscScalar *funcVal, *interpolant;
1800: PetscReal *coords;
1801: const PetscReal *quadPoints, *quadWeights;
1802: PetscInt dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, c, field, fieldOffset;
1804: PetscFunctionBegin;
1805: PetscCall(VecSet(D, 0.0));
1806: PetscCall(DMGetDimension(dm, &dim));
1807: PetscCall(DMGetCoordinateDim(dm, &coordDim));
1808: PetscCall(DMGetLocalSection(dm, §ion));
1809: PetscCall(PetscSectionGetNumFields(section, &numFields));
1810: PetscCall(DMGetLocalVector(dm, &localX));
1811: PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1812: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1813: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1814: for (field = 0; field < numFields; ++field) {
1815: PetscObject obj;
1816: PetscClassId id;
1817: PetscInt Nc;
1819: PetscCall(DMGetField(dm, field, NULL, &obj));
1820: PetscCall(PetscObjectGetClassId(obj, &id));
1821: if (id == PETSCFE_CLASSID) {
1822: PetscFE fe = (PetscFE)obj;
1824: PetscCall(PetscFEGetQuadrature(fe, &quad));
1825: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1826: } else if (id == PETSCFV_CLASSID) {
1827: PetscFV fv = (PetscFV)obj;
1829: PetscCall(PetscFVGetQuadrature(fv, &quad));
1830: PetscCall(PetscFVGetNumComponents(fv, &Nc));
1831: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1832: numComponents += Nc;
1833: }
1834: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1835: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1836: PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1837: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1838: for (c = cStart; c < cEnd; ++c) {
1839: PetscScalar *x = NULL;
1840: PetscScalar elemDiff = 0.0;
1841: PetscInt qc = 0;
1843: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1844: PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));
1846: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1847: PetscObject obj;
1848: PetscClassId id;
1849: void *const ctx = ctxs ? ctxs[field] : NULL;
1850: PetscInt Nb, Nc, q, fc;
1852: PetscCall(DMGetField(dm, field, NULL, &obj));
1853: PetscCall(PetscObjectGetClassId(obj, &id));
1854: if (id == PETSCFE_CLASSID) {
1855: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1856: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1857: } else if (id == PETSCFV_CLASSID) {
1858: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1859: Nb = 1;
1860: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1861: if (funcs[field]) {
1862: for (q = 0; q < Nq; ++q) {
1863: PetscFEGeom qgeom;
1865: qgeom.dimEmbed = fegeom.dimEmbed;
1866: qgeom.J = &fegeom.J[q * coordDim * coordDim];
1867: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
1868: qgeom.detJ = &fegeom.detJ[q];
1869: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1870: PetscCall((*funcs[field])(coordDim, time, &coords[q * coordDim], Nc, funcVal, ctx));
1871: #if defined(needs_fix_with_return_code_argument)
1872: if (ierr) {
1873: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1874: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1875: PetscCall(DMRestoreLocalVector(dm, &localX));
1876: }
1877: #endif
1878: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1879: else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1880: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1881: for (fc = 0; fc < Nc; ++fc) {
1882: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1883: elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1884: }
1885: }
1886: }
1887: fieldOffset += Nb;
1888: qc += Nc;
1889: }
1890: PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1891: PetscCall(VecSetValue(D, c - cStart, elemDiff, INSERT_VALUES));
1892: }
1893: PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1894: PetscCall(DMRestoreLocalVector(dm, &localX));
1895: PetscCall(VecSqrtAbs(D));
1896: PetscFunctionReturn(PETSC_SUCCESS);
1897: }
1899: /*@
1900: DMPlexComputeL2FluxDiffVecLocal - This function computes the integral of the difference between the gradient of field `f`in `u` and field `mf` in `mu`
1902: Collective
1904: Input Parameters:
1905: + lu - The local `Vec` containing the primal solution
1906: . f - The field number for the potential
1907: . lmu - The local `Vec` containing the mixed solution
1908: - mf - The field number for the flux
1910: Output Parameter:
1911: . eFlux - A global `Vec` which holds $||\nabla u_f - \mu_{mf}||$
1913: Level: advanced
1915: Notes:
1916: We assume that the `DM` for each solution has the same topology, geometry, and quadrature.
1918: This is usually used to get an error estimate for the primal solution, using the flux from a mixed solution.
1920: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeL2FluxDiffVec()`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1921: @*/
1922: PetscErrorCode DMPlexComputeL2FluxDiffVecLocal(Vec lu, PetscInt f, Vec lmu, PetscInt mf, Vec eFlux)
1923: {
1924: DM dm, mdm, edm;
1925: PetscFE fe, mfe;
1926: PetscFEGeom fegeom;
1927: PetscQuadrature quad;
1928: const PetscReal *quadWeights;
1929: PetscReal *coords;
1930: PetscScalar *interpolant, *minterpolant, *earray;
1931: PetscInt cdim, mcdim, cStart, cEnd, Nc, mNc, qNc, Nq;
1932: MPI_Comm comm;
1934: PetscFunctionBegin;
1935: PetscCall(VecGetDM(lu, &dm));
1936: PetscCall(VecGetDM(lmu, &mdm));
1937: PetscCall(VecGetDM(eFlux, &edm));
1938: PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
1939: PetscCall(VecSet(eFlux, 0.0));
1941: // Check if the both problems are on the same mesh
1942: PetscCall(DMGetCoordinateDim(dm, &cdim));
1943: PetscCall(DMGetCoordinateDim(mdm, &mcdim));
1944: PetscCheck(cdim == mcdim, comm, PETSC_ERR_ARG_SIZ, "primal coordinate Dim %" PetscInt_FMT " != %" PetscInt_FMT " mixed coordinate Dim", cdim, mcdim);
1945: fegeom.dimEmbed = cdim;
1947: PetscCall(DMGetField(dm, f, NULL, (PetscObject *)&fe));
1948: PetscCall(DMGetField(mdm, mf, NULL, (PetscObject *)&mfe));
1949: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1950: PetscCall(PetscFEGetNumComponents(mfe, &mNc));
1951: PetscCall(PetscFEGetQuadrature(fe, &quad));
1952: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1953: PetscCheck(qNc == 1 || qNc == mNc, comm, PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, mNc);
1955: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1956: PetscCall(VecGetArrayWrite(eFlux, &earray));
1957: PetscCall(PetscMalloc6(Nc * cdim, &interpolant, mNc * cdim, &minterpolant, cdim * (Nq + 1), &coords, cdim * cdim * Nq, &fegeom.J, cdim * cdim * Nq, &fegeom.invJ, Nq, &fegeom.detJ));
1958: for (PetscInt c = cStart; c < cEnd; ++c) {
1959: PetscScalar *x = NULL;
1960: PetscScalar *mx = NULL;
1961: PetscScalar *eval = NULL;
1962: PetscReal fluxElemDiff = 0.0;
1964: PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1965: PetscCall(DMPlexVecGetClosure(dm, NULL, lu, c, NULL, &x));
1966: PetscCall(DMPlexVecGetClosure(mdm, NULL, lmu, c, NULL, &mx));
1968: for (PetscInt q = 0; q < Nq; ++q) {
1969: PetscFEGeom qgeom;
1971: qgeom.dimEmbed = fegeom.dimEmbed;
1972: qgeom.J = &fegeom.J[q * cdim * cdim];
1973: qgeom.invJ = &fegeom.invJ[q * cdim * cdim];
1974: qgeom.detJ = &fegeom.detJ[q];
1976: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1978: PetscCall(PetscFEInterpolate_Static(mfe, &mx[0], &qgeom, q, minterpolant));
1979: PetscCall(PetscFEInterpolateGradient_Static(fe, 1, &x[0], &qgeom, q, interpolant));
1981: /* Now take the elementwise difference and store that in a vector. */
1982: for (PetscInt fc = 0; fc < mNc; ++fc) {
1983: const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : fc)];
1984: fluxElemDiff += PetscSqr(PetscRealPart(interpolant[fc] - minterpolant[fc])) * wt * fegeom.detJ[q];
1985: }
1986: }
1987: PetscCall(DMPlexVecRestoreClosure(dm, NULL, lu, c, NULL, &x));
1988: PetscCall(DMPlexVecRestoreClosure(mdm, NULL, lmu, c, NULL, &mx));
1989: PetscCall(DMPlexPointGlobalRef(edm, c, earray, (void *)&eval));
1990: if (eval) eval[0] = fluxElemDiff;
1991: }
1992: PetscCall(PetscFree6(interpolant, minterpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1993: PetscCall(VecRestoreArrayWrite(eFlux, &earray));
1995: PetscCall(VecAssemblyBegin(eFlux));
1996: PetscCall(VecAssemblyEnd(eFlux));
1997: PetscCall(VecSqrtAbs(eFlux));
1998: PetscFunctionReturn(PETSC_SUCCESS);
1999: }
2001: /*@
2002: DMPlexComputeL2FluxDiffVec - This function computes the integral of the difference between the gradient of field `f`in `u` and field `mf` in `mu`
2004: Collective
2006: Input Parameters:
2007: + u - The global `Vec` containing the primal solution
2008: . f - The field number for the potential
2009: . mu - The global `Vec` containing the mixed solution
2010: - mf - The field number for the flux
2012: Output Parameter:
2013: . eFlux - A global `Vec` which holds $||\nabla u_f - \mu_{mf}||$
2015: Level: advanced
2017: Notes:
2018: We assume that the `DM` for each solution has the same topology, geometry, and quadrature.
2020: This is usually used to get an error estimate for the primal solution, using the flux from a mixed solution.
2022: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeL2FluxDiffVecLocal()`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2023: @*/
2024: PetscErrorCode DMPlexComputeL2FluxDiffVec(Vec u, PetscInt f, Vec mu, PetscInt mf, Vec eFlux)
2025: {
2026: DM dm, mdm;
2027: Vec lu, lmu;
2029: PetscFunctionBegin;
2030: PetscCall(VecGetDM(u, &dm));
2031: PetscCall(DMGetLocalVector(dm, &lu));
2032: PetscCall(DMGlobalToLocal(dm, u, INSERT_VALUES, lu));
2033: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, lu, 0.0, NULL, NULL, NULL));
2035: PetscCall(VecGetDM(mu, &mdm));
2036: PetscCall(DMGetLocalVector(mdm, &lmu));
2037: PetscCall(DMGlobalToLocal(mdm, mu, INSERT_VALUES, lmu));
2038: PetscCall(DMPlexInsertBoundaryValues(mdm, PETSC_TRUE, lmu, 0.0, NULL, NULL, NULL));
2040: PetscCall(DMPlexComputeL2FluxDiffVecLocal(lu, f, lmu, mf, eFlux));
2042: PetscCall(DMRestoreLocalVector(dm, &lu));
2043: PetscCall(DMRestoreLocalVector(mdm, &lmu));
2044: PetscFunctionReturn(PETSC_SUCCESS);
2045: }
2047: /*@
2048: DMPlexComputeClementInterpolant - This function computes the L2 projection of the cellwise values of a function u onto P1
2050: Collective
2052: Input Parameters:
2053: + dm - The `DM`
2054: - locX - The coefficient vector u_h
2056: Output Parameter:
2057: . locC - A `Vec` which holds the Clement interpolant of the function
2059: Level: developer
2061: Note:
2062: $ u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume
2064: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2065: @*/
2066: PetscErrorCode DMPlexComputeClementInterpolant(DM dm, Vec locX, Vec locC)
2067: {
2068: PetscInt debug = ((DM_Plex *)dm->data)->printFEM;
2069: DM dmc;
2070: PetscQuadrature quad;
2071: PetscScalar *interpolant, *valsum;
2072: PetscFEGeom fegeom;
2073: PetscReal *coords;
2074: const PetscReal *quadPoints, *quadWeights;
2075: PetscInt dim, cdim, Nf, f, Nc = 0, Nq, qNc, cStart, cEnd, vStart, vEnd, v;
2077: PetscFunctionBegin;
2078: PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
2079: PetscCall(VecGetDM(locC, &dmc));
2080: PetscCall(VecSet(locC, 0.0));
2081: PetscCall(DMGetDimension(dm, &dim));
2082: PetscCall(DMGetCoordinateDim(dm, &cdim));
2083: fegeom.dimEmbed = cdim;
2084: PetscCall(DMGetNumFields(dm, &Nf));
2085: PetscCheck(Nf > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
2086: for (f = 0; f < Nf; ++f) {
2087: PetscObject obj;
2088: PetscClassId id;
2089: PetscInt fNc;
2091: PetscCall(DMGetField(dm, f, NULL, &obj));
2092: PetscCall(PetscObjectGetClassId(obj, &id));
2093: if (id == PETSCFE_CLASSID) {
2094: PetscFE fe = (PetscFE)obj;
2096: PetscCall(PetscFEGetQuadrature(fe, &quad));
2097: PetscCall(PetscFEGetNumComponents(fe, &fNc));
2098: } else if (id == PETSCFV_CLASSID) {
2099: PetscFV fv = (PetscFV)obj;
2101: PetscCall(PetscFVGetQuadrature(fv, &quad));
2102: PetscCall(PetscFVGetNumComponents(fv, &fNc));
2103: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2104: Nc += fNc;
2105: }
2106: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
2107: PetscCheck(qNc == 1, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " > 1", qNc);
2108: PetscCall(PetscMalloc6(Nc * 2, &valsum, Nc, &interpolant, cdim * Nq, &coords, Nq, &fegeom.detJ, cdim * cdim * Nq, &fegeom.J, cdim * cdim * Nq, &fegeom.invJ));
2109: PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
2110: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2111: for (v = vStart; v < vEnd; ++v) {
2112: PetscScalar volsum = 0.0;
2113: PetscInt *star = NULL;
2114: PetscInt starSize, st, fc;
2116: PetscCall(PetscArrayzero(valsum, Nc));
2117: PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2118: for (st = 0; st < starSize * 2; st += 2) {
2119: const PetscInt cell = star[st];
2120: PetscScalar *val = &valsum[Nc];
2121: PetscScalar *x = NULL;
2122: PetscReal vol = 0.0;
2123: PetscInt foff = 0;
2125: if ((cell < cStart) || (cell >= cEnd)) continue;
2126: PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2127: PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
2128: for (f = 0; f < Nf; ++f) {
2129: PetscObject obj;
2130: PetscClassId id;
2131: PetscInt Nb, fNc, q;
2133: PetscCall(PetscArrayzero(val, Nc));
2134: PetscCall(DMGetField(dm, f, NULL, &obj));
2135: PetscCall(PetscObjectGetClassId(obj, &id));
2136: if (id == PETSCFE_CLASSID) {
2137: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &fNc));
2138: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
2139: } else if (id == PETSCFV_CLASSID) {
2140: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &fNc));
2141: Nb = 1;
2142: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2143: for (q = 0; q < Nq; ++q) {
2144: const PetscReal wt = quadWeights[q] * fegeom.detJ[q];
2145: PetscFEGeom qgeom;
2147: qgeom.dimEmbed = fegeom.dimEmbed;
2148: qgeom.J = &fegeom.J[q * cdim * cdim];
2149: qgeom.invJ = &fegeom.invJ[q * cdim * cdim];
2150: qgeom.detJ = &fegeom.detJ[q];
2151: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2152: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[foff], &qgeom, q, interpolant));
2153: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2154: for (fc = 0; fc < fNc; ++fc) val[foff + fc] += interpolant[fc] * wt;
2155: vol += wt;
2156: }
2157: foff += Nb;
2158: }
2159: PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2160: for (fc = 0; fc < Nc; ++fc) valsum[fc] += val[fc];
2161: volsum += vol;
2162: if (debug) {
2163: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " value: [", v, cell));
2164: for (fc = 0; fc < Nc; ++fc) {
2165: if (fc) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2166: PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(val[fc])));
2167: }
2168: PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2169: }
2170: }
2171: for (fc = 0; fc < Nc; ++fc) valsum[fc] /= volsum;
2172: PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2173: PetscCall(DMPlexVecSetClosure(dmc, NULL, locC, v, valsum, INSERT_VALUES));
2174: }
2175: PetscCall(PetscFree6(valsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2176: PetscFunctionReturn(PETSC_SUCCESS);
2177: }
2179: /*@
2180: DMPlexComputeGradientClementInterpolant - This function computes the L2 projection of the cellwise gradient of a function u onto P1
2182: Collective
2184: Input Parameters:
2185: + dm - The `DM`
2186: - locX - The coefficient vector u_h
2188: Output Parameter:
2189: . locC - A `Vec` which holds the Clement interpolant of the gradient
2191: Level: developer
2193: Note:
2194: $\nabla u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| \nabla u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume
2196: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2197: @*/
2198: PetscErrorCode DMPlexComputeGradientClementInterpolant(DM dm, Vec locX, Vec locC)
2199: {
2200: DM_Plex *mesh = (DM_Plex *)dm->data;
2201: PetscInt debug = mesh->printFEM;
2202: DM dmC;
2203: PetscQuadrature quad;
2204: PetscScalar *interpolant, *gradsum;
2205: PetscFEGeom fegeom;
2206: PetscReal *coords;
2207: const PetscReal *quadPoints, *quadWeights;
2208: PetscInt dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, vStart, vEnd, v, field, fieldOffset;
2210: PetscFunctionBegin;
2211: PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
2212: PetscCall(VecGetDM(locC, &dmC));
2213: PetscCall(VecSet(locC, 0.0));
2214: PetscCall(DMGetDimension(dm, &dim));
2215: PetscCall(DMGetCoordinateDim(dm, &coordDim));
2216: fegeom.dimEmbed = coordDim;
2217: PetscCall(DMGetNumFields(dm, &numFields));
2218: PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
2219: for (field = 0; field < numFields; ++field) {
2220: PetscObject obj;
2221: PetscClassId id;
2222: PetscInt Nc;
2224: PetscCall(DMGetField(dm, field, NULL, &obj));
2225: PetscCall(PetscObjectGetClassId(obj, &id));
2226: if (id == PETSCFE_CLASSID) {
2227: PetscFE fe = (PetscFE)obj;
2229: PetscCall(PetscFEGetQuadrature(fe, &quad));
2230: PetscCall(PetscFEGetNumComponents(fe, &Nc));
2231: } else if (id == PETSCFV_CLASSID) {
2232: PetscFV fv = (PetscFV)obj;
2234: PetscCall(PetscFVGetQuadrature(fv, &quad));
2235: PetscCall(PetscFVGetNumComponents(fv, &Nc));
2236: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2237: numComponents += Nc;
2238: }
2239: PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
2240: PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
2241: PetscCall(PetscMalloc6(coordDim * numComponents * 2, &gradsum, coordDim * numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
2242: PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
2243: PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2244: for (v = vStart; v < vEnd; ++v) {
2245: PetscScalar volsum = 0.0;
2246: PetscInt *star = NULL;
2247: PetscInt starSize, st, d, fc;
2249: PetscCall(PetscArrayzero(gradsum, coordDim * numComponents));
2250: PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2251: for (st = 0; st < starSize * 2; st += 2) {
2252: const PetscInt cell = star[st];
2253: PetscScalar *grad = &gradsum[coordDim * numComponents];
2254: PetscScalar *x = NULL;
2255: PetscReal vol = 0.0;
2257: if ((cell < cStart) || (cell >= cEnd)) continue;
2258: PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2259: PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
2260: for (field = 0, fieldOffset = 0; field < numFields; ++field) {
2261: PetscObject obj;
2262: PetscClassId id;
2263: PetscInt Nb, Nc, q, qc = 0;
2265: PetscCall(PetscArrayzero(grad, coordDim * numComponents));
2266: PetscCall(DMGetField(dm, field, NULL, &obj));
2267: PetscCall(PetscObjectGetClassId(obj, &id));
2268: if (id == PETSCFE_CLASSID) {
2269: PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
2270: PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
2271: } else if (id == PETSCFV_CLASSID) {
2272: PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
2273: Nb = 1;
2274: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2275: for (q = 0; q < Nq; ++q) {
2276: PetscFEGeom qgeom;
2278: qgeom.dimEmbed = fegeom.dimEmbed;
2279: qgeom.J = &fegeom.J[q * coordDim * coordDim];
2280: qgeom.invJ = &fegeom.invJ[q * coordDim * coordDim];
2281: qgeom.detJ = &fegeom.detJ[q];
2282: PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2283: if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolateGradient_Static((PetscFE)obj, 1, &x[fieldOffset], &qgeom, q, interpolant));
2284: else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2285: for (fc = 0; fc < Nc; ++fc) {
2286: const PetscReal wt = quadWeights[q * qNc + qc];
2288: for (d = 0; d < coordDim; ++d) grad[fc * coordDim + d] += interpolant[fc * dim + d] * wt * fegeom.detJ[q];
2289: }
2290: vol += quadWeights[q * qNc] * fegeom.detJ[q];
2291: }
2292: fieldOffset += Nb;
2293: qc += Nc;
2294: }
2295: PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2296: for (fc = 0; fc < numComponents; ++fc) {
2297: for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] += grad[fc * coordDim + d];
2298: }
2299: volsum += vol;
2300: if (debug) {
2301: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " gradient: [", v, cell));
2302: for (fc = 0; fc < numComponents; ++fc) {
2303: for (d = 0; d < coordDim; ++d) {
2304: if (fc || d > 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2305: PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(grad[fc * coordDim + d])));
2306: }
2307: }
2308: PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2309: }
2310: }
2311: for (fc = 0; fc < numComponents; ++fc) {
2312: for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] /= volsum;
2313: }
2314: PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2315: PetscCall(DMPlexVecSetClosure(dmC, NULL, locC, v, gradsum, INSERT_VALUES));
2316: }
2317: PetscCall(PetscFree6(gradsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2318: PetscFunctionReturn(PETSC_SUCCESS);
2319: }
2321: PetscErrorCode DMPlexComputeIntegral_Internal(DM dm, Vec locX, PetscInt cStart, PetscInt cEnd, PetscScalar *cintegral, void *user)
2322: {
2323: DM dmAux = NULL, plexA = NULL;
2324: PetscDS prob, probAux = NULL;
2325: PetscSection section, sectionAux;
2326: Vec locA;
2327: PetscInt dim, numCells = cEnd - cStart, c, f;
2328: PetscBool useFVM = PETSC_FALSE;
2329: /* DS */
2330: PetscInt Nf, totDim, *uOff, *uOff_x, numConstants;
2331: PetscInt NfAux, totDimAux, *aOff;
2332: PetscScalar *u, *a = NULL;
2333: const PetscScalar *constants;
2334: /* Geometry */
2335: PetscFEGeom *cgeomFEM;
2336: DM dmGrad;
2337: PetscQuadrature affineQuad = NULL;
2338: Vec cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
2339: PetscFVCellGeom *cgeomFVM;
2340: const PetscScalar *lgrad;
2341: PetscInt maxDegree;
2342: DMField coordField;
2343: IS cellIS;
2345: PetscFunctionBegin;
2346: PetscCall(DMGetDS(dm, &prob));
2347: PetscCall(DMGetDimension(dm, &dim));
2348: PetscCall(DMGetLocalSection(dm, §ion));
2349: PetscCall(DMGetNumFields(dm, &Nf));
2350: /* Determine which discretizations we have */
2351: for (f = 0; f < Nf; ++f) {
2352: PetscObject obj;
2353: PetscClassId id;
2355: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2356: PetscCall(PetscObjectGetClassId(obj, &id));
2357: if (id == PETSCFV_CLASSID) useFVM = PETSC_TRUE;
2358: }
2359: /* Read DS information */
2360: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2361: PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2362: PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2363: PetscCall(ISCreateStride(PETSC_COMM_SELF, numCells, cStart, 1, &cellIS));
2364: PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2365: /* Read Auxiliary DS information */
2366: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2367: if (locA) {
2368: PetscCall(VecGetDM(locA, &dmAux));
2369: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2370: PetscCall(DMGetDS(dmAux, &probAux));
2371: PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2372: PetscCall(DMGetLocalSection(dmAux, §ionAux));
2373: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2374: PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2375: }
2376: /* Allocate data arrays */
2377: PetscCall(PetscCalloc1(numCells * totDim, &u));
2378: if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
2379: /* Read out geometry */
2380: PetscCall(DMGetCoordinateField(dm, &coordField));
2381: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
2382: if (maxDegree <= 1) {
2383: PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
2384: if (affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &cgeomFEM));
2385: }
2386: if (useFVM) {
2387: PetscFV fv = NULL;
2388: Vec grad;
2389: PetscInt fStart, fEnd;
2390: PetscBool compGrad;
2392: for (f = 0; f < Nf; ++f) {
2393: PetscObject obj;
2394: PetscClassId id;
2396: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2397: PetscCall(PetscObjectGetClassId(obj, &id));
2398: if (id == PETSCFV_CLASSID) {
2399: fv = (PetscFV)obj;
2400: break;
2401: }
2402: }
2403: PetscCall(PetscFVGetComputeGradients(fv, &compGrad));
2404: PetscCall(PetscFVSetComputeGradients(fv, PETSC_TRUE));
2405: PetscCall(DMPlexComputeGeometryFVM(dm, &cellGeometryFVM, &faceGeometryFVM));
2406: PetscCall(DMPlexComputeGradientFVM(dm, fv, faceGeometryFVM, cellGeometryFVM, &dmGrad));
2407: PetscCall(PetscFVSetComputeGradients(fv, compGrad));
2408: PetscCall(VecGetArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2409: /* Reconstruct and limit cell gradients */
2410: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
2411: PetscCall(DMGetGlobalVector(dmGrad, &grad));
2412: PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
2413: /* Communicate gradient values */
2414: PetscCall(DMGetLocalVector(dmGrad, &locGrad));
2415: PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
2416: PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
2417: PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
2418: /* Handle non-essential (e.g. outflow) boundary values */
2419: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, 0.0, faceGeometryFVM, cellGeometryFVM, locGrad));
2420: PetscCall(VecGetArrayRead(locGrad, &lgrad));
2421: }
2422: /* Read out data from inputs */
2423: for (c = cStart; c < cEnd; ++c) {
2424: PetscScalar *x = NULL;
2425: PetscInt i;
2427: PetscCall(DMPlexVecGetClosure(dm, section, locX, c, NULL, &x));
2428: for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
2429: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, c, NULL, &x));
2430: if (dmAux) {
2431: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, c, NULL, &x));
2432: for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
2433: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, c, NULL, &x));
2434: }
2435: }
2436: /* Do integration for each field */
2437: for (f = 0; f < Nf; ++f) {
2438: PetscObject obj;
2439: PetscClassId id;
2440: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;
2442: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2443: PetscCall(PetscObjectGetClassId(obj, &id));
2444: if (id == PETSCFE_CLASSID) {
2445: PetscFE fe = (PetscFE)obj;
2446: PetscQuadrature q;
2447: PetscFEGeom *chunkGeom = NULL;
2448: PetscInt Nq, Nb;
2450: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2451: PetscCall(PetscFEGetQuadrature(fe, &q));
2452: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2453: PetscCall(PetscFEGetDimension(fe, &Nb));
2454: blockSize = Nb * Nq;
2455: batchSize = numBlocks * blockSize;
2456: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2457: numChunks = numCells / (numBatches * batchSize);
2458: Ne = numChunks * numBatches * batchSize;
2459: Nr = numCells % (numBatches * batchSize);
2460: offset = numCells - Nr;
2461: if (!affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, q, PETSC_FALSE, &cgeomFEM));
2462: PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
2463: PetscCall(PetscFEIntegrate(prob, f, Ne, chunkGeom, u, probAux, a, cintegral));
2464: PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &chunkGeom));
2465: PetscCall(PetscFEIntegrate(prob, f, Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &cintegral[offset * Nf]));
2466: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &chunkGeom));
2467: if (!affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2468: } else if (id == PETSCFV_CLASSID) {
2469: PetscInt foff;
2470: PetscPointFunc obj_func;
2472: PetscCall(PetscDSGetObjective(prob, f, &obj_func));
2473: PetscCall(PetscDSGetFieldOffset(prob, f, &foff));
2474: if (obj_func) {
2475: for (c = 0; c < numCells; ++c) {
2476: PetscScalar *u_x;
2477: PetscScalar lint = 0.;
2479: PetscCall(DMPlexPointLocalRead(dmGrad, c, lgrad, &u_x));
2480: obj_func(dim, Nf, NfAux, uOff, uOff_x, &u[totDim * c + foff], NULL, u_x, aOff, NULL, PetscSafePointerPlusOffset(a, totDimAux * c), NULL, NULL, 0.0, cgeomFVM[c].centroid, numConstants, constants, &lint);
2481: cintegral[c * Nf + f] += PetscRealPart(lint) * cgeomFVM[c].volume;
2482: }
2483: }
2484: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2485: }
2486: /* Cleanup data arrays */
2487: if (useFVM) {
2488: PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
2489: PetscCall(VecRestoreArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2490: PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
2491: PetscCall(VecDestroy(&faceGeometryFVM));
2492: PetscCall(VecDestroy(&cellGeometryFVM));
2493: PetscCall(DMDestroy(&dmGrad));
2494: }
2495: if (dmAux) PetscCall(PetscFree(a));
2496: PetscCall(DMDestroy(&plexA));
2497: PetscCall(PetscFree(u));
2498: /* Cleanup */
2499: if (affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2500: PetscCall(PetscQuadratureDestroy(&affineQuad));
2501: PetscCall(ISDestroy(&cellIS));
2502: PetscFunctionReturn(PETSC_SUCCESS);
2503: }
2505: /*@
2506: DMPlexComputeIntegralFEM - Form the integral over the domain from the global input X using pointwise functions specified by the user
2508: Input Parameters:
2509: + dm - The mesh
2510: . X - Global input vector
2511: - user - The user context
2513: Output Parameter:
2514: . integral - Integral for each field
2516: Level: developer
2518: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2519: @*/
2520: PetscErrorCode DMPlexComputeIntegralFEM(DM dm, Vec X, PetscScalar *integral, void *user)
2521: {
2522: PetscInt printFEM;
2523: PetscScalar *cintegral, *lintegral;
2524: PetscInt Nf, f, cellHeight, cStart, cEnd, cell;
2525: Vec locX;
2527: PetscFunctionBegin;
2530: PetscAssertPointer(integral, 3);
2531: PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2532: PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2533: PetscCall(DMGetNumFields(dm, &Nf));
2534: PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2535: PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2536: /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2537: PetscCall(PetscCalloc2(Nf, &lintegral, (cEnd - cStart) * Nf, &cintegral));
2538: /* Get local solution with boundary values */
2539: PetscCall(DMGetLocalVector(dm, &locX));
2540: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2541: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2542: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2543: PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2544: PetscCall(DMRestoreLocalVector(dm, &locX));
2545: printFEM = ((DM_Plex *)dm->data)->printFEM;
2546: /* Sum up values */
2547: for (cell = cStart; cell < cEnd; ++cell) {
2548: const PetscInt c = cell - cStart;
2550: if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2551: for (f = 0; f < Nf; ++f) lintegral[f] += cintegral[c * Nf + f];
2552: }
2553: PetscCallMPI(MPIU_Allreduce(lintegral, integral, (PetscMPIInt)Nf, MPIU_SCALAR, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
2554: if (printFEM) {
2555: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "Integral:"));
2556: for (f = 0; f < Nf; ++f) PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), " %g", (double)PetscRealPart(integral[f])));
2557: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "\n"));
2558: }
2559: PetscCall(PetscFree2(lintegral, cintegral));
2560: PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2561: PetscCall(DMDestroy(&dm));
2562: PetscFunctionReturn(PETSC_SUCCESS);
2563: }
2565: /*@
2566: DMPlexComputeCellwiseIntegralFEM - Form the vector of cellwise integrals F from the global input X using pointwise functions specified by the user
2568: Input Parameters:
2569: + dm - The mesh
2570: . X - Global input vector
2571: - user - The user context
2573: Output Parameter:
2574: . F - Cellwise integrals for each field
2576: Level: developer
2578: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2579: @*/
2580: PetscErrorCode DMPlexComputeCellwiseIntegralFEM(DM dm, Vec X, Vec F, void *user)
2581: {
2582: PetscInt printFEM;
2583: DM dmF;
2584: PetscSection sectionF = NULL;
2585: PetscScalar *cintegral, *af;
2586: PetscInt Nf, f, cellHeight, cStart, cEnd, cell, n;
2587: Vec locX;
2589: PetscFunctionBegin;
2593: PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2594: PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2595: PetscCall(DMGetNumFields(dm, &Nf));
2596: PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2597: PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2598: /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2599: PetscCall(PetscCalloc1((cEnd - cStart) * Nf, &cintegral));
2600: /* Get local solution with boundary values */
2601: PetscCall(DMGetLocalVector(dm, &locX));
2602: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2603: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2604: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2605: PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2606: PetscCall(DMRestoreLocalVector(dm, &locX));
2607: /* Put values in F */
2608: PetscCall(VecGetArray(F, &af));
2609: PetscCall(VecGetDM(F, &dmF));
2610: if (dmF) PetscCall(DMGetLocalSection(dmF, §ionF));
2611: PetscCall(VecGetLocalSize(F, &n));
2612: PetscCheck(n >= (cEnd - cStart) * Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Vector size %" PetscInt_FMT " < %" PetscInt_FMT, n, (cEnd - cStart) * Nf);
2613: printFEM = ((DM_Plex *)dm->data)->printFEM;
2614: for (cell = cStart; cell < cEnd; ++cell) {
2615: const PetscInt c = cell - cStart;
2616: PetscInt dof = Nf, off = c * Nf;
2618: if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2619: if (sectionF) {
2620: PetscCall(PetscSectionGetDof(sectionF, cell, &dof));
2621: PetscCall(PetscSectionGetOffset(sectionF, cell, &off));
2622: }
2623: PetscCheck(dof == Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The number of cell dofs %" PetscInt_FMT " != %" PetscInt_FMT, dof, Nf);
2624: for (f = 0; f < Nf; ++f) af[off + f] = cintegral[c * Nf + f];
2625: }
2626: PetscCall(VecRestoreArray(F, &af));
2627: PetscCall(PetscFree(cintegral));
2628: PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2629: PetscCall(DMDestroy(&dm));
2630: PetscFunctionReturn(PETSC_SUCCESS);
2631: }
2633: static PetscErrorCode DMPlexComputeBdIntegral_Internal(DM dm, Vec locX, IS pointIS, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *fintegral, void *user)
2634: {
2635: DM plex = NULL, plexA = NULL;
2636: DMEnclosureType encAux;
2637: PetscDS prob, probAux = NULL;
2638: PetscSection section, sectionAux = NULL;
2639: Vec locA = NULL;
2640: DMField coordField;
2641: PetscInt Nf, totDim, *uOff, *uOff_x;
2642: PetscInt NfAux = 0, totDimAux = 0, *aOff = NULL;
2643: PetscScalar *u, *a = NULL;
2644: const PetscScalar *constants;
2645: PetscInt numConstants, f;
2647: PetscFunctionBegin;
2648: PetscCall(DMGetCoordinateField(dm, &coordField));
2649: PetscCall(DMConvert(dm, DMPLEX, &plex));
2650: PetscCall(DMGetDS(dm, &prob));
2651: PetscCall(DMGetLocalSection(dm, §ion));
2652: PetscCall(PetscSectionGetNumFields(section, &Nf));
2653: /* Determine which discretizations we have */
2654: for (f = 0; f < Nf; ++f) {
2655: PetscObject obj;
2656: PetscClassId id;
2658: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2659: PetscCall(PetscObjectGetClassId(obj, &id));
2660: PetscCheck(id != PETSCFV_CLASSID, PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Not supported for FVM (field %" PetscInt_FMT ")", f);
2661: }
2662: /* Read DS information */
2663: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2664: PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2665: PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2666: PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2667: /* Read Auxiliary DS information */
2668: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2669: if (locA) {
2670: DM dmAux;
2672: PetscCall(VecGetDM(locA, &dmAux));
2673: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
2674: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2675: PetscCall(DMGetDS(dmAux, &probAux));
2676: PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2677: PetscCall(DMGetLocalSection(dmAux, §ionAux));
2678: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2679: PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2680: }
2681: /* Integrate over points */
2682: {
2683: PetscFEGeom *fgeom, *chunkGeom = NULL;
2684: PetscInt maxDegree;
2685: PetscQuadrature qGeom = NULL;
2686: const PetscInt *points;
2687: PetscInt numFaces, face, Nq, field;
2688: PetscInt numChunks, chunkSize, chunk, Nr, offset;
2690: PetscCall(ISGetLocalSize(pointIS, &numFaces));
2691: PetscCall(ISGetIndices(pointIS, &points));
2692: PetscCall(PetscCalloc2(numFaces * totDim, &u, (locA ? (size_t)numFaces * totDimAux : 0), &a));
2693: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
2694: for (face = 0; face < numFaces; ++face) {
2695: const PetscInt point = points[face], *support;
2696: PetscScalar *x = NULL;
2698: PetscCall(DMPlexGetSupport(dm, point, &support));
2699: PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
2700: for (PetscInt i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
2701: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
2702: if (locA) {
2703: PetscInt subp;
2704: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
2705: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
2706: for (PetscInt i = 0; i < totDimAux; ++i) a[f * totDimAux + i] = x[i];
2707: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
2708: }
2709: }
2710: for (field = 0; field < Nf; ++field) {
2711: PetscFE fe;
2713: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
2714: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
2715: if (!qGeom) {
2716: PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
2717: PetscCall(PetscObjectReference((PetscObject)qGeom));
2718: }
2719: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
2720: PetscCall(DMPlexGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
2721: /* Get blocking */
2722: {
2723: PetscQuadrature q;
2724: PetscInt numBatches, batchSize, numBlocks, blockSize;
2725: PetscInt Nq, Nb;
2727: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2728: PetscCall(PetscFEGetQuadrature(fe, &q));
2729: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2730: PetscCall(PetscFEGetDimension(fe, &Nb));
2731: blockSize = Nb * Nq;
2732: batchSize = numBlocks * blockSize;
2733: chunkSize = numBatches * batchSize;
2734: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2735: numChunks = numFaces / chunkSize;
2736: Nr = numFaces % chunkSize;
2737: offset = numFaces - Nr;
2738: }
2739: /* Do integration for each field */
2740: for (chunk = 0; chunk < numChunks; ++chunk) {
2741: PetscCall(PetscFEGeomGetChunk(fgeom, chunk * chunkSize, (chunk + 1) * chunkSize, &chunkGeom));
2742: PetscCall(PetscFEIntegrateBd(prob, field, funcs[field], chunkSize, chunkGeom, &u[chunk * chunkSize * totDim], probAux, PetscSafePointerPlusOffset(a, chunk * chunkSize * totDimAux), &fintegral[chunk * chunkSize * Nf]));
2743: PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
2744: }
2745: PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
2746: PetscCall(PetscFEIntegrateBd(prob, field, funcs[field], Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &fintegral[offset * Nf]));
2747: PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
2748: /* Cleanup data arrays */
2749: PetscCall(DMPlexRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
2750: PetscCall(PetscQuadratureDestroy(&qGeom));
2751: }
2752: PetscCall(PetscFree2(u, a));
2753: PetscCall(ISRestoreIndices(pointIS, &points));
2754: }
2755: if (plex) PetscCall(DMDestroy(&plex));
2756: if (plexA) PetscCall(DMDestroy(&plexA));
2757: PetscFunctionReturn(PETSC_SUCCESS);
2758: }
2760: /*@C
2761: DMPlexComputeBdIntegral - Form the integral over the specified boundary from the global input X using pointwise functions specified by the user
2763: Input Parameters:
2764: + dm - The mesh
2765: . X - Global input vector
2766: . label - The boundary `DMLabel`
2767: . numVals - The number of label values to use, or `PETSC_DETERMINE` for all values
2768: . vals - The label values to use, or NULL for all values
2769: . funcs - The functions to integrate along the boundary for each field
2770: - user - The user context
2772: Output Parameter:
2773: . integral - Integral for each field
2775: Level: developer
2777: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeIntegralFEM()`, `DMPlexComputeBdResidualFEM()`
2778: @*/
2779: PetscErrorCode DMPlexComputeBdIntegral(DM dm, Vec X, DMLabel label, PetscInt numVals, const PetscInt vals[], void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *integral, void *user)
2780: {
2781: Vec locX;
2782: PetscSection section;
2783: DMLabel depthLabel;
2784: IS facetIS;
2785: PetscInt dim, Nf, f, v;
2787: PetscFunctionBegin;
2791: if (vals) PetscAssertPointer(vals, 5);
2792: PetscAssertPointer(integral, 7);
2793: PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2794: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
2795: PetscCall(DMGetDimension(dm, &dim));
2796: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
2797: PetscCall(DMGetLocalSection(dm, §ion));
2798: PetscCall(PetscSectionGetNumFields(section, &Nf));
2799: /* Get local solution with boundary values */
2800: PetscCall(DMGetLocalVector(dm, &locX));
2801: PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2802: PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2803: PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2804: /* Loop over label values */
2805: PetscCall(PetscArrayzero(integral, Nf));
2806: for (v = 0; v < numVals; ++v) {
2807: IS pointIS;
2808: PetscInt numFaces, face;
2809: PetscScalar *fintegral;
2811: PetscCall(DMLabelGetStratumIS(label, vals[v], &pointIS));
2812: if (!pointIS) continue; /* No points with that id on this process */
2813: {
2814: IS isectIS;
2816: /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
2817: PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
2818: PetscCall(ISDestroy(&pointIS));
2819: pointIS = isectIS;
2820: }
2821: PetscCall(ISGetLocalSize(pointIS, &numFaces));
2822: PetscCall(PetscCalloc1(numFaces * Nf, &fintegral));
2823: PetscCall(DMPlexComputeBdIntegral_Internal(dm, locX, pointIS, funcs, fintegral, user));
2824: /* Sum point contributions into integral */
2825: for (f = 0; f < Nf; ++f)
2826: for (face = 0; face < numFaces; ++face) integral[f] += fintegral[face * Nf + f];
2827: PetscCall(PetscFree(fintegral));
2828: PetscCall(ISDestroy(&pointIS));
2829: }
2830: PetscCall(DMRestoreLocalVector(dm, &locX));
2831: PetscCall(ISDestroy(&facetIS));
2832: PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2833: PetscFunctionReturn(PETSC_SUCCESS);
2834: }
2836: /*@
2837: DMPlexComputeInterpolatorNested - Form the local portion of the interpolation matrix from the coarse `DM` to a uniformly refined `DM`.
2839: Input Parameters:
2840: + dmc - The coarse mesh
2841: . dmf - The fine mesh
2842: . isRefined - Flag indicating regular refinement, rather than the same topology
2843: - user - The user context
2845: Output Parameter:
2846: . In - The interpolation matrix
2848: Level: developer
2850: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorGeneral()`
2851: @*/
2852: PetscErrorCode DMPlexComputeInterpolatorNested(DM dmc, DM dmf, PetscBool isRefined, Mat In, void *user)
2853: {
2854: DM_Plex *mesh = (DM_Plex *)dmc->data;
2855: const char *name = "Interpolator";
2856: PetscFE *feRef;
2857: PetscFV *fvRef;
2858: PetscSection fsection, fglobalSection;
2859: PetscSection csection, cglobalSection;
2860: PetscScalar *elemMat;
2861: PetscInt dim, Nf, f, fieldI, fieldJ, offsetI, offsetJ, cStart, cEnd, c;
2862: PetscInt cTotDim = 0, rTotDim = 0;
2864: PetscFunctionBegin;
2865: PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
2866: PetscCall(DMGetDimension(dmf, &dim));
2867: PetscCall(DMGetLocalSection(dmf, &fsection));
2868: PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
2869: PetscCall(DMGetLocalSection(dmc, &csection));
2870: PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
2871: PetscCall(PetscSectionGetNumFields(fsection, &Nf));
2872: PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
2873: PetscCall(PetscCalloc2(Nf, &feRef, Nf, &fvRef));
2874: for (f = 0; f < Nf; ++f) {
2875: PetscObject obj, objc;
2876: PetscClassId id, idc;
2877: PetscInt rNb = 0, Nc = 0, cNb = 0;
2879: PetscCall(DMGetField(dmf, f, NULL, &obj));
2880: PetscCall(PetscObjectGetClassId(obj, &id));
2881: if (id == PETSCFE_CLASSID) {
2882: PetscFE fe = (PetscFE)obj;
2884: if (isRefined) {
2885: PetscCall(PetscFERefine(fe, &feRef[f]));
2886: } else {
2887: PetscCall(PetscObjectReference((PetscObject)fe));
2888: feRef[f] = fe;
2889: }
2890: PetscCall(PetscFEGetDimension(feRef[f], &rNb));
2891: PetscCall(PetscFEGetNumComponents(fe, &Nc));
2892: } else if (id == PETSCFV_CLASSID) {
2893: PetscFV fv = (PetscFV)obj;
2894: PetscDualSpace Q;
2896: if (isRefined) {
2897: PetscCall(PetscFVRefine(fv, &fvRef[f]));
2898: } else {
2899: PetscCall(PetscObjectReference((PetscObject)fv));
2900: fvRef[f] = fv;
2901: }
2902: PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
2903: PetscCall(PetscDualSpaceGetDimension(Q, &rNb));
2904: PetscCall(PetscFVGetDualSpace(fv, &Q));
2905: PetscCall(PetscFVGetNumComponents(fv, &Nc));
2906: }
2907: PetscCall(DMGetField(dmc, f, NULL, &objc));
2908: PetscCall(PetscObjectGetClassId(objc, &idc));
2909: if (idc == PETSCFE_CLASSID) {
2910: PetscFE fe = (PetscFE)objc;
2912: PetscCall(PetscFEGetDimension(fe, &cNb));
2913: } else if (id == PETSCFV_CLASSID) {
2914: PetscFV fv = (PetscFV)obj;
2915: PetscDualSpace Q;
2917: PetscCall(PetscFVGetDualSpace(fv, &Q));
2918: PetscCall(PetscDualSpaceGetDimension(Q, &cNb));
2919: }
2920: rTotDim += rNb;
2921: cTotDim += cNb;
2922: }
2923: PetscCall(PetscMalloc1(rTotDim * cTotDim, &elemMat));
2924: PetscCall(PetscArrayzero(elemMat, rTotDim * cTotDim));
2925: for (fieldI = 0, offsetI = 0; fieldI < Nf; ++fieldI) {
2926: PetscDualSpace Qref;
2927: PetscQuadrature f;
2928: const PetscReal *qpoints, *qweights;
2929: PetscReal *points;
2930: PetscInt npoints = 0, Nc, Np, fpdim, i, k, p, d;
2932: /* Compose points from all dual basis functionals */
2933: if (feRef[fieldI]) {
2934: PetscCall(PetscFEGetDualSpace(feRef[fieldI], &Qref));
2935: PetscCall(PetscFEGetNumComponents(feRef[fieldI], &Nc));
2936: } else {
2937: PetscCall(PetscFVGetDualSpace(fvRef[fieldI], &Qref));
2938: PetscCall(PetscFVGetNumComponents(fvRef[fieldI], &Nc));
2939: }
2940: PetscCall(PetscDualSpaceGetDimension(Qref, &fpdim));
2941: for (i = 0; i < fpdim; ++i) {
2942: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2943: PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, NULL, NULL));
2944: npoints += Np;
2945: }
2946: PetscCall(PetscMalloc1(npoints * dim, &points));
2947: for (i = 0, k = 0; i < fpdim; ++i) {
2948: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2949: PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, &qpoints, NULL));
2950: for (p = 0; p < Np; ++p, ++k)
2951: for (d = 0; d < dim; ++d) points[k * dim + d] = qpoints[p * dim + d];
2952: }
2954: for (fieldJ = 0, offsetJ = 0; fieldJ < Nf; ++fieldJ) {
2955: PetscObject obj;
2956: PetscClassId id;
2957: PetscInt NcJ = 0, cpdim = 0, j, qNc;
2959: PetscCall(DMGetField(dmc, fieldJ, NULL, &obj));
2960: PetscCall(PetscObjectGetClassId(obj, &id));
2961: if (id == PETSCFE_CLASSID) {
2962: PetscFE fe = (PetscFE)obj;
2963: PetscTabulation T = NULL;
2965: /* Evaluate basis at points */
2966: PetscCall(PetscFEGetNumComponents(fe, &NcJ));
2967: PetscCall(PetscFEGetDimension(fe, &cpdim));
2968: /* For now, fields only interpolate themselves */
2969: if (fieldI == fieldJ) {
2970: PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
2971: PetscCall(PetscFECreateTabulation(fe, 1, npoints, points, 0, &T));
2972: for (i = 0, k = 0; i < fpdim; ++i) {
2973: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2974: PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
2975: PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
2976: for (p = 0; p < Np; ++p, ++k) {
2977: for (j = 0; j < cpdim; ++j) {
2978: /*
2979: cTotDim: Total columns in element interpolation matrix, sum of number of dual basis functionals in each field
2980: offsetI, offsetJ: Offsets into the larger element interpolation matrix for different fields
2981: fpdim, i, cpdim, j: Dofs for fine and coarse grids, correspond to dual space basis functionals
2982: qNC, Nc, Ncj, c: Number of components in this field
2983: Np, p: Number of quad points in the fine grid functional i
2984: k: i*Np + p, overall point number for the interpolation
2985: */
2986: for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += T->T[0][k * cpdim * NcJ + j * Nc + c] * qweights[p * qNc + c];
2987: }
2988: }
2989: }
2990: PetscCall(PetscTabulationDestroy(&T));
2991: }
2992: } else if (id == PETSCFV_CLASSID) {
2993: PetscFV fv = (PetscFV)obj;
2995: /* Evaluate constant function at points */
2996: PetscCall(PetscFVGetNumComponents(fv, &NcJ));
2997: cpdim = 1;
2998: /* For now, fields only interpolate themselves */
2999: if (fieldI == fieldJ) {
3000: PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
3001: for (i = 0, k = 0; i < fpdim; ++i) {
3002: PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
3003: PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
3004: PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
3005: for (p = 0; p < Np; ++p, ++k) {
3006: for (j = 0; j < cpdim; ++j) {
3007: for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += 1.0 * qweights[p * qNc + c];
3008: }
3009: }
3010: }
3011: }
3012: }
3013: offsetJ += cpdim;
3014: }
3015: offsetI += fpdim;
3016: PetscCall(PetscFree(points));
3017: }
3018: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(0, name, rTotDim, cTotDim, elemMat));
3019: /* Preallocate matrix */
3020: {
3021: Mat preallocator;
3022: PetscScalar *vals;
3023: PetscInt *cellCIndices, *cellFIndices;
3024: PetscInt locRows, locCols, cell;
3026: PetscCall(MatGetLocalSize(In, &locRows, &locCols));
3027: PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &preallocator));
3028: PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
3029: PetscCall(MatSetSizes(preallocator, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
3030: PetscCall(MatSetUp(preallocator));
3031: PetscCall(PetscCalloc3(rTotDim * cTotDim, &vals, cTotDim, &cellCIndices, rTotDim, &cellFIndices));
3032: for (cell = cStart; cell < cEnd; ++cell) {
3033: if (isRefined) {
3034: PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, cell, cellCIndices, cellFIndices));
3035: PetscCall(MatSetValues(preallocator, rTotDim, cellFIndices, cTotDim, cellCIndices, vals, INSERT_VALUES));
3036: } else {
3037: PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, preallocator, cell, vals, INSERT_VALUES));
3038: }
3039: }
3040: PetscCall(PetscFree3(vals, cellCIndices, cellFIndices));
3041: PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
3042: PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
3043: PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_TRUE, In));
3044: PetscCall(MatDestroy(&preallocator));
3045: }
3046: /* Fill matrix */
3047: PetscCall(MatZeroEntries(In));
3048: for (c = cStart; c < cEnd; ++c) {
3049: if (isRefined) {
3050: PetscCall(DMPlexMatSetClosureRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, In, c, elemMat, INSERT_VALUES));
3051: } else {
3052: PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, In, c, elemMat, INSERT_VALUES));
3053: }
3054: }
3055: for (f = 0; f < Nf; ++f) PetscCall(PetscFEDestroy(&feRef[f]));
3056: PetscCall(PetscFree2(feRef, fvRef));
3057: PetscCall(PetscFree(elemMat));
3058: PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
3059: PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
3060: if (mesh->printFEM > 1) {
3061: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)In), "%s:\n", name));
3062: PetscCall(MatFilter(In, 1.0e-10, PETSC_FALSE, PETSC_FALSE));
3063: PetscCall(MatView(In, NULL));
3064: }
3065: PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3066: PetscFunctionReturn(PETSC_SUCCESS);
3067: }
3069: PetscErrorCode DMPlexComputeMassMatrixNested(DM dmc, DM dmf, Mat mass, void *user)
3070: {
3071: SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_SUP, "Laziness");
3072: }
3074: /*@
3075: DMPlexComputeInterpolatorGeneral - Form the local portion of the interpolation matrix from the coarse `DM` to a non-nested fine `DM`.
3077: Input Parameters:
3078: + dmf - The fine mesh
3079: . dmc - The coarse mesh
3080: - user - The user context
3082: Output Parameter:
3083: . In - The interpolation matrix
3085: Level: developer
3087: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`
3088: @*/
3089: PetscErrorCode DMPlexComputeInterpolatorGeneral(DM dmc, DM dmf, Mat In, void *user)
3090: {
3091: DM_Plex *mesh = (DM_Plex *)dmf->data;
3092: const char *name = "Interpolator";
3093: PetscDS prob;
3094: Mat interp;
3095: PetscSection fsection, globalFSection;
3096: PetscSection csection, globalCSection;
3097: PetscInt locRows, locCols;
3098: PetscReal *x, *v0, *J, *invJ, detJ;
3099: PetscReal *v0c, *Jc, *invJc, detJc;
3100: PetscScalar *elemMat;
3101: PetscInt dim, Nf, field, totDim, cStart, cEnd, cell, ccell, s;
3103: PetscFunctionBegin;
3104: PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3105: PetscCall(DMGetCoordinateDim(dmc, &dim));
3106: PetscCall(DMGetDS(dmc, &prob));
3107: PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
3108: PetscCall(PetscDSGetNumFields(prob, &Nf));
3109: PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
3110: PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
3111: PetscCall(DMGetLocalSection(dmf, &fsection));
3112: PetscCall(DMGetGlobalSection(dmf, &globalFSection));
3113: PetscCall(DMGetLocalSection(dmc, &csection));
3114: PetscCall(DMGetGlobalSection(dmc, &globalCSection));
3115: PetscCall(DMPlexGetSimplexOrBoxCells(dmf, 0, &cStart, &cEnd));
3116: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3117: PetscCall(PetscMalloc1(totDim, &elemMat));
3119: PetscCall(MatGetLocalSize(In, &locRows, &locCols));
3120: PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &interp));
3121: PetscCall(MatSetType(interp, MATPREALLOCATOR));
3122: PetscCall(MatSetSizes(interp, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
3123: PetscCall(MatSetUp(interp));
3124: for (s = 0; s < 2; ++s) {
3125: for (field = 0; field < Nf; ++field) {
3126: PetscObject obj;
3127: PetscClassId id;
3128: PetscDualSpace Q = NULL;
3129: PetscTabulation T = NULL;
3130: PetscQuadrature f;
3131: const PetscReal *qpoints, *qweights;
3132: PetscInt Nc, qNc, Np, fpdim, off, i, d;
3134: PetscCall(PetscDSGetFieldOffset(prob, field, &off));
3135: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3136: PetscCall(PetscObjectGetClassId(obj, &id));
3137: if (id == PETSCFE_CLASSID) {
3138: PetscFE fe = (PetscFE)obj;
3140: PetscCall(PetscFEGetDualSpace(fe, &Q));
3141: PetscCall(PetscFEGetNumComponents(fe, &Nc));
3142: if (s) PetscCall(PetscFECreateTabulation(fe, 1, 1, x, 0, &T));
3143: } else if (id == PETSCFV_CLASSID) {
3144: PetscFV fv = (PetscFV)obj;
3146: PetscCall(PetscFVGetDualSpace(fv, &Q));
3147: Nc = 1;
3148: } else SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
3149: PetscCall(PetscDualSpaceGetDimension(Q, &fpdim));
3150: /* For each fine grid cell */
3151: for (cell = cStart; cell < cEnd; ++cell) {
3152: PetscInt *findices, *cindices;
3153: PetscInt numFIndices, numCIndices;
3155: PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3156: PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3157: PetscCheck(numFIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fine indices %" PetscInt_FMT " != %" PetscInt_FMT " dual basis vecs", numFIndices, totDim);
3158: for (i = 0; i < fpdim; ++i) {
3159: Vec pointVec;
3160: PetscScalar *pV;
3161: PetscSF coarseCellSF = NULL;
3162: const PetscSFNode *coarseCells;
3163: PetscInt numCoarseCells, cpdim, row = findices[i + off], q, c, j;
3165: /* Get points from the dual basis functional quadrature */
3166: PetscCall(PetscDualSpaceGetFunctional(Q, i, &f));
3167: PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, &qpoints, &qweights));
3168: PetscCheck(qNc == Nc, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, Nc);
3169: PetscCall(VecCreateSeq(PETSC_COMM_SELF, Np * dim, &pointVec));
3170: PetscCall(VecSetBlockSize(pointVec, dim));
3171: PetscCall(VecGetArray(pointVec, &pV));
3172: for (q = 0; q < Np; ++q) {
3173: const PetscReal xi0[3] = {-1., -1., -1.};
3175: /* Transform point to real space */
3176: CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3177: for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3178: }
3179: PetscCall(VecRestoreArray(pointVec, &pV));
3180: /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3181: /* OPT: Read this out from preallocation information */
3182: PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3183: /* Update preallocation info */
3184: PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3185: PetscCheck(numCoarseCells == Np, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3186: PetscCall(VecGetArray(pointVec, &pV));
3187: for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3188: PetscReal pVReal[3];
3189: const PetscReal xi0[3] = {-1., -1., -1.};
3191: PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3192: if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetDimension((PetscFE)obj, &cpdim));
3193: else cpdim = 1;
3195: if (s) {
3196: /* Transform points from real space to coarse reference space */
3197: PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3198: for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3199: CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);
3201: if (id == PETSCFE_CLASSID) {
3202: /* Evaluate coarse basis on contained point */
3203: PetscCall(PetscFEComputeTabulation((PetscFE)obj, 1, x, 0, T));
3204: PetscCall(PetscArrayzero(elemMat, cpdim));
3205: /* Get elemMat entries by multiplying by weight */
3206: for (j = 0; j < cpdim; ++j) {
3207: for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * qweights[ccell * qNc + c];
3208: }
3209: } else {
3210: for (j = 0; j < cpdim; ++j) {
3211: for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * qweights[ccell * qNc + c];
3212: }
3213: }
3214: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3215: }
3216: /* Update interpolator */
3217: PetscCheck(numCIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, totDim);
3218: PetscCall(MatSetValues(interp, 1, &row, cpdim, &cindices[off], elemMat, INSERT_VALUES));
3219: PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3220: }
3221: PetscCall(VecRestoreArray(pointVec, &pV));
3222: PetscCall(PetscSFDestroy(&coarseCellSF));
3223: PetscCall(VecDestroy(&pointVec));
3224: }
3225: PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3226: }
3227: if (s && id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3228: }
3229: if (!s) {
3230: PetscCall(MatAssemblyBegin(interp, MAT_FINAL_ASSEMBLY));
3231: PetscCall(MatAssemblyEnd(interp, MAT_FINAL_ASSEMBLY));
3232: PetscCall(MatPreallocatorPreallocate(interp, PETSC_TRUE, In));
3233: PetscCall(MatDestroy(&interp));
3234: interp = In;
3235: }
3236: }
3237: PetscCall(PetscFree3(v0, J, invJ));
3238: PetscCall(PetscFree3(v0c, Jc, invJc));
3239: PetscCall(PetscFree(elemMat));
3240: PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
3241: PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
3242: PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3243: PetscFunctionReturn(PETSC_SUCCESS);
3244: }
3246: /*@
3247: DMPlexComputeMassMatrixGeneral - Form the local portion of the mass matrix from the coarse `DM` to a non-nested fine `DM`.
3249: Input Parameters:
3250: + dmf - The fine mesh
3251: . dmc - The coarse mesh
3252: - user - The user context
3254: Output Parameter:
3255: . mass - The mass matrix
3257: Level: developer
3259: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeMassMatrixNested()`, `DMPlexComputeInterpolatorNested()`, `DMPlexComputeInterpolatorGeneral()`
3260: @*/
3261: PetscErrorCode DMPlexComputeMassMatrixGeneral(DM dmc, DM dmf, Mat mass, void *user)
3262: {
3263: DM_Plex *mesh = (DM_Plex *)dmf->data;
3264: const char *name = "Mass Matrix";
3265: PetscDS prob;
3266: PetscSection fsection, csection, globalFSection, globalCSection;
3267: PetscHSetIJ ht;
3268: PetscLayout rLayout;
3269: PetscInt *dnz, *onz;
3270: PetscInt locRows, rStart, rEnd;
3271: PetscReal *x, *v0, *J, *invJ, detJ;
3272: PetscReal *v0c, *Jc, *invJc, detJc;
3273: PetscScalar *elemMat;
3274: PetscInt dim, Nf, field, totDim, cStart, cEnd, cell, ccell;
3276: PetscFunctionBegin;
3277: PetscCall(DMGetCoordinateDim(dmc, &dim));
3278: PetscCall(DMGetDS(dmc, &prob));
3279: PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
3280: PetscCall(PetscDSGetNumFields(prob, &Nf));
3281: PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
3282: PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
3283: PetscCall(DMGetLocalSection(dmf, &fsection));
3284: PetscCall(DMGetGlobalSection(dmf, &globalFSection));
3285: PetscCall(DMGetLocalSection(dmc, &csection));
3286: PetscCall(DMGetGlobalSection(dmc, &globalCSection));
3287: PetscCall(DMPlexGetHeightStratum(dmf, 0, &cStart, &cEnd));
3288: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3289: PetscCall(PetscMalloc1(totDim, &elemMat));
3291: PetscCall(MatGetLocalSize(mass, &locRows, NULL));
3292: PetscCall(PetscLayoutCreate(PetscObjectComm((PetscObject)mass), &rLayout));
3293: PetscCall(PetscLayoutSetLocalSize(rLayout, locRows));
3294: PetscCall(PetscLayoutSetBlockSize(rLayout, 1));
3295: PetscCall(PetscLayoutSetUp(rLayout));
3296: PetscCall(PetscLayoutGetRange(rLayout, &rStart, &rEnd));
3297: PetscCall(PetscLayoutDestroy(&rLayout));
3298: PetscCall(PetscCalloc2(locRows, &dnz, locRows, &onz));
3299: PetscCall(PetscHSetIJCreate(&ht));
3300: for (field = 0; field < Nf; ++field) {
3301: PetscObject obj;
3302: PetscClassId id;
3303: PetscQuadrature quad;
3304: const PetscReal *qpoints;
3305: PetscInt Nq, Nc, i, d;
3307: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3308: PetscCall(PetscObjectGetClassId(obj, &id));
3309: if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3310: else PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3311: PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, NULL));
3312: /* For each fine grid cell */
3313: for (cell = cStart; cell < cEnd; ++cell) {
3314: Vec pointVec;
3315: PetscScalar *pV;
3316: PetscSF coarseCellSF = NULL;
3317: const PetscSFNode *coarseCells;
3318: PetscInt numCoarseCells, q, c;
3319: PetscInt *findices, *cindices;
3320: PetscInt numFIndices, numCIndices;
3322: PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3323: PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3324: /* Get points from the quadrature */
3325: PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3326: PetscCall(VecSetBlockSize(pointVec, dim));
3327: PetscCall(VecGetArray(pointVec, &pV));
3328: for (q = 0; q < Nq; ++q) {
3329: const PetscReal xi0[3] = {-1., -1., -1.};
3331: /* Transform point to real space */
3332: CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3333: for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3334: }
3335: PetscCall(VecRestoreArray(pointVec, &pV));
3336: /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3337: PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3338: PetscCall(PetscSFViewFromOptions(coarseCellSF, NULL, "-interp_sf_view"));
3339: /* Update preallocation info */
3340: PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3341: PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3342: {
3343: PetscHashIJKey key;
3344: PetscBool missing;
3346: for (i = 0; i < numFIndices; ++i) {
3347: key.i = findices[i];
3348: if (key.i >= 0) {
3349: /* Get indices for coarse elements */
3350: for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3351: PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3352: for (c = 0; c < numCIndices; ++c) {
3353: key.j = cindices[c];
3354: if (key.j < 0) continue;
3355: PetscCall(PetscHSetIJQueryAdd(ht, key, &missing));
3356: if (missing) {
3357: if ((key.j >= rStart) && (key.j < rEnd)) ++dnz[key.i - rStart];
3358: else ++onz[key.i - rStart];
3359: }
3360: }
3361: PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3362: }
3363: }
3364: }
3365: }
3366: PetscCall(PetscSFDestroy(&coarseCellSF));
3367: PetscCall(VecDestroy(&pointVec));
3368: PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3369: }
3370: }
3371: PetscCall(PetscHSetIJDestroy(&ht));
3372: PetscCall(MatXAIJSetPreallocation(mass, 1, dnz, onz, NULL, NULL));
3373: PetscCall(MatSetOption(mass, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
3374: PetscCall(PetscFree2(dnz, onz));
3375: for (field = 0; field < Nf; ++field) {
3376: PetscObject obj;
3377: PetscClassId id;
3378: PetscTabulation T, Tfine;
3379: PetscQuadrature quad;
3380: const PetscReal *qpoints, *qweights;
3381: PetscInt Nq, Nc, i, d;
3383: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3384: PetscCall(PetscObjectGetClassId(obj, &id));
3385: if (id == PETSCFE_CLASSID) {
3386: PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3387: PetscCall(PetscFEGetCellTabulation((PetscFE)obj, 1, &Tfine));
3388: PetscCall(PetscFECreateTabulation((PetscFE)obj, 1, 1, x, 0, &T));
3389: } else {
3390: PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3391: }
3392: PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, &qweights));
3393: /* For each fine grid cell */
3394: for (cell = cStart; cell < cEnd; ++cell) {
3395: Vec pointVec;
3396: PetscScalar *pV;
3397: PetscSF coarseCellSF = NULL;
3398: const PetscSFNode *coarseCells;
3399: PetscInt numCoarseCells, cpdim, q, c, j;
3400: PetscInt *findices, *cindices;
3401: PetscInt numFIndices, numCIndices;
3403: PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3404: PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3405: /* Get points from the quadrature */
3406: PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3407: PetscCall(VecSetBlockSize(pointVec, dim));
3408: PetscCall(VecGetArray(pointVec, &pV));
3409: for (q = 0; q < Nq; ++q) {
3410: const PetscReal xi0[3] = {-1., -1., -1.};
3412: /* Transform point to real space */
3413: CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3414: for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3415: }
3416: PetscCall(VecRestoreArray(pointVec, &pV));
3417: /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3418: PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3419: /* Update matrix */
3420: PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3421: PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3422: PetscCall(VecGetArray(pointVec, &pV));
3423: for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3424: PetscReal pVReal[3];
3425: const PetscReal xi0[3] = {-1., -1., -1.};
3427: PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3428: /* Transform points from real space to coarse reference space */
3429: PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3430: for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3431: CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);
3433: if (id == PETSCFE_CLASSID) {
3434: PetscFE fe = (PetscFE)obj;
3436: /* Evaluate coarse basis on contained point */
3437: PetscCall(PetscFEGetDimension(fe, &cpdim));
3438: PetscCall(PetscFEComputeTabulation(fe, 1, x, 0, T));
3439: /* Get elemMat entries by multiplying by weight */
3440: for (i = 0; i < numFIndices; ++i) {
3441: PetscCall(PetscArrayzero(elemMat, cpdim));
3442: for (j = 0; j < cpdim; ++j) {
3443: for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * Tfine->T[0][(ccell * numFIndices + i) * Nc + c] * qweights[ccell * Nc + c] * detJ;
3444: }
3445: /* Update interpolator */
3446: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3447: PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3448: PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3449: }
3450: } else {
3451: cpdim = 1;
3452: for (i = 0; i < numFIndices; ++i) {
3453: PetscCall(PetscArrayzero(elemMat, cpdim));
3454: for (j = 0; j < cpdim; ++j) {
3455: for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * 1.0 * qweights[ccell * Nc + c] * detJ;
3456: }
3457: /* Update interpolator */
3458: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3459: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Nq: %" PetscInt_FMT " %" PetscInt_FMT " Nf: %" PetscInt_FMT " %" PetscInt_FMT " Nc: %" PetscInt_FMT " %" PetscInt_FMT "\n", ccell, Nq, i, numFIndices, j, numCIndices));
3460: PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3461: PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3462: }
3463: }
3464: PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3465: }
3466: PetscCall(VecRestoreArray(pointVec, &pV));
3467: PetscCall(PetscSFDestroy(&coarseCellSF));
3468: PetscCall(VecDestroy(&pointVec));
3469: PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3470: }
3471: if (id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3472: }
3473: PetscCall(PetscFree3(v0, J, invJ));
3474: PetscCall(PetscFree3(v0c, Jc, invJc));
3475: PetscCall(PetscFree(elemMat));
3476: PetscCall(MatAssemblyBegin(mass, MAT_FINAL_ASSEMBLY));
3477: PetscCall(MatAssemblyEnd(mass, MAT_FINAL_ASSEMBLY));
3478: PetscFunctionReturn(PETSC_SUCCESS);
3479: }
3481: /*@
3482: DMPlexComputeInjectorFEM - Compute a mapping from coarse unknowns to fine unknowns
3484: Input Parameters:
3485: + dmc - The coarse mesh
3486: . dmf - The fine mesh
3487: - user - The user context
3489: Output Parameter:
3490: . sc - The mapping
3492: Level: developer
3494: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`
3495: @*/
3496: PetscErrorCode DMPlexComputeInjectorFEM(DM dmc, DM dmf, VecScatter *sc, void *user)
3497: {
3498: PetscDS prob;
3499: PetscFE *feRef;
3500: PetscFV *fvRef;
3501: Vec fv, cv;
3502: IS fis, cis;
3503: PetscSection fsection, fglobalSection, csection, cglobalSection;
3504: PetscInt *cmap, *cellCIndices, *cellFIndices, *cindices, *findices;
3505: PetscInt cTotDim, fTotDim = 0, Nf, f, field, cStart, cEnd, c, dim, d, startC, endC, offsetC, offsetF, m;
3506: PetscBool *needAvg;
3508: PetscFunctionBegin;
3509: PetscCall(PetscLogEventBegin(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3510: PetscCall(DMGetDimension(dmf, &dim));
3511: PetscCall(DMGetLocalSection(dmf, &fsection));
3512: PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
3513: PetscCall(DMGetLocalSection(dmc, &csection));
3514: PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
3515: PetscCall(PetscSectionGetNumFields(fsection, &Nf));
3516: PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
3517: PetscCall(DMGetDS(dmc, &prob));
3518: PetscCall(PetscCalloc3(Nf, &feRef, Nf, &fvRef, Nf, &needAvg));
3519: for (f = 0; f < Nf; ++f) {
3520: PetscObject obj;
3521: PetscClassId id;
3522: PetscInt fNb = 0, Nc = 0;
3524: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
3525: PetscCall(PetscObjectGetClassId(obj, &id));
3526: if (id == PETSCFE_CLASSID) {
3527: PetscFE fe = (PetscFE)obj;
3528: PetscSpace sp;
3529: PetscInt maxDegree;
3531: PetscCall(PetscFERefine(fe, &feRef[f]));
3532: PetscCall(PetscFEGetDimension(feRef[f], &fNb));
3533: PetscCall(PetscFEGetNumComponents(fe, &Nc));
3534: PetscCall(PetscFEGetBasisSpace(fe, &sp));
3535: PetscCall(PetscSpaceGetDegree(sp, NULL, &maxDegree));
3536: if (!maxDegree) needAvg[f] = PETSC_TRUE;
3537: } else if (id == PETSCFV_CLASSID) {
3538: PetscFV fv = (PetscFV)obj;
3539: PetscDualSpace Q;
3541: PetscCall(PetscFVRefine(fv, &fvRef[f]));
3542: PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
3543: PetscCall(PetscDualSpaceGetDimension(Q, &fNb));
3544: PetscCall(PetscFVGetNumComponents(fv, &Nc));
3545: needAvg[f] = PETSC_TRUE;
3546: }
3547: fTotDim += fNb;
3548: }
3549: PetscCall(PetscDSGetTotalDimension(prob, &cTotDim));
3550: PetscCall(PetscMalloc1(cTotDim, &cmap));
3551: for (field = 0, offsetC = 0, offsetF = 0; field < Nf; ++field) {
3552: PetscFE feC;
3553: PetscFV fvC;
3554: PetscDualSpace QF, QC;
3555: PetscInt order = -1, NcF, NcC, fpdim, cpdim;
3557: if (feRef[field]) {
3558: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&feC));
3559: PetscCall(PetscFEGetNumComponents(feC, &NcC));
3560: PetscCall(PetscFEGetNumComponents(feRef[field], &NcF));
3561: PetscCall(PetscFEGetDualSpace(feRef[field], &QF));
3562: PetscCall(PetscDualSpaceGetOrder(QF, &order));
3563: PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3564: PetscCall(PetscFEGetDualSpace(feC, &QC));
3565: PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3566: } else {
3567: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fvC));
3568: PetscCall(PetscFVGetNumComponents(fvC, &NcC));
3569: PetscCall(PetscFVGetNumComponents(fvRef[field], &NcF));
3570: PetscCall(PetscFVGetDualSpace(fvRef[field], &QF));
3571: PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3572: PetscCall(PetscFVGetDualSpace(fvC, &QC));
3573: PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3574: }
3575: PetscCheck(NcF == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, NcF, NcC);
3576: for (c = 0; c < cpdim; ++c) {
3577: PetscQuadrature cfunc;
3578: const PetscReal *cqpoints, *cqweights;
3579: PetscInt NqcC, NpC;
3580: PetscBool found = PETSC_FALSE;
3582: PetscCall(PetscDualSpaceGetFunctional(QC, c, &cfunc));
3583: PetscCall(PetscQuadratureGetData(cfunc, NULL, &NqcC, &NpC, &cqpoints, &cqweights));
3584: PetscCheck(NqcC == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcC, NcC);
3585: PetscCheck(NpC == 1 || !feRef[field], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Do not know how to do injection for moments");
3586: for (f = 0; f < fpdim; ++f) {
3587: PetscQuadrature ffunc;
3588: const PetscReal *fqpoints, *fqweights;
3589: PetscReal sum = 0.0;
3590: PetscInt NqcF, NpF;
3592: PetscCall(PetscDualSpaceGetFunctional(QF, f, &ffunc));
3593: PetscCall(PetscQuadratureGetData(ffunc, NULL, &NqcF, &NpF, &fqpoints, &fqweights));
3594: PetscCheck(NqcF == NcF, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcF, NcF);
3595: if (NpC != NpF) continue;
3596: for (d = 0; d < dim; ++d) sum += PetscAbsReal(cqpoints[d] - fqpoints[d]);
3597: if (sum > 1.0e-9) continue;
3598: for (d = 0; d < NcC; ++d) sum += PetscAbsReal(cqweights[d] * fqweights[d]);
3599: if (sum < 1.0e-9) continue;
3600: cmap[offsetC + c] = offsetF + f;
3601: found = PETSC_TRUE;
3602: break;
3603: }
3604: if (!found) {
3605: /* TODO We really want the average here, but some asshole put VecScatter in the interface */
3606: if (fvRef[field] || (feRef[field] && order == 0)) {
3607: cmap[offsetC + c] = offsetF + 0;
3608: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not locate matching functional for injection");
3609: }
3610: }
3611: offsetC += cpdim;
3612: offsetF += fpdim;
3613: }
3614: for (f = 0; f < Nf; ++f) {
3615: PetscCall(PetscFEDestroy(&feRef[f]));
3616: PetscCall(PetscFVDestroy(&fvRef[f]));
3617: }
3618: PetscCall(PetscFree3(feRef, fvRef, needAvg));
3620: PetscCall(DMGetGlobalVector(dmf, &fv));
3621: PetscCall(DMGetGlobalVector(dmc, &cv));
3622: PetscCall(VecGetOwnershipRange(cv, &startC, &endC));
3623: PetscCall(PetscSectionGetConstrainedStorageSize(cglobalSection, &m));
3624: PetscCall(PetscMalloc2(cTotDim, &cellCIndices, fTotDim, &cellFIndices));
3625: PetscCall(PetscMalloc1(m, &cindices));
3626: PetscCall(PetscMalloc1(m, &findices));
3627: for (d = 0; d < m; ++d) cindices[d] = findices[d] = -1;
3628: for (c = cStart; c < cEnd; ++c) {
3629: PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, c, cellCIndices, cellFIndices));
3630: for (d = 0; d < cTotDim; ++d) {
3631: if ((cellCIndices[d] < startC) || (cellCIndices[d] >= endC)) continue;
3632: PetscCheck(!(findices[cellCIndices[d] - startC] >= 0) || !(findices[cellCIndices[d] - startC] != cellFIndices[cmap[d]]), PETSC_COMM_SELF, PETSC_ERR_PLIB, "Cell %" PetscInt_FMT " Coarse dof %" PetscInt_FMT " maps to both %" PetscInt_FMT " and %" PetscInt_FMT, c, cindices[cellCIndices[d] - startC], findices[cellCIndices[d] - startC], cellFIndices[cmap[d]]);
3633: cindices[cellCIndices[d] - startC] = cellCIndices[d];
3634: findices[cellCIndices[d] - startC] = cellFIndices[cmap[d]];
3635: }
3636: }
3637: PetscCall(PetscFree(cmap));
3638: PetscCall(PetscFree2(cellCIndices, cellFIndices));
3640: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, cindices, PETSC_OWN_POINTER, &cis));
3641: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, findices, PETSC_OWN_POINTER, &fis));
3642: PetscCall(VecScatterCreate(cv, cis, fv, fis, sc));
3643: PetscCall(ISDestroy(&cis));
3644: PetscCall(ISDestroy(&fis));
3645: PetscCall(DMRestoreGlobalVector(dmf, &fv));
3646: PetscCall(DMRestoreGlobalVector(dmc, &cv));
3647: PetscCall(PetscLogEventEnd(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3648: PetscFunctionReturn(PETSC_SUCCESS);
3649: }
3651: /*@C
3652: DMPlexGetCellFields - Retrieve the field values values for a chunk of cells
3654: Input Parameters:
3655: + dm - The `DM`
3656: . cellIS - The cells to include
3657: . locX - A local vector with the solution fields
3658: . locX_t - A local vector with solution field time derivatives, or NULL
3659: - locA - A local vector with auxiliary fields, or NULL
3661: Output Parameters:
3662: + u - The field coefficients
3663: . u_t - The fields derivative coefficients
3664: - a - The auxiliary field coefficients
3666: Level: developer
3668: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3669: @*/
3670: PetscErrorCode DMPlexGetCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3671: {
3672: DM plex, plexA = NULL;
3673: DMEnclosureType encAux;
3674: PetscSection section, sectionAux;
3675: PetscDS prob;
3676: const PetscInt *cells;
3677: PetscInt cStart, cEnd, numCells, totDim, totDimAux, c;
3679: PetscFunctionBegin;
3684: PetscAssertPointer(u, 6);
3685: PetscAssertPointer(u_t, 7);
3686: PetscAssertPointer(a, 8);
3687: PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3688: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3689: PetscCall(DMGetLocalSection(dm, §ion));
3690: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
3691: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3692: if (locA) {
3693: DM dmAux;
3694: PetscDS probAux;
3696: PetscCall(VecGetDM(locA, &dmAux));
3697: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3698: PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3699: PetscCall(DMGetLocalSection(dmAux, §ionAux));
3700: PetscCall(DMGetDS(dmAux, &probAux));
3701: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3702: }
3703: numCells = cEnd - cStart;
3704: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3705: if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3706: else *u_t = NULL;
3707: if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3708: else *a = NULL;
3709: for (c = cStart; c < cEnd; ++c) {
3710: const PetscInt cell = cells ? cells[c] : c;
3711: const PetscInt cind = c - cStart;
3712: PetscScalar *x = NULL, *x_t = NULL, *ul = *u, *ul_t = *u_t, *al = *a;
3713: PetscInt i;
3715: PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, NULL, &x));
3716: for (i = 0; i < totDim; ++i) ul[cind * totDim + i] = x[i];
3717: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, NULL, &x));
3718: if (locX_t) {
3719: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &x_t));
3720: for (i = 0; i < totDim; ++i) ul_t[cind * totDim + i] = x_t[i];
3721: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &x_t));
3722: }
3723: if (locA) {
3724: PetscInt subcell;
3725: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3726: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3727: for (i = 0; i < totDimAux; ++i) al[cind * totDimAux + i] = x[i];
3728: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3729: }
3730: }
3731: PetscCall(DMDestroy(&plex));
3732: if (locA) PetscCall(DMDestroy(&plexA));
3733: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3734: PetscFunctionReturn(PETSC_SUCCESS);
3735: }
3737: /*@C
3738: DMPlexRestoreCellFields - Restore the field values values for a chunk of cells
3740: Input Parameters:
3741: + dm - The `DM`
3742: . cellIS - The cells to include
3743: . locX - A local vector with the solution fields
3744: . locX_t - A local vector with solution field time derivatives, or NULL
3745: - locA - A local vector with auxiliary fields, or NULL
3747: Output Parameters:
3748: + u - The field coefficients
3749: . u_t - The fields derivative coefficients
3750: - a - The auxiliary field coefficients
3752: Level: developer
3754: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3755: @*/
3756: PetscErrorCode DMPlexRestoreCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3757: {
3758: PetscFunctionBegin;
3759: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u));
3760: if (locX_t) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u_t));
3761: if (locA) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, a));
3762: PetscFunctionReturn(PETSC_SUCCESS);
3763: }
3765: static PetscErrorCode DMPlexGetHybridCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3766: {
3767: DM plex, plexA = NULL;
3768: DMEnclosureType encAux;
3769: PetscSection section, sectionAux;
3770: PetscDS ds, dsIn;
3771: const PetscInt *cells;
3772: PetscInt cStart, cEnd, numCells, c, totDim, totDimAux, Nf, f;
3774: PetscFunctionBegin;
3780: PetscAssertPointer(u, 6);
3781: PetscAssertPointer(u_t, 7);
3782: PetscAssertPointer(a, 8);
3783: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3784: numCells = cEnd - cStart;
3785: PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3786: PetscCall(DMGetLocalSection(dm, §ion));
3787: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
3788: PetscCall(PetscDSGetNumFields(dsIn, &Nf));
3789: PetscCall(PetscDSGetTotalDimension(dsIn, &totDim));
3790: if (locA) {
3791: DM dmAux;
3792: PetscDS probAux;
3794: PetscCall(VecGetDM(locA, &dmAux));
3795: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3796: PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3797: PetscCall(DMGetLocalSection(dmAux, §ionAux));
3798: PetscCall(DMGetDS(dmAux, &probAux));
3799: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3800: }
3801: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3802: if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3803: else {
3804: *u_t = NULL;
3805: }
3806: if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3807: else {
3808: *a = NULL;
3809: }
3810: // Loop over cohesive cells
3811: for (c = cStart; c < cEnd; ++c) {
3812: const PetscInt cell = cells ? cells[c] : c;
3813: const PetscInt cind = c - cStart;
3814: PetscScalar *xf = NULL, *xc = NULL, *x = NULL, *xf_t = NULL, *xc_t = NULL;
3815: PetscScalar *ul = &(*u)[cind * totDim], *ul_t = PetscSafePointerPlusOffset(*u_t, cind * totDim);
3816: const PetscInt *cone, *ornt;
3817: PetscInt Nx = 0, Nxf, s;
3819: PetscCall(DMPlexGetCone(dm, cell, &cone));
3820: PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
3821: // Put in cohesive unknowns
3822: PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, &Nxf, &xf));
3823: if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &xf_t));
3824: for (f = 0; f < Nf; ++f) {
3825: PetscInt fdofIn, foff, foffIn;
3826: PetscBool cohesive;
3828: PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3829: if (!cohesive) continue;
3830: PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3831: PetscCall(PetscDSGetFieldOffsetCohesive(ds, f, &foff));
3832: PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3833: for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + i] = xf[foff + i];
3834: if (locX_t)
3835: for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + i] = xf_t[foff + i];
3836: Nx += fdofIn;
3837: }
3838: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, &Nxf, &xf));
3839: if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &xf_t));
3840: // Loop over sides of surface
3841: for (s = 0; s < 2; ++s) {
3842: const PetscInt *support;
3843: const PetscInt face = cone[s];
3844: PetscInt ssize, ncell, Nxc;
3846: // I don't think I need the face to have 0 orientation in the hybrid cell
3847: //PetscCheck(!ornt[s], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", face, cell, ornt[s]);
3848: PetscCall(DMPlexGetSupport(dm, face, &support));
3849: PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
3850: if (support[0] == cell) ncell = support[1];
3851: else if (support[1] == cell) ncell = support[0];
3852: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
3853: // Get closure of both face and cell, stick in cell for normal fields and face for cohesive fields
3854: PetscCall(DMPlexVecGetClosure(plex, section, locX, ncell, &Nxc, &xc));
3855: if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3856: for (f = 0; f < Nf; ++f) {
3857: PetscInt fdofIn, foffIn;
3858: PetscBool cohesive;
3860: PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3861: if (cohesive) continue;
3862: PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3863: PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3864: for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + s * fdofIn + i] = xc[foffIn + i];
3865: if (locX_t)
3866: for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + s * fdofIn + i] = xc_t[foffIn + i];
3867: Nx += fdofIn;
3868: }
3869: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, ncell, &Nxc, &xc));
3870: if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3871: }
3872: PetscCheck(Nx == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for cell %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, cell, totDim);
3874: if (locA) {
3875: PetscScalar *al = &(*a)[cind * totDimAux];
3876: PetscInt subcell;
3878: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3879: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3880: PetscCheck(Nx == totDimAux, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subcell %" PetscInt_FMT "does not match DS size %" PetscInt_FMT, Nx, subcell, totDimAux);
3881: for (PetscInt i = 0; i < totDimAux; ++i) al[i] = x[i];
3882: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3883: }
3884: }
3885: PetscCall(DMDestroy(&plex));
3886: PetscCall(DMDestroy(&plexA));
3887: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3888: PetscFunctionReturn(PETSC_SUCCESS);
3889: }
3891: /*
3892: DMPlexGetHybridFields - Get the field values for the negative side (s = 0) and positive side (s = 1) of the interface
3894: Input Parameters:
3895: + dm - The full domain DM
3896: . dmX - An array of DM for the field, say an auxiliary DM, indexed by s
3897: . dsX - An array of PetscDS for the field, indexed by s
3898: . cellIS - The interface cells for which we want values
3899: . locX - An array of local vectors with the field values, indexed by s
3900: - useCell - Flag to have values come from neighboring cell rather than endcap face
3902: Output Parameter:
3903: . x - An array of field values, indexed by s
3905: Note:
3906: The arrays in `x` will be allocated using `DMGetWorkArray()`, and must be returned using `DMPlexRestoreHybridFields()`.
3908: Level: advanced
3910: .seealso: `DMPlexRestoreHybridFields()`, `DMGetWorkArray()`
3911: */
3912: static PetscErrorCode DMPlexGetHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
3913: {
3914: DM plexX[2];
3915: DMEnclosureType encX[2];
3916: PetscSection sectionX[2];
3917: const PetscInt *cells;
3918: PetscInt cStart, cEnd, numCells, c, s, totDimX[2];
3920: PetscFunctionBegin;
3921: PetscAssertPointer(locX, 5);
3922: if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
3923: PetscAssertPointer(dmX, 2);
3924: PetscAssertPointer(dsX, 3);
3926: PetscAssertPointer(x, 7);
3927: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3928: numCells = cEnd - cStart;
3929: for (s = 0; s < 2; ++s) {
3933: PetscCall(DMPlexConvertPlex(dmX[s], &plexX[s], PETSC_FALSE));
3934: PetscCall(DMGetEnclosureRelation(dmX[s], dm, &encX[s]));
3935: PetscCall(DMGetLocalSection(dmX[s], §ionX[s]));
3936: PetscCall(PetscDSGetTotalDimension(dsX[s], &totDimX[s]));
3937: PetscCall(DMGetWorkArray(dmX[s], numCells * totDimX[s], MPIU_SCALAR, &x[s]));
3938: }
3939: for (c = cStart; c < cEnd; ++c) {
3940: const PetscInt cell = cells ? cells[c] : c;
3941: const PetscInt cind = c - cStart;
3942: const PetscInt *cone, *ornt;
3944: PetscCall(DMPlexGetCone(dm, cell, &cone));
3945: PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
3946: //PetscCheck(!ornt[0], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", cone[0], cell, ornt[0]);
3947: for (s = 0; s < 2; ++s) {
3948: const PetscInt tdX = totDimX[s];
3949: PetscScalar *closure = NULL, *xl = &x[s][cind * tdX];
3950: PetscInt face = cone[s], point = face, subpoint, Nx, i;
3952: if (useCell) {
3953: const PetscInt *support;
3954: PetscInt ssize;
3956: PetscCall(DMPlexGetSupport(dm, face, &support));
3957: PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
3958: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", face, cell, ssize);
3959: if (support[0] == cell) point = support[1];
3960: else if (support[1] == cell) point = support[0];
3961: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
3962: }
3963: PetscCall(DMGetEnclosurePoint(plexX[s], dm, encX[s], point, &subpoint));
3964: PetscCall(DMPlexVecGetOrientedClosure_Internal(plexX[s], sectionX[s], PETSC_FALSE, locX[s], subpoint, ornt[s], &Nx, &closure));
3965: PetscCheck(Nx == tdX, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subpoint %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, subpoint, tdX);
3966: for (i = 0; i < Nx; ++i) xl[i] = closure[i];
3967: PetscCall(DMPlexVecRestoreClosure(plexX[s], sectionX[s], locX[s], subpoint, &Nx, &closure));
3968: }
3969: }
3970: for (s = 0; s < 2; ++s) PetscCall(DMDestroy(&plexX[s]));
3971: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3972: PetscFunctionReturn(PETSC_SUCCESS);
3973: }
3975: static PetscErrorCode DMPlexRestoreHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
3976: {
3977: PetscFunctionBegin;
3978: if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
3979: PetscCall(DMRestoreWorkArray(dmX[0], 0, MPIU_SCALAR, &x[0]));
3980: PetscCall(DMRestoreWorkArray(dmX[1], 0, MPIU_SCALAR, &x[1]));
3981: PetscFunctionReturn(PETSC_SUCCESS);
3982: }
3984: /*@C
3985: DMPlexGetFaceFields - Retrieve the field values values for a chunk of faces
3987: Input Parameters:
3988: + dm - The `DM`
3989: . fStart - The first face to include
3990: . fEnd - The first face to exclude
3991: . locX - A local vector with the solution fields
3992: . locX_t - A local vector with solution field time derivatives, or NULL
3993: . faceGeometry - A local vector with face geometry
3994: . cellGeometry - A local vector with cell geometry
3995: - locGrad - A local vector with field gradients, or NULL
3997: Output Parameters:
3998: + Nface - The number of faces with field values
3999: . uL - The field values at the left side of the face
4000: - uR - The field values at the right side of the face
4002: Level: developer
4004: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
4005: @*/
4006: PetscErrorCode DMPlexGetFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
4007: {
4008: DM dmFace, dmCell, dmGrad = NULL;
4009: PetscSection section;
4010: PetscDS prob;
4011: DMLabel ghostLabel;
4012: const PetscScalar *facegeom, *cellgeom, *x, *lgrad;
4013: PetscBool *isFE;
4014: PetscInt dim, Nf, f, Nc, numFaces = fEnd - fStart, iface, face;
4016: PetscFunctionBegin;
4023: PetscAssertPointer(uL, 10);
4024: PetscAssertPointer(uR, 11);
4025: PetscCall(DMGetDimension(dm, &dim));
4026: PetscCall(DMGetDS(dm, &prob));
4027: PetscCall(DMGetLocalSection(dm, §ion));
4028: PetscCall(PetscDSGetNumFields(prob, &Nf));
4029: PetscCall(PetscDSGetTotalComponents(prob, &Nc));
4030: PetscCall(PetscMalloc1(Nf, &isFE));
4031: for (f = 0; f < Nf; ++f) {
4032: PetscObject obj;
4033: PetscClassId id;
4035: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4036: PetscCall(PetscObjectGetClassId(obj, &id));
4037: if (id == PETSCFE_CLASSID) {
4038: isFE[f] = PETSC_TRUE;
4039: } else if (id == PETSCFV_CLASSID) {
4040: isFE[f] = PETSC_FALSE;
4041: } else {
4042: isFE[f] = PETSC_FALSE;
4043: }
4044: }
4045: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4046: PetscCall(VecGetArrayRead(locX, &x));
4047: PetscCall(VecGetDM(faceGeometry, &dmFace));
4048: PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
4049: PetscCall(VecGetDM(cellGeometry, &dmCell));
4050: PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
4051: if (locGrad) {
4052: PetscCall(VecGetDM(locGrad, &dmGrad));
4053: PetscCall(VecGetArrayRead(locGrad, &lgrad));
4054: }
4055: PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uL));
4056: PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uR));
4057: /* Right now just eat the extra work for FE (could make a cell loop) */
4058: for (face = fStart, iface = 0; face < fEnd; ++face) {
4059: const PetscInt *cells;
4060: PetscFVFaceGeom *fg;
4061: PetscFVCellGeom *cgL, *cgR;
4062: PetscScalar *xL, *xR, *gL, *gR;
4063: PetscScalar *uLl = *uL, *uRl = *uR;
4064: PetscInt ghost, nsupp, nchild;
4066: PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
4067: PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
4068: PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
4069: if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
4070: PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
4071: PetscCall(DMPlexGetSupport(dm, face, &cells));
4072: PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
4073: PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
4074: for (f = 0; f < Nf; ++f) {
4075: PetscInt off;
4077: PetscCall(PetscDSGetComponentOffset(prob, f, &off));
4078: if (isFE[f]) {
4079: const PetscInt *cone;
4080: PetscInt comp, coneSizeL, coneSizeR, faceLocL, faceLocR, ldof, rdof, d;
4082: xL = xR = NULL;
4083: PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
4084: PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[0], &ldof, (PetscScalar **)&xL));
4085: PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[1], &rdof, (PetscScalar **)&xR));
4086: PetscCall(DMPlexGetCone(dm, cells[0], &cone));
4087: PetscCall(DMPlexGetConeSize(dm, cells[0], &coneSizeL));
4088: for (faceLocL = 0; faceLocL < coneSizeL; ++faceLocL)
4089: if (cone[faceLocL] == face) break;
4090: PetscCall(DMPlexGetCone(dm, cells[1], &cone));
4091: PetscCall(DMPlexGetConeSize(dm, cells[1], &coneSizeR));
4092: for (faceLocR = 0; faceLocR < coneSizeR; ++faceLocR)
4093: if (cone[faceLocR] == face) break;
4094: PetscCheck(faceLocL != coneSizeL || faceLocR != coneSizeR, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not find face %" PetscInt_FMT " in cone of cell %" PetscInt_FMT " or cell %" PetscInt_FMT, face, cells[0], cells[1]);
4095: /* Check that FEM field has values in the right cell (sometimes its an FV ghost cell) */
4096: /* TODO: this is a hack that might not be right for nonconforming */
4097: if (faceLocL < coneSizeL) {
4098: PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocL, xL, &uLl[iface * Nc + off]));
4099: if (rdof == ldof && faceLocR < coneSizeR) PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
4100: else {
4101: for (d = 0; d < comp; ++d) uRl[iface * Nc + off + d] = uLl[iface * Nc + off + d];
4102: }
4103: } else {
4104: PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
4105: PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
4106: for (d = 0; d < comp; ++d) uLl[iface * Nc + off + d] = uRl[iface * Nc + off + d];
4107: }
4108: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[0], &ldof, (PetscScalar **)&xL));
4109: PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[1], &rdof, (PetscScalar **)&xR));
4110: } else {
4111: PetscFV fv;
4112: PetscInt numComp, c;
4114: PetscCall(PetscDSGetDiscretization(prob, f, (PetscObject *)&fv));
4115: PetscCall(PetscFVGetNumComponents(fv, &numComp));
4116: PetscCall(DMPlexPointLocalFieldRead(dm, cells[0], f, x, &xL));
4117: PetscCall(DMPlexPointLocalFieldRead(dm, cells[1], f, x, &xR));
4118: if (dmGrad) {
4119: PetscReal dxL[3], dxR[3];
4121: PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], lgrad, &gL));
4122: PetscCall(DMPlexPointLocalRead(dmGrad, cells[1], lgrad, &gR));
4123: DMPlex_WaxpyD_Internal(dim, -1, cgL->centroid, fg->centroid, dxL);
4124: DMPlex_WaxpyD_Internal(dim, -1, cgR->centroid, fg->centroid, dxR);
4125: for (c = 0; c < numComp; ++c) {
4126: uLl[iface * Nc + off + c] = xL[c] + DMPlex_DotD_Internal(dim, &gL[c * dim], dxL);
4127: uRl[iface * Nc + off + c] = xR[c] + DMPlex_DotD_Internal(dim, &gR[c * dim], dxR);
4128: }
4129: } else {
4130: for (c = 0; c < numComp; ++c) {
4131: uLl[iface * Nc + off + c] = xL[c];
4132: uRl[iface * Nc + off + c] = xR[c];
4133: }
4134: }
4135: }
4136: }
4137: ++iface;
4138: }
4139: *Nface = iface;
4140: PetscCall(VecRestoreArrayRead(locX, &x));
4141: PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
4142: PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
4143: if (locGrad) PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
4144: PetscCall(PetscFree(isFE));
4145: PetscFunctionReturn(PETSC_SUCCESS);
4146: }
4148: /*@C
4149: DMPlexRestoreFaceFields - Restore the field values values for a chunk of faces
4151: Input Parameters:
4152: + dm - The `DM`
4153: . fStart - The first face to include
4154: . fEnd - The first face to exclude
4155: . locX - A local vector with the solution fields
4156: . locX_t - A local vector with solution field time derivatives, or NULL
4157: . faceGeometry - A local vector with face geometry
4158: . cellGeometry - A local vector with cell geometry
4159: - locGrad - A local vector with field gradients, or NULL
4161: Output Parameters:
4162: + Nface - The number of faces with field values
4163: . uL - The field values at the left side of the face
4164: - uR - The field values at the right side of the face
4166: Level: developer
4168: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4169: @*/
4170: PetscErrorCode DMPlexRestoreFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
4171: {
4172: PetscFunctionBegin;
4173: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uL));
4174: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uR));
4175: PetscFunctionReturn(PETSC_SUCCESS);
4176: }
4178: /*@C
4179: DMPlexGetFaceGeometry - Retrieve the geometric values for a chunk of faces
4181: Input Parameters:
4182: + dm - The `DM`
4183: . fStart - The first face to include
4184: . fEnd - The first face to exclude
4185: . faceGeometry - A local vector with face geometry
4186: - cellGeometry - A local vector with cell geometry
4188: Output Parameters:
4189: + Nface - The number of faces with field values
4190: . fgeom - The extract the face centroid and normal
4191: - vol - The cell volume
4193: Level: developer
4195: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
4196: @*/
4197: PetscErrorCode DMPlexGetFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
4198: {
4199: DM dmFace, dmCell;
4200: DMLabel ghostLabel;
4201: const PetscScalar *facegeom, *cellgeom;
4202: PetscInt dim, numFaces = fEnd - fStart, iface, face;
4204: PetscFunctionBegin;
4208: PetscAssertPointer(fgeom, 7);
4209: PetscAssertPointer(vol, 8);
4210: PetscCall(DMGetDimension(dm, &dim));
4211: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4212: PetscCall(VecGetDM(faceGeometry, &dmFace));
4213: PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
4214: PetscCall(VecGetDM(cellGeometry, &dmCell));
4215: PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
4216: PetscCall(PetscMalloc1(numFaces, fgeom));
4217: PetscCall(DMGetWorkArray(dm, numFaces * 2, MPIU_SCALAR, vol));
4218: for (face = fStart, iface = 0; face < fEnd; ++face) {
4219: const PetscInt *cells;
4220: PetscFVFaceGeom *fg;
4221: PetscFVCellGeom *cgL, *cgR;
4222: PetscFVFaceGeom *fgeoml = *fgeom;
4223: PetscReal *voll = *vol;
4224: PetscInt ghost, d, nchild, nsupp;
4226: PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
4227: PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
4228: PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
4229: if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
4230: PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
4231: PetscCall(DMPlexGetSupport(dm, face, &cells));
4232: PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
4233: PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
4234: for (d = 0; d < dim; ++d) {
4235: fgeoml[iface].centroid[d] = fg->centroid[d];
4236: fgeoml[iface].normal[d] = fg->normal[d];
4237: }
4238: voll[iface * 2 + 0] = cgL->volume;
4239: voll[iface * 2 + 1] = cgR->volume;
4240: ++iface;
4241: }
4242: *Nface = iface;
4243: PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
4244: PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
4245: PetscFunctionReturn(PETSC_SUCCESS);
4246: }
4248: /*@C
4249: DMPlexRestoreFaceGeometry - Restore the field values values for a chunk of faces
4251: Input Parameters:
4252: + dm - The `DM`
4253: . fStart - The first face to include
4254: . fEnd - The first face to exclude
4255: . faceGeometry - A local vector with face geometry
4256: - cellGeometry - A local vector with cell geometry
4258: Output Parameters:
4259: + Nface - The number of faces with field values
4260: . fgeom - The extract the face centroid and normal
4261: - vol - The cell volume
4263: Level: developer
4265: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4266: @*/
4267: PetscErrorCode DMPlexRestoreFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
4268: {
4269: PetscFunctionBegin;
4270: PetscCall(PetscFree(*fgeom));
4271: PetscCall(DMRestoreWorkArray(dm, 0, MPIU_REAL, vol));
4272: PetscFunctionReturn(PETSC_SUCCESS);
4273: }
4275: PetscErrorCode DMSNESGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
4276: {
4277: char composeStr[33] = {0};
4278: PetscObjectId id;
4279: PetscContainer container;
4281: PetscFunctionBegin;
4282: PetscCall(PetscObjectGetId((PetscObject)quad, &id));
4283: PetscCall(PetscSNPrintf(composeStr, 32, "DMSNESGetFEGeom_%" PetscInt64_FMT "\n", id));
4284: PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
4285: if (container) {
4286: PetscCall(PetscContainerGetPointer(container, (void **)geom));
4287: } else {
4288: PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom));
4289: PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
4290: PetscCall(PetscContainerSetPointer(container, (void *)*geom));
4291: PetscCall(PetscContainerSetUserDestroy(container, PetscContainerUserDestroy_PetscFEGeom));
4292: PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
4293: PetscCall(PetscContainerDestroy(&container));
4294: }
4295: PetscFunctionReturn(PETSC_SUCCESS);
4296: }
4298: PetscErrorCode DMSNESRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
4299: {
4300: PetscFunctionBegin;
4301: *geom = NULL;
4302: PetscFunctionReturn(PETSC_SUCCESS);
4303: }
4305: PetscErrorCode DMPlexComputeResidual_Patch_Internal(DM dm, PetscSection section, IS cellIS, PetscReal t, Vec locX, Vec locX_t, Vec locF, void *user)
4306: {
4307: DM_Plex *mesh = (DM_Plex *)dm->data;
4308: const char *name = "Residual";
4309: DM dmAux = NULL;
4310: DMLabel ghostLabel = NULL;
4311: PetscDS prob = NULL;
4312: PetscDS probAux = NULL;
4313: PetscBool useFEM = PETSC_FALSE;
4314: PetscBool isImplicit = (locX_t || t == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
4315: DMField coordField = NULL;
4316: Vec locA;
4317: PetscScalar *u = NULL, *u_t, *a, *uL = NULL, *uR = NULL;
4318: IS chunkIS;
4319: const PetscInt *cells;
4320: PetscInt cStart, cEnd, numCells;
4321: PetscInt Nf, f, totDim, totDimAux, numChunks, cellChunkSize, chunk, fStart, fEnd;
4322: PetscInt maxDegree = PETSC_INT_MAX;
4323: PetscFormKey key;
4324: PetscQuadrature affineQuad = NULL, *quads = NULL;
4325: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
4327: PetscFunctionBegin;
4328: PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4329: /* FEM+FVM */
4330: /* 1: Get sizes from dm and dmAux */
4331: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4332: PetscCall(DMGetDS(dm, &prob));
4333: PetscCall(PetscDSGetNumFields(prob, &Nf));
4334: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4335: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
4336: if (locA) {
4337: PetscCall(VecGetDM(locA, &dmAux));
4338: PetscCall(DMGetDS(dmAux, &probAux));
4339: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4340: }
4341: /* 2: Get geometric data */
4342: for (f = 0; f < Nf; ++f) {
4343: PetscObject obj;
4344: PetscClassId id;
4345: PetscBool fimp;
4347: PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4348: if (isImplicit != fimp) continue;
4349: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4350: PetscCall(PetscObjectGetClassId(obj, &id));
4351: if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
4352: PetscCheck(id != PETSCFV_CLASSID, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Use of FVM with PCPATCH not yet implemented");
4353: }
4354: if (useFEM) {
4355: PetscCall(DMGetCoordinateField(dm, &coordField));
4356: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4357: if (maxDegree <= 1) {
4358: PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
4359: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4360: } else {
4361: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
4362: for (f = 0; f < Nf; ++f) {
4363: PetscObject obj;
4364: PetscClassId id;
4365: PetscBool fimp;
4367: PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4368: if (isImplicit != fimp) continue;
4369: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4370: PetscCall(PetscObjectGetClassId(obj, &id));
4371: if (id == PETSCFE_CLASSID) {
4372: PetscFE fe = (PetscFE)obj;
4374: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
4375: PetscCall(PetscObjectReference((PetscObject)quads[f]));
4376: PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4377: }
4378: }
4379: }
4380: }
4381: /* Loop over chunks */
4382: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4383: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
4384: if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
4385: numCells = cEnd - cStart;
4386: numChunks = 1;
4387: cellChunkSize = numCells / numChunks;
4388: numChunks = PetscMin(1, numCells);
4389: key.label = NULL;
4390: key.value = 0;
4391: key.part = 0;
4392: for (chunk = 0; chunk < numChunks; ++chunk) {
4393: PetscScalar *elemVec, *fluxL = NULL, *fluxR = NULL;
4394: PetscReal *vol = NULL;
4395: PetscFVFaceGeom *fgeom = NULL;
4396: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
4397: PetscInt numFaces = 0;
4399: /* Extract field coefficients */
4400: if (useFEM) {
4401: PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
4402: PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4403: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4404: PetscCall(PetscArrayzero(elemVec, numCells * totDim));
4405: }
4406: /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
4407: /* Loop over fields */
4408: for (f = 0; f < Nf; ++f) {
4409: PetscObject obj;
4410: PetscClassId id;
4411: PetscBool fimp;
4412: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;
4414: key.field = f;
4415: PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4416: if (isImplicit != fimp) continue;
4417: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4418: PetscCall(PetscObjectGetClassId(obj, &id));
4419: if (id == PETSCFE_CLASSID) {
4420: PetscFE fe = (PetscFE)obj;
4421: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[f];
4422: PetscFEGeom *chunkGeom = NULL;
4423: PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
4424: PetscInt Nq, Nb;
4426: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4427: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
4428: PetscCall(PetscFEGetDimension(fe, &Nb));
4429: blockSize = Nb;
4430: batchSize = numBlocks * blockSize;
4431: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4432: numChunks = numCells / (numBatches * batchSize);
4433: Ne = numChunks * numBatches * batchSize;
4434: Nr = numCells % (numBatches * batchSize);
4435: offset = numCells - Nr;
4436: /* Integrate FE residual to get elemVec (need fields at quadrature points) */
4437: /* For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
4438: PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
4439: PetscCall(PetscFEIntegrateResidual(prob, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4440: PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
4441: PetscCall(PetscFEIntegrateResidual(prob, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, &elemVec[offset * totDim]));
4442: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
4443: } else if (id == PETSCFV_CLASSID) {
4444: PetscFV fv = (PetscFV)obj;
4446: Ne = numFaces;
4447: /* Riemann solve over faces (need fields at face centroids) */
4448: /* We need to evaluate FE fields at those coordinates */
4449: PetscCall(PetscFVIntegrateRHSFunction(fv, prob, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
4450: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
4451: }
4452: /* Loop over domain */
4453: if (useFEM) {
4454: /* Add elemVec to locX */
4455: for (c = cS; c < cE; ++c) {
4456: const PetscInt cell = cells ? cells[c] : c;
4457: const PetscInt cind = c - cStart;
4459: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
4460: if (ghostLabel) {
4461: PetscInt ghostVal;
4463: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4464: if (ghostVal > 0) continue;
4465: }
4466: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
4467: }
4468: }
4469: /* Handle time derivative */
4470: if (locX_t) {
4471: PetscScalar *x_t, *fa;
4473: PetscCall(VecGetArray(locF, &fa));
4474: PetscCall(VecGetArray(locX_t, &x_t));
4475: for (f = 0; f < Nf; ++f) {
4476: PetscFV fv;
4477: PetscObject obj;
4478: PetscClassId id;
4479: PetscInt pdim, d;
4481: PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4482: PetscCall(PetscObjectGetClassId(obj, &id));
4483: if (id != PETSCFV_CLASSID) continue;
4484: fv = (PetscFV)obj;
4485: PetscCall(PetscFVGetNumComponents(fv, &pdim));
4486: for (c = cS; c < cE; ++c) {
4487: const PetscInt cell = cells ? cells[c] : c;
4488: PetscScalar *u_t, *r;
4490: if (ghostLabel) {
4491: PetscInt ghostVal;
4493: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4494: if (ghostVal > 0) continue;
4495: }
4496: PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
4497: PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
4498: for (d = 0; d < pdim; ++d) r[d] += u_t[d];
4499: }
4500: }
4501: PetscCall(VecRestoreArray(locX_t, &x_t));
4502: PetscCall(VecRestoreArray(locF, &fa));
4503: }
4504: if (useFEM) {
4505: PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4506: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4507: }
4508: }
4509: if (useFEM) PetscCall(ISDestroy(&chunkIS));
4510: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
4511: /* TODO Could include boundary residual here (see DMPlexComputeResidual_Internal) */
4512: if (useFEM) {
4513: if (maxDegree <= 1) {
4514: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4515: PetscCall(PetscQuadratureDestroy(&affineQuad));
4516: } else {
4517: for (f = 0; f < Nf; ++f) {
4518: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4519: PetscCall(PetscQuadratureDestroy(&quads[f]));
4520: }
4521: PetscCall(PetscFree2(quads, geoms));
4522: }
4523: }
4524: PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4525: PetscFunctionReturn(PETSC_SUCCESS);
4526: }
4528: /*
4529: We always assemble JacP, and if the matrix is different from Jac and two different sets of point functions are provided, we also assemble Jac
4531: X - The local solution vector
4532: X_t - The local solution time derivative vector, or NULL
4533: */
4534: PetscErrorCode DMPlexComputeJacobian_Patch_Internal(DM dm, PetscSection section, PetscSection globalSection, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *ctx)
4535: {
4536: DM_Plex *mesh = (DM_Plex *)dm->data;
4537: const char *name = "Jacobian", *nameP = "JacobianPre";
4538: DM dmAux = NULL;
4539: PetscDS prob, probAux = NULL;
4540: PetscSection sectionAux = NULL;
4541: Vec A;
4542: DMField coordField;
4543: PetscFEGeom *cgeomFEM;
4544: PetscQuadrature qGeom = NULL;
4545: Mat J = Jac, JP = JacP;
4546: PetscScalar *work, *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL, *elemMatD = NULL;
4547: PetscBool hasJac, hasPrec, hasDyn, assembleJac, *isFE, hasFV = PETSC_FALSE;
4548: const PetscInt *cells;
4549: PetscFormKey key;
4550: PetscInt Nf, fieldI, fieldJ, maxDegree, numCells, cStart, cEnd, numChunks, chunkSize, chunk, totDim, totDimAux = 0, sz, wsz, off = 0, offCell = 0;
4552: PetscFunctionBegin;
4553: PetscCall(ISGetLocalSize(cellIS, &numCells));
4554: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4555: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4556: PetscCall(DMGetDS(dm, &prob));
4557: PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &A));
4558: if (A) {
4559: PetscCall(VecGetDM(A, &dmAux));
4560: PetscCall(DMGetLocalSection(dmAux, §ionAux));
4561: PetscCall(DMGetDS(dmAux, &probAux));
4562: }
4563: /* Get flags */
4564: PetscCall(PetscDSGetNumFields(prob, &Nf));
4565: PetscCall(DMGetWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4566: for (fieldI = 0; fieldI < Nf; ++fieldI) {
4567: PetscObject disc;
4568: PetscClassId id;
4569: PetscCall(PetscDSGetDiscretization(prob, fieldI, &disc));
4570: PetscCall(PetscObjectGetClassId(disc, &id));
4571: if (id == PETSCFE_CLASSID) {
4572: isFE[fieldI] = PETSC_TRUE;
4573: } else if (id == PETSCFV_CLASSID) {
4574: hasFV = PETSC_TRUE;
4575: isFE[fieldI] = PETSC_FALSE;
4576: }
4577: }
4578: PetscCall(PetscDSHasJacobian(prob, &hasJac));
4579: PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
4580: PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
4581: assembleJac = hasJac && hasPrec && (Jac != JacP) ? PETSC_TRUE : PETSC_FALSE;
4582: hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
4583: if (hasFV) PetscCall(MatSetOption(JP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE)); /* No allocated space for FV stuff, so ignore the zero entries */
4584: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4585: if (probAux) PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4586: /* Compute batch sizes */
4587: if (isFE[0]) {
4588: PetscFE fe;
4589: PetscQuadrature q;
4590: PetscInt numQuadPoints, numBatches, batchSize, numBlocks, blockSize, Nb;
4592: PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4593: PetscCall(PetscFEGetQuadrature(fe, &q));
4594: PetscCall(PetscQuadratureGetData(q, NULL, NULL, &numQuadPoints, NULL, NULL));
4595: PetscCall(PetscFEGetDimension(fe, &Nb));
4596: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4597: blockSize = Nb * numQuadPoints;
4598: batchSize = numBlocks * blockSize;
4599: chunkSize = numBatches * batchSize;
4600: numChunks = numCells / chunkSize + numCells % chunkSize;
4601: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4602: } else {
4603: chunkSize = numCells;
4604: numChunks = 1;
4605: }
4606: /* Get work space */
4607: wsz = (((X ? 1 : 0) + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize;
4608: PetscCall(DMGetWorkArray(dm, wsz, MPIU_SCALAR, &work));
4609: PetscCall(PetscArrayzero(work, wsz));
4610: off = 0;
4611: u = X ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4612: u_t = X_t ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4613: a = dmAux ? (sz = chunkSize * totDimAux, off += sz, work + off - sz) : NULL;
4614: elemMat = hasJac ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4615: elemMatP = hasPrec ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4616: elemMatD = hasDyn ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4617: PetscCheck(off == wsz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Error is workspace size %" PetscInt_FMT " should be %" PetscInt_FMT, off, wsz);
4618: /* Setup geometry */
4619: PetscCall(DMGetCoordinateField(dm, &coordField));
4620: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4621: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
4622: if (!qGeom) {
4623: PetscFE fe;
4625: PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4626: PetscCall(PetscFEGetQuadrature(fe, &qGeom));
4627: PetscCall(PetscObjectReference((PetscObject)qGeom));
4628: }
4629: PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
4630: /* Compute volume integrals */
4631: if (assembleJac) PetscCall(MatZeroEntries(J));
4632: PetscCall(MatZeroEntries(JP));
4633: key.label = NULL;
4634: key.value = 0;
4635: key.part = 0;
4636: for (chunk = 0; chunk < numChunks; ++chunk, offCell += chunkSize) {
4637: const PetscInt Ncell = PetscMin(chunkSize, numCells - offCell);
4638: PetscInt c;
4640: /* Extract values */
4641: for (c = 0; c < Ncell; ++c) {
4642: const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4643: PetscScalar *x = NULL, *x_t = NULL;
4644: PetscInt i;
4646: if (X) {
4647: PetscCall(DMPlexVecGetClosure(dm, section, X, cell, NULL, &x));
4648: for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
4649: PetscCall(DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x));
4650: }
4651: if (X_t) {
4652: PetscCall(DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t));
4653: for (i = 0; i < totDim; ++i) u_t[c * totDim + i] = x_t[i];
4654: PetscCall(DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t));
4655: }
4656: if (dmAux) {
4657: PetscCall(DMPlexVecGetClosure(dmAux, sectionAux, A, cell, NULL, &x));
4658: for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
4659: PetscCall(DMPlexVecRestoreClosure(dmAux, sectionAux, A, cell, NULL, &x));
4660: }
4661: }
4662: for (fieldI = 0; fieldI < Nf; ++fieldI) {
4663: PetscFE fe;
4664: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
4665: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
4666: key.field = fieldI * Nf + fieldJ;
4667: if (hasJac) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMat));
4668: if (hasPrec) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatP));
4669: if (hasDyn) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatD));
4670: }
4671: /* For finite volume, add the identity */
4672: if (!isFE[fieldI]) {
4673: PetscFV fv;
4674: PetscInt eOffset = 0, Nc, fc, foff;
4676: PetscCall(PetscDSGetFieldOffset(prob, fieldI, &foff));
4677: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
4678: PetscCall(PetscFVGetNumComponents(fv, &Nc));
4679: for (c = 0; c < chunkSize; ++c, eOffset += totDim * totDim) {
4680: for (fc = 0; fc < Nc; ++fc) {
4681: const PetscInt i = foff + fc;
4682: if (hasJac) elemMat[eOffset + i * totDim + i] = 1.0;
4683: if (hasPrec) elemMatP[eOffset + i * totDim + i] = 1.0;
4684: }
4685: }
4686: }
4687: }
4688: /* Add contribution from X_t */
4689: if (hasDyn) {
4690: for (c = 0; c < chunkSize * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
4691: }
4692: /* Insert values into matrix */
4693: for (c = 0; c < Ncell; ++c) {
4694: const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4695: if (mesh->printFEM > 1) {
4696: if (hasJac) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[(c - cStart) * totDim * totDim]));
4697: if (hasPrec) PetscCall(DMPrintCellMatrix(cell, nameP, totDim, totDim, &elemMatP[(c - cStart) * totDim * totDim]));
4698: }
4699: if (assembleJac) PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4700: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JP, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4701: }
4702: }
4703: /* Cleanup */
4704: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
4705: PetscCall(PetscQuadratureDestroy(&qGeom));
4706: if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
4707: PetscCall(DMRestoreWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4708: PetscCall(DMRestoreWorkArray(dm, ((1 + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize, MPIU_SCALAR, &work));
4709: /* Compute boundary integrals */
4710: /* PetscCall(DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, ctx)); */
4711: /* Assemble matrix */
4712: if (assembleJac) {
4713: PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
4714: PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
4715: }
4716: PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
4717: PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
4718: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4719: PetscFunctionReturn(PETSC_SUCCESS);
4720: }
4722: /* FEM Assembly Function */
4724: static PetscErrorCode DMConvertPlex_Internal(DM dm, DM *plex, PetscBool copy)
4725: {
4726: PetscBool isPlex;
4728: PetscFunctionBegin;
4729: PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
4730: if (isPlex) {
4731: *plex = dm;
4732: PetscCall(PetscObjectReference((PetscObject)dm));
4733: } else {
4734: PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
4735: if (!*plex) {
4736: PetscCall(DMConvert(dm, DMPLEX, plex));
4737: PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
4738: } else {
4739: PetscCall(PetscObjectReference((PetscObject)*plex));
4740: }
4741: if (copy) PetscCall(DMCopyAuxiliaryVec(dm, *plex));
4742: }
4743: PetscFunctionReturn(PETSC_SUCCESS);
4744: }
4746: /*@
4747: DMPlexGetGeometryFVM - Return precomputed geometric data
4749: Collective
4751: Input Parameter:
4752: . dm - The `DM`
4754: Output Parameters:
4755: + facegeom - The values precomputed from face geometry
4756: . cellgeom - The values precomputed from cell geometry
4757: - minRadius - The minimum radius over the mesh of an inscribed sphere in a cell
4759: Level: developer
4761: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMTSSetRHSFunctionLocal()`
4762: @*/
4763: PetscErrorCode DMPlexGetGeometryFVM(DM dm, Vec *facegeom, Vec *cellgeom, PetscReal *minRadius)
4764: {
4765: DM plex;
4767: PetscFunctionBegin;
4769: PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4770: PetscCall(DMPlexGetDataFVM(plex, NULL, cellgeom, facegeom, NULL));
4771: if (minRadius) PetscCall(DMPlexGetMinRadius(plex, minRadius));
4772: PetscCall(DMDestroy(&plex));
4773: PetscFunctionReturn(PETSC_SUCCESS);
4774: }
4776: /*@
4777: DMPlexGetGradientDM - Return gradient data layout
4779: Collective
4781: Input Parameters:
4782: + dm - The `DM`
4783: - fv - The `PetscFV`
4785: Output Parameter:
4786: . dmGrad - The layout for gradient values
4788: Level: developer
4790: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetGeometryFVM()`
4791: @*/
4792: PetscErrorCode DMPlexGetGradientDM(DM dm, PetscFV fv, DM *dmGrad)
4793: {
4794: DM plex;
4795: PetscBool computeGradients;
4797: PetscFunctionBegin;
4800: PetscAssertPointer(dmGrad, 3);
4801: PetscCall(PetscFVGetComputeGradients(fv, &computeGradients));
4802: if (!computeGradients) {
4803: *dmGrad = NULL;
4804: PetscFunctionReturn(PETSC_SUCCESS);
4805: }
4806: PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4807: PetscCall(DMPlexGetDataFVM(plex, fv, NULL, NULL, dmGrad));
4808: PetscCall(DMDestroy(&plex));
4809: PetscFunctionReturn(PETSC_SUCCESS);
4810: }
4812: static PetscErrorCode DMPlexComputeBdResidual_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF, DMField coordField, IS facetIS)
4813: {
4814: DM_Plex *mesh = (DM_Plex *)dm->data;
4815: DM plex = NULL, plexA = NULL;
4816: const char *name = "BdResidual";
4817: DMEnclosureType encAux;
4818: PetscDS prob, probAux = NULL;
4819: PetscSection section, sectionAux = NULL;
4820: Vec locA = NULL;
4821: PetscScalar *u = NULL, *u_t = NULL, *a = NULL, *elemVec = NULL;
4822: PetscInt totDim, totDimAux = 0;
4824: PetscFunctionBegin;
4825: PetscCall(DMConvert(dm, DMPLEX, &plex));
4826: PetscCall(DMGetLocalSection(dm, §ion));
4827: PetscCall(DMGetDS(dm, &prob));
4828: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4829: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
4830: if (locA) {
4831: DM dmAux;
4833: PetscCall(VecGetDM(locA, &dmAux));
4834: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
4835: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
4836: PetscCall(DMGetDS(plexA, &probAux));
4837: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4838: PetscCall(DMGetLocalSection(plexA, §ionAux));
4839: }
4840: {
4841: PetscFEGeom *fgeom;
4842: PetscInt maxDegree;
4843: PetscQuadrature qGeom = NULL;
4844: IS pointIS;
4845: const PetscInt *points;
4846: PetscInt numFaces, face, Nq;
4848: PetscCall(DMLabelGetStratumIS(key.label, key.value, &pointIS));
4849: if (!pointIS) goto end; /* No points with that id on this process */
4850: {
4851: IS isectIS;
4853: /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
4854: PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
4855: PetscCall(ISDestroy(&pointIS));
4856: pointIS = isectIS;
4857: }
4858: PetscCall(ISGetLocalSize(pointIS, &numFaces));
4859: PetscCall(ISGetIndices(pointIS, &points));
4860: PetscCall(PetscMalloc4(numFaces * totDim, &u, (locX_t ? (size_t)numFaces * totDim : 0), &u_t, numFaces * totDim, &elemVec, (locA ? (size_t)numFaces * totDimAux : 0), &a));
4861: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
4862: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
4863: if (!qGeom) {
4864: PetscFE fe;
4866: PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4867: PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
4868: PetscCall(PetscObjectReference((PetscObject)qGeom));
4869: }
4870: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
4871: PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
4872: for (face = 0; face < numFaces; ++face) {
4873: const PetscInt point = points[face], *support;
4874: PetscScalar *x = NULL;
4875: PetscInt i;
4877: PetscCall(DMPlexGetSupport(dm, point, &support));
4878: PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
4879: for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
4880: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
4881: if (locX_t) {
4882: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
4883: for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
4884: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
4885: }
4886: if (locA) {
4887: PetscInt subp;
4889: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
4890: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
4891: for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
4892: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
4893: }
4894: }
4895: PetscCall(PetscArrayzero(elemVec, numFaces * totDim));
4896: {
4897: PetscFE fe;
4898: PetscInt Nb;
4899: PetscFEGeom *chunkGeom = NULL;
4900: /* Conforming batches */
4901: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
4902: /* Remainder */
4903: PetscInt Nr, offset;
4905: PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4906: PetscCall(PetscFEGetDimension(fe, &Nb));
4907: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4908: /* TODO: documentation is unclear about what is going on with these numbers: how should Nb / Nq factor in ? */
4909: blockSize = Nb;
4910: batchSize = numBlocks * blockSize;
4911: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4912: numChunks = numFaces / (numBatches * batchSize);
4913: Ne = numChunks * numBatches * batchSize;
4914: Nr = numFaces % (numBatches * batchSize);
4915: offset = numFaces - Nr;
4916: PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
4917: PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4918: PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
4919: PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
4920: PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
4921: PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
4922: }
4923: for (face = 0; face < numFaces; ++face) {
4924: const PetscInt point = points[face], *support;
4926: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(point, name, totDim, &elemVec[face * totDim]));
4927: PetscCall(DMPlexGetSupport(plex, point, &support));
4928: PetscCall(DMPlexVecSetClosure(plex, NULL, locF, support[0], &elemVec[face * totDim], ADD_ALL_VALUES));
4929: }
4930: PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
4931: PetscCall(PetscQuadratureDestroy(&qGeom));
4932: PetscCall(ISRestoreIndices(pointIS, &points));
4933: PetscCall(ISDestroy(&pointIS));
4934: PetscCall(PetscFree4(u, u_t, elemVec, a));
4935: }
4936: end:
4937: if (mesh->printFEM) {
4938: PetscSection s;
4939: Vec locFbc;
4940: PetscInt pStart, pEnd, maxDof;
4941: PetscScalar *zeroes;
4943: PetscCall(DMGetLocalSection(dm, &s));
4944: PetscCall(VecDuplicate(locF, &locFbc));
4945: PetscCall(VecCopy(locF, locFbc));
4946: PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
4947: PetscCall(PetscSectionGetMaxDof(s, &maxDof));
4948: PetscCall(PetscCalloc1(maxDof, &zeroes));
4949: for (PetscInt p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, s, p, zeroes, INSERT_BC_VALUES));
4950: PetscCall(PetscFree(zeroes));
4951: PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
4952: PetscCall(VecDestroy(&locFbc));
4953: }
4954: PetscCall(DMDestroy(&plex));
4955: PetscCall(DMDestroy(&plexA));
4956: PetscFunctionReturn(PETSC_SUCCESS);
4957: }
4959: PetscErrorCode DMPlexComputeBdResidualSingle(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF)
4960: {
4961: DMField coordField;
4962: DMLabel depthLabel;
4963: IS facetIS;
4964: PetscInt dim;
4966: PetscFunctionBegin;
4967: PetscCall(DMGetDimension(dm, &dim));
4968: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
4969: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
4970: PetscCall(DMGetCoordinateField(dm, &coordField));
4971: PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
4972: PetscCall(ISDestroy(&facetIS));
4973: PetscFunctionReturn(PETSC_SUCCESS);
4974: }
4976: static PetscErrorCode DMPlexComputeBdResidual_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
4977: {
4978: PetscDS prob;
4979: PetscInt numBd, bd;
4980: DMField coordField = NULL;
4981: IS facetIS = NULL;
4982: DMLabel depthLabel;
4983: PetscInt dim;
4985: PetscFunctionBegin;
4986: PetscCall(DMGetDS(dm, &prob));
4987: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
4988: PetscCall(DMGetDimension(dm, &dim));
4989: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
4990: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
4991: for (bd = 0; bd < numBd; ++bd) {
4992: PetscWeakForm wf;
4993: DMBoundaryConditionType type;
4994: DMLabel label;
4995: const PetscInt *values;
4996: PetscInt field, numValues, v;
4997: PetscObject obj;
4998: PetscClassId id;
4999: PetscFormKey key;
5001: PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &field, NULL, NULL, NULL, NULL, NULL));
5002: if (type & DM_BC_ESSENTIAL) continue;
5003: PetscCall(PetscDSGetDiscretization(prob, field, &obj));
5004: PetscCall(PetscObjectGetClassId(obj, &id));
5005: if (id != PETSCFE_CLASSID) continue;
5006: if (!facetIS) {
5007: DMLabel depthLabel;
5008: PetscInt dim;
5010: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5011: PetscCall(DMGetDimension(dm, &dim));
5012: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5013: }
5014: PetscCall(DMGetCoordinateField(dm, &coordField));
5015: for (v = 0; v < numValues; ++v) {
5016: key.label = label;
5017: key.value = values[v];
5018: key.field = field;
5019: key.part = 0;
5020: PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
5021: }
5022: }
5023: PetscCall(ISDestroy(&facetIS));
5024: PetscFunctionReturn(PETSC_SUCCESS);
5025: }
5027: PetscErrorCode DMPlexComputeResidual_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5028: {
5029: DM_Plex *mesh = (DM_Plex *)dm->data;
5030: const char *name = "Residual";
5031: DM dmAux = NULL;
5032: DM dmGrad = NULL;
5033: DMLabel ghostLabel = NULL;
5034: PetscDS ds = NULL;
5035: PetscDS dsAux = NULL;
5036: PetscSection section = NULL;
5037: PetscBool useFEM = PETSC_FALSE;
5038: PetscBool useFVM = PETSC_FALSE;
5039: PetscBool isImplicit = (locX_t || time == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
5040: PetscFV fvm = NULL;
5041: DMField coordField = NULL;
5042: Vec locA, cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
5043: PetscScalar *u = NULL, *u_t, *a, *uL, *uR;
5044: IS chunkIS;
5045: const PetscInt *cells;
5046: PetscInt cStart, cEnd, numCells;
5047: PetscInt Nf, f, totDim, totDimAux, numChunks, cellChunkSize, faceChunkSize, chunk, fStart, fEnd;
5048: PetscInt maxDegree = PETSC_INT_MAX;
5049: PetscQuadrature affineQuad = NULL, *quads = NULL;
5050: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
5052: PetscFunctionBegin;
5053: PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5054: if (!cellIS) goto end;
5055: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5056: if (cStart >= cEnd) goto end;
5057: /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
5058: /* TODO The FVM geometry is over-manipulated. Make the precalc functions return exactly what we need */
5059: /* FEM+FVM */
5060: PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
5061: /* 1: Get sizes from dm and dmAux */
5062: PetscCall(DMGetLocalSection(dm, §ion));
5063: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
5064: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, NULL));
5065: PetscCall(PetscDSGetNumFields(ds, &Nf));
5066: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5067: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
5068: if (locA) {
5069: PetscInt subcell;
5070: PetscCall(VecGetDM(locA, &dmAux));
5071: PetscCall(DMGetEnclosurePoint(dmAux, dm, DM_ENC_UNKNOWN, cells ? cells[cStart] : cStart, &subcell));
5072: PetscCall(DMGetCellDS(dmAux, subcell, &dsAux, NULL));
5073: PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
5074: }
5075: /* 2: Get geometric data */
5076: for (f = 0; f < Nf; ++f) {
5077: PetscObject obj;
5078: PetscClassId id;
5079: PetscBool fimp;
5081: PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5082: if (isImplicit != fimp) continue;
5083: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5084: PetscCall(PetscObjectGetClassId(obj, &id));
5085: if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
5086: if (id == PETSCFV_CLASSID) {
5087: useFVM = PETSC_TRUE;
5088: fvm = (PetscFV)obj;
5089: }
5090: }
5091: if (useFEM) {
5092: PetscCall(DMGetCoordinateField(dm, &coordField));
5093: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5094: if (maxDegree <= 1) {
5095: PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
5096: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5097: } else {
5098: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
5099: for (f = 0; f < Nf; ++f) {
5100: PetscObject obj;
5101: PetscClassId id;
5102: PetscBool fimp;
5104: PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5105: if (isImplicit != fimp) continue;
5106: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5107: PetscCall(PetscObjectGetClassId(obj, &id));
5108: if (id == PETSCFE_CLASSID) {
5109: PetscFE fe = (PetscFE)obj;
5111: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
5112: PetscCall(PetscObjectReference((PetscObject)quads[f]));
5113: PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5114: }
5115: }
5116: }
5117: }
5118: // Handle non-essential (e.g. outflow) boundary values
5119: if (useFVM) {
5120: PetscCall(DMPlexInsertBoundaryValuesFVM(dm, fvm, locX, time, &locGrad));
5121: PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
5122: PetscCall(DMPlexGetGradientDM(dm, fvm, &dmGrad));
5123: }
5124: /* Loop over chunks */
5125: if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
5126: numCells = cEnd - cStart;
5127: numChunks = 1;
5128: cellChunkSize = numCells / numChunks;
5129: faceChunkSize = (fEnd - fStart) / numChunks;
5130: numChunks = PetscMin(1, numCells);
5131: for (chunk = 0; chunk < numChunks; ++chunk) {
5132: PetscScalar *elemVec, *fluxL, *fluxR;
5133: PetscReal *vol;
5134: PetscFVFaceGeom *fgeom;
5135: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
5136: PetscInt fS = fStart + chunk * faceChunkSize, fE = PetscMin(fS + faceChunkSize, fEnd), numFaces = 0, face;
5138: /* Extract field coefficients */
5139: if (useFEM) {
5140: PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
5141: PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
5142: PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
5143: PetscCall(PetscArrayzero(elemVec, numCells * totDim));
5144: }
5145: if (useFVM) {
5146: PetscCall(DMPlexGetFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5147: PetscCall(DMPlexGetFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5148: PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5149: PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5150: PetscCall(PetscArrayzero(fluxL, numFaces * totDim));
5151: PetscCall(PetscArrayzero(fluxR, numFaces * totDim));
5152: }
5153: /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
5154: /* Loop over fields */
5155: for (f = 0; f < Nf; ++f) {
5156: PetscObject obj;
5157: PetscClassId id;
5158: PetscBool fimp;
5159: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;
5161: key.field = f;
5162: PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5163: if (isImplicit != fimp) continue;
5164: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5165: PetscCall(PetscObjectGetClassId(obj, &id));
5166: if (id == PETSCFE_CLASSID) {
5167: PetscFE fe = (PetscFE)obj;
5168: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[f];
5169: PetscFEGeom *chunkGeom = NULL;
5170: PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
5171: PetscInt Nq, Nb;
5173: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5174: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
5175: PetscCall(PetscFEGetDimension(fe, &Nb));
5176: blockSize = Nb;
5177: batchSize = numBlocks * blockSize;
5178: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5179: numChunks = numCells / (numBatches * batchSize);
5180: Ne = numChunks * numBatches * batchSize;
5181: Nr = numCells % (numBatches * batchSize);
5182: offset = numCells - Nr;
5183: /* Integrate FE residual to get elemVec (need fields at quadrature points) */
5184: /* For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
5185: PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
5186: PetscCall(PetscFEIntegrateResidual(ds, key, Ne, chunkGeom, u, u_t, dsAux, a, t, elemVec));
5187: PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
5188: PetscCall(PetscFEIntegrateResidual(ds, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
5189: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
5190: } else if (id == PETSCFV_CLASSID) {
5191: PetscFV fv = (PetscFV)obj;
5193: Ne = numFaces;
5194: /* Riemann solve over faces (need fields at face centroids) */
5195: /* We need to evaluate FE fields at those coordinates */
5196: PetscCall(PetscFVIntegrateRHSFunction(fv, ds, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
5197: } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
5198: }
5199: /* Loop over domain */
5200: if (useFEM) {
5201: /* Add elemVec to locX */
5202: for (c = cS; c < cE; ++c) {
5203: const PetscInt cell = cells ? cells[c] : c;
5204: const PetscInt cind = c - cStart;
5206: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
5207: if (ghostLabel) {
5208: PetscInt ghostVal;
5210: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5211: if (ghostVal > 0) continue;
5212: }
5213: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
5214: }
5215: }
5216: if (useFVM) {
5217: PetscScalar *fa;
5218: PetscInt iface;
5220: PetscCall(VecGetArray(locF, &fa));
5221: for (f = 0; f < Nf; ++f) {
5222: PetscFV fv;
5223: PetscObject obj;
5224: PetscClassId id;
5225: PetscInt cdim, foff, pdim;
5227: PetscCall(DMGetCoordinateDim(dm, &cdim));
5228: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5229: PetscCall(PetscDSGetFieldOffset(ds, f, &foff));
5230: PetscCall(PetscObjectGetClassId(obj, &id));
5231: if (id != PETSCFV_CLASSID) continue;
5232: fv = (PetscFV)obj;
5233: PetscCall(PetscFVGetNumComponents(fv, &pdim));
5234: /* Accumulate fluxes to cells */
5235: for (face = fS, iface = 0; face < fE; ++face) {
5236: const PetscInt *scells;
5237: PetscScalar *fL = NULL, *fR = NULL;
5238: PetscInt ghost, d, nsupp, nchild;
5240: PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
5241: PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
5242: PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
5243: if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
5244: PetscCall(DMPlexGetSupport(dm, face, &scells));
5245: PetscCall(DMLabelGetValue(ghostLabel, scells[0], &ghost));
5246: if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[0], f, fa, &fL));
5247: PetscCall(DMLabelGetValue(ghostLabel, scells[1], &ghost));
5248: if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[1], f, fa, &fR));
5249: if (mesh->printFVM > 1) {
5250: PetscCall(DMPrintCellVectorReal(face, "Residual: normal", cdim, fgeom[iface].normal));
5251: PetscCall(DMPrintCellVector(face, "Residual: left state", pdim, &uL[iface * totDim + foff]));
5252: PetscCall(DMPrintCellVector(face, "Residual: right state", pdim, &uR[iface * totDim + foff]));
5253: PetscCall(DMPrintCellVector(face, "Residual: left flux", pdim, &fluxL[iface * totDim + foff]));
5254: PetscCall(DMPrintCellVector(face, "Residual: right flux", pdim, &fluxR[iface * totDim + foff]));
5255: }
5256: for (d = 0; d < pdim; ++d) {
5257: if (fL) fL[d] -= fluxL[iface * totDim + foff + d];
5258: if (fR) fR[d] += fluxR[iface * totDim + foff + d];
5259: }
5260: ++iface;
5261: }
5262: }
5263: PetscCall(VecRestoreArray(locF, &fa));
5264: }
5265: /* Handle time derivative */
5266: if (locX_t) {
5267: PetscScalar *x_t, *fa;
5269: PetscCall(VecGetArray(locF, &fa));
5270: PetscCall(VecGetArray(locX_t, &x_t));
5271: for (f = 0; f < Nf; ++f) {
5272: PetscFV fv;
5273: PetscObject obj;
5274: PetscClassId id;
5275: PetscInt pdim, d;
5277: PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5278: PetscCall(PetscObjectGetClassId(obj, &id));
5279: if (id != PETSCFV_CLASSID) continue;
5280: fv = (PetscFV)obj;
5281: PetscCall(PetscFVGetNumComponents(fv, &pdim));
5282: for (c = cS; c < cE; ++c) {
5283: const PetscInt cell = cells ? cells[c] : c;
5284: PetscScalar *u_t, *r;
5286: if (ghostLabel) {
5287: PetscInt ghostVal;
5289: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5290: if (ghostVal > 0) continue;
5291: }
5292: PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
5293: PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
5294: for (d = 0; d < pdim; ++d) r[d] += u_t[d];
5295: }
5296: }
5297: PetscCall(VecRestoreArray(locX_t, &x_t));
5298: PetscCall(VecRestoreArray(locF, &fa));
5299: }
5300: if (useFEM) {
5301: PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
5302: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
5303: }
5304: if (useFVM) {
5305: PetscCall(DMPlexRestoreFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5306: PetscCall(DMPlexRestoreFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5307: PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5308: PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5309: if (dmGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
5310: }
5311: }
5312: if (useFEM) PetscCall(ISDestroy(&chunkIS));
5313: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
5315: if (useFEM) {
5316: PetscCall(DMPlexComputeBdResidual_Internal(dm, locX, locX_t, t, locF, user));
5318: if (maxDegree <= 1) {
5319: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5320: PetscCall(PetscQuadratureDestroy(&affineQuad));
5321: } else {
5322: for (f = 0; f < Nf; ++f) {
5323: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5324: PetscCall(PetscQuadratureDestroy(&quads[f]));
5325: }
5326: PetscCall(PetscFree2(quads, geoms));
5327: }
5328: }
5330: /* FEM */
5331: /* 1: Get sizes from dm and dmAux */
5332: /* 2: Get geometric data */
5333: /* 3: Handle boundary values */
5334: /* 4: Loop over domain */
5335: /* Extract coefficients */
5336: /* Loop over fields */
5337: /* Set tiling for FE*/
5338: /* Integrate FE residual to get elemVec */
5339: /* Loop over subdomain */
5340: /* Loop over quad points */
5341: /* Transform coords to real space */
5342: /* Evaluate field and aux fields at point */
5343: /* Evaluate residual at point */
5344: /* Transform residual to real space */
5345: /* Add residual to elemVec */
5346: /* Loop over domain */
5347: /* Add elemVec to locX */
5349: /* FVM */
5350: /* Get geometric data */
5351: /* If using gradients */
5352: /* Compute gradient data */
5353: /* Loop over domain faces */
5354: /* Count computational faces */
5355: /* Reconstruct cell gradient */
5356: /* Loop over domain cells */
5357: /* Limit cell gradients */
5358: /* Handle boundary values */
5359: /* Loop over domain faces */
5360: /* Read out field, centroid, normal, volume for each side of face */
5361: /* Riemann solve over faces */
5362: /* Loop over domain faces */
5363: /* Accumulate fluxes to cells */
5364: /* TODO Change printFEM to printDisc here */
5365: if (mesh->printFEM) {
5366: Vec locFbc;
5367: PetscInt pStart, pEnd, p, maxDof;
5368: PetscScalar *zeroes;
5370: PetscCall(VecDuplicate(locF, &locFbc));
5371: PetscCall(VecCopy(locF, locFbc));
5372: PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5373: PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5374: PetscCall(PetscCalloc1(maxDof, &zeroes));
5375: for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5376: PetscCall(PetscFree(zeroes));
5377: PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5378: PetscCall(VecDestroy(&locFbc));
5379: }
5380: end:
5381: PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5382: PetscFunctionReturn(PETSC_SUCCESS);
5383: }
5385: /*
5386: 1) Allow multiple kernels for BdResidual for hybrid DS
5388: DONE 2) Get out dsAux for either side at the same time as cohesive cell dsAux
5390: DONE 3) Change DMGetCellFields() to get different aux data a[] for each side
5391: - I think I just need to replace a[] with the closure from each face
5393: 4) Run both kernels for each non-hybrid field with correct dsAux, and then hybrid field as before
5394: */
5395: PetscErrorCode DMPlexComputeResidual_Hybrid_Internal(DM dm, PetscFormKey key[], IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5396: {
5397: DM_Plex *mesh = (DM_Plex *)dm->data;
5398: const char *name = "Hybrid Residual";
5399: DM dmAux[3] = {NULL, NULL, NULL};
5400: DMLabel ghostLabel = NULL;
5401: PetscDS ds = NULL;
5402: PetscDS dsIn = NULL;
5403: PetscDS dsAux[3] = {NULL, NULL, NULL};
5404: Vec locA[3] = {NULL, NULL, NULL};
5405: DM dmScale[3] = {NULL, NULL, NULL};
5406: PetscDS dsScale[3] = {NULL, NULL, NULL};
5407: Vec locS[3] = {NULL, NULL, NULL};
5408: PetscSection section = NULL;
5409: DMField coordField = NULL;
5410: PetscScalar *a[3] = {NULL, NULL, NULL};
5411: PetscScalar *s[3] = {NULL, NULL, NULL};
5412: PetscScalar *u = NULL, *u_t;
5413: PetscScalar *elemVecNeg, *elemVecPos, *elemVecCoh;
5414: IS chunkIS;
5415: const PetscInt *cells;
5416: PetscInt *faces;
5417: PetscInt cStart, cEnd, numCells;
5418: PetscInt Nf, f, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
5419: PetscInt maxDegree = PETSC_INT_MAX;
5420: PetscQuadrature affineQuad = NULL, *quads = NULL;
5421: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
5423: PetscFunctionBegin;
5424: PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5425: if (!cellIS) goto end;
5426: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5427: PetscCall(ISGetLocalSize(cellIS, &numCells));
5428: if (cStart >= cEnd) goto end;
5429: if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
5430: const char *name;
5431: PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
5432: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
5433: }
5434: /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
5435: /* FEM */
5436: /* 1: Get sizes from dm and dmAux */
5437: PetscCall(DMGetSection(dm, §ion));
5438: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
5439: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
5440: PetscCall(PetscDSGetNumFields(ds, &Nf));
5441: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5442: PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
5443: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
5444: if (locA[2]) {
5445: const PetscInt cellStart = cells ? cells[cStart] : cStart;
5447: PetscCall(VecGetDM(locA[2], &dmAux[2]));
5448: PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
5449: PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
5450: {
5451: const PetscInt *cone;
5452: PetscInt c;
5454: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5455: for (c = 0; c < 2; ++c) {
5456: const PetscInt *support;
5457: PetscInt ssize, s;
5459: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5460: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5461: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5462: if (support[0] == cellStart) s = 1;
5463: else if (support[1] == cellStart) s = 0;
5464: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5465: PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
5466: PetscCheck(locA[c], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must have auxiliary vector for (%p, %" PetscInt_FMT ", %" PetscInt_FMT ")", (void *)key[c].label, key[c].value, key[c].part);
5467: if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
5468: else dmAux[c] = dmAux[2];
5469: PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
5470: PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
5471: }
5472: }
5473: }
5474: /* Handle mass matrix scaling
5475: The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
5476: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
5477: if (locS[2]) {
5478: const PetscInt cellStart = cells ? cells[cStart] : cStart;
5479: PetscInt Nb, Nbs;
5481: PetscCall(VecGetDM(locS[2], &dmScale[2]));
5482: PetscCall(DMGetCellDS(dmScale[2], cellStart, &dsScale[2], NULL));
5483: PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
5484: // BRAD: This is not set correctly
5485: key[2].field = 2;
5486: PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
5487: PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
5488: PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
5489: {
5490: const PetscInt *cone;
5491: PetscInt c;
5493: locS[1] = locS[0] = locS[2];
5494: dmScale[1] = dmScale[0] = dmScale[2];
5495: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5496: for (c = 0; c < 2; ++c) {
5497: const PetscInt *support;
5498: PetscInt ssize, s;
5500: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5501: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5502: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5503: if (support[0] == cellStart) s = 1;
5504: else if (support[1] == cellStart) s = 0;
5505: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5506: PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
5507: PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
5508: }
5509: }
5510: }
5511: /* 2: Setup geometric data */
5512: PetscCall(DMGetCoordinateField(dm, &coordField));
5513: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5514: if (maxDegree > 1) {
5515: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
5516: for (f = 0; f < Nf; ++f) {
5517: PetscFE fe;
5519: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5520: if (fe) {
5521: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
5522: PetscCall(PetscObjectReference((PetscObject)quads[f]));
5523: }
5524: }
5525: }
5526: /* Loop over chunks */
5527: cellChunkSize = numCells;
5528: numChunks = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
5529: PetscCall(PetscCalloc1(2 * cellChunkSize, &faces));
5530: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 2 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkIS));
5531: /* Extract field coefficients */
5532: /* NOTE This needs the end cap faces to have identical orientations */
5533: PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5534: PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5535: PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5536: PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecNeg));
5537: PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecPos));
5538: PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecCoh));
5539: for (chunk = 0; chunk < numChunks; ++chunk) {
5540: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
5542: PetscCall(PetscArrayzero(elemVecNeg, cellChunkSize * totDim));
5543: PetscCall(PetscArrayzero(elemVecPos, cellChunkSize * totDim));
5544: PetscCall(PetscArrayzero(elemVecCoh, cellChunkSize * totDim));
5545: /* Get faces */
5546: for (c = cS; c < cE; ++c) {
5547: const PetscInt cell = cells ? cells[c] : c;
5548: const PetscInt *cone;
5549: PetscCall(DMPlexGetCone(dm, cell, &cone));
5550: faces[(c - cS) * 2 + 0] = cone[0];
5551: faces[(c - cS) * 2 + 1] = cone[1];
5552: }
5553: PetscCall(ISGeneralSetIndices(chunkIS, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
5554: /* Get geometric data */
5555: if (maxDegree <= 1) {
5556: if (!affineQuad) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkIS, &affineQuad));
5557: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, affineQuad, PETSC_TRUE, &affineGeom));
5558: } else {
5559: for (f = 0; f < Nf; ++f) {
5560: if (quads[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, quads[f], PETSC_TRUE, &geoms[f]));
5561: }
5562: }
5563: /* Loop over fields */
5564: for (f = 0; f < Nf; ++f) {
5565: PetscFE fe;
5566: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[f];
5567: PetscFEGeom *chunkGeom = NULL, *remGeom = NULL;
5568: PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
5569: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
5570: PetscBool isCohesiveField;
5572: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5573: if (!fe) continue;
5574: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5575: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
5576: PetscCall(PetscFEGetDimension(fe, &Nb));
5577: blockSize = Nb;
5578: batchSize = numBlocks * blockSize;
5579: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5580: numChunks = numCells / (numBatches * batchSize);
5581: Ne = numChunks * numBatches * batchSize;
5582: Nr = numCells % (numBatches * batchSize);
5583: offset = numCells - Nr;
5584: PetscCall(PetscFEGeomGetChunk(geom, 0, offset * 2, &chunkGeom));
5585: PetscCall(PetscFEGeomGetChunk(geom, offset * 2, numCells * 2, &remGeom));
5586: PetscCall(PetscDSGetCohesive(ds, f, &isCohesiveField));
5587: chunkGeom->isCohesive = remGeom->isCohesive = PETSC_TRUE;
5588: key[0].field = f;
5589: key[1].field = f;
5590: key[2].field = f;
5591: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, elemVecNeg));
5592: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, &elemVecNeg[offset * totDim]));
5593: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, elemVecPos));
5594: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, &elemVecPos[offset * totDim]));
5595: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, elemVecCoh));
5596: PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, &elemVecCoh[offset * totDim]));
5597: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &remGeom));
5598: PetscCall(PetscFEGeomRestoreChunk(geom, 0, offset, &chunkGeom));
5599: }
5600: /* Add elemVec to locX */
5601: for (c = cS; c < cE; ++c) {
5602: const PetscInt cell = cells ? cells[c] : c;
5603: const PetscInt cind = c - cStart;
5604: PetscInt i;
5606: /* Scale element values */
5607: if (locS[0]) {
5608: PetscInt Nb, off = cind * totDim, soff = cind * totDimScale[0];
5609: PetscBool cohesive;
5611: for (f = 0; f < Nf; ++f) {
5612: PetscCall(PetscDSGetFieldSize(ds, f, &Nb));
5613: PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
5614: if (f == key[2].field) {
5615: PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
5616: // No cohesive scaling field is currently input
5617: for (i = 0; i < Nb; ++i) elemVecCoh[off + i] += s[0][soff + i] * elemVecNeg[off + i] + s[1][soff + i] * elemVecPos[off + i];
5618: off += Nb;
5619: } else {
5620: const PetscInt N = cohesive ? Nb : Nb * 2;
5622: for (i = 0; i < N; ++i) elemVecCoh[off + i] += elemVecNeg[off + i] + elemVecPos[off + i];
5623: off += N;
5624: }
5625: }
5626: } else {
5627: for (i = cind * totDim; i < (cind + 1) * totDim; ++i) elemVecCoh[i] += elemVecNeg[i] + elemVecPos[i];
5628: }
5629: if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVecCoh[cind * totDim]));
5630: if (ghostLabel) {
5631: PetscInt ghostVal;
5633: PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5634: if (ghostVal > 0) continue;
5635: }
5636: PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVecCoh[cind * totDim], ADD_ALL_VALUES));
5637: }
5638: }
5639: PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5640: PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5641: PetscCall(DMPlexRestoreHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5642: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecNeg));
5643: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecPos));
5644: PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecCoh));
5645: PetscCall(PetscFree(faces));
5646: PetscCall(ISDestroy(&chunkIS));
5647: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
5648: if (maxDegree <= 1) {
5649: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5650: PetscCall(PetscQuadratureDestroy(&affineQuad));
5651: } else {
5652: for (f = 0; f < Nf; ++f) {
5653: if (geoms) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5654: if (quads) PetscCall(PetscQuadratureDestroy(&quads[f]));
5655: }
5656: PetscCall(PetscFree2(quads, geoms));
5657: }
5658: if (mesh->printFEM) {
5659: Vec locFbc;
5660: PetscInt pStart, pEnd, p, maxDof;
5661: PetscScalar *zeroes;
5663: PetscCall(VecDuplicate(locF, &locFbc));
5664: PetscCall(VecCopy(locF, locFbc));
5665: PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5666: PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5667: PetscCall(PetscCalloc1(maxDof, &zeroes));
5668: for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5669: PetscCall(PetscFree(zeroes));
5670: PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5671: PetscCall(VecDestroy(&locFbc));
5672: }
5673: end:
5674: PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5675: PetscFunctionReturn(PETSC_SUCCESS);
5676: }
5678: static PetscErrorCode DMPlexComputeBdJacobian_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt fieldI, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP, DMField coordField, IS facetIS)
5679: {
5680: DM_Plex *mesh = (DM_Plex *)dm->data;
5681: DM plex = NULL, plexA = NULL, tdm;
5682: DMEnclosureType encAux;
5683: PetscDS ds, dsAux = NULL;
5684: PetscSection section, sectionAux = NULL;
5685: PetscSection globalSection;
5686: Vec locA = NULL, tv;
5687: PetscScalar *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL;
5688: PetscInt v;
5689: PetscInt Nf, totDim, totDimAux = 0;
5690: PetscBool hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, transform;
5692: PetscFunctionBegin;
5693: PetscCall(DMHasBasisTransform(dm, &transform));
5694: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
5695: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
5696: PetscCall(DMGetLocalSection(dm, §ion));
5697: PetscCall(DMGetDS(dm, &ds));
5698: PetscCall(PetscDSGetNumFields(ds, &Nf));
5699: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5700: PetscCall(PetscWeakFormHasBdJacobian(wf, &hasJac));
5701: PetscCall(PetscWeakFormHasBdJacobianPreconditioner(wf, &hasPrec));
5702: if (!hasJac && !hasPrec) PetscFunctionReturn(PETSC_SUCCESS);
5703: PetscCall(DMConvert(dm, DMPLEX, &plex));
5704: PetscCall(DMGetAuxiliaryVec(dm, label, values[0], 0, &locA));
5705: if (locA) {
5706: DM dmAux;
5708: PetscCall(VecGetDM(locA, &dmAux));
5709: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
5710: PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
5711: PetscCall(DMGetDS(plexA, &dsAux));
5712: PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
5713: PetscCall(DMGetLocalSection(plexA, §ionAux));
5714: }
5716: PetscCall(DMGetGlobalSection(dm, &globalSection));
5717: for (v = 0; v < numValues; ++v) {
5718: PetscFEGeom *fgeom;
5719: PetscInt maxDegree;
5720: PetscQuadrature qGeom = NULL;
5721: IS pointIS;
5722: const PetscInt *points;
5723: PetscFormKey key;
5724: PetscInt numFaces, face, Nq;
5726: key.label = label;
5727: key.value = values[v];
5728: key.part = 0;
5729: PetscCall(DMLabelGetStratumIS(label, values[v], &pointIS));
5730: if (!pointIS) continue; /* No points with that id on this process */
5731: {
5732: IS isectIS;
5734: /* TODO: Special cases of ISIntersect where it is quick to check a prior if one is a superset of the other */
5735: PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
5736: PetscCall(ISDestroy(&pointIS));
5737: pointIS = isectIS;
5738: }
5739: PetscCall(ISGetLocalSize(pointIS, &numFaces));
5740: PetscCall(ISGetIndices(pointIS, &points));
5741: PetscCall(PetscMalloc5(numFaces * totDim, &u, (locX_t ? (size_t)numFaces * totDim : 0), &u_t, (hasJac ? (size_t)numFaces * totDim * totDim : 0), &elemMat, (hasPrec ? (size_t)numFaces * totDim * totDim : 0), &elemMatP, (locA ? (size_t)numFaces * totDimAux : 0), &a));
5742: PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
5743: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
5744: if (!qGeom) {
5745: PetscFE fe;
5747: PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5748: PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
5749: PetscCall(PetscObjectReference((PetscObject)qGeom));
5750: }
5751: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
5752: PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5753: for (face = 0; face < numFaces; ++face) {
5754: const PetscInt point = points[face], *support;
5755: PetscScalar *x = NULL;
5756: PetscInt i;
5758: PetscCall(DMPlexGetSupport(dm, point, &support));
5759: PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
5760: for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
5761: PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
5762: if (locX_t) {
5763: PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
5764: for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
5765: PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
5766: }
5767: if (locA) {
5768: PetscInt subp;
5769: PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
5770: PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
5771: for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
5772: PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
5773: }
5774: }
5775: if (elemMat) PetscCall(PetscArrayzero(elemMat, numFaces * totDim * totDim));
5776: if (elemMatP) PetscCall(PetscArrayzero(elemMatP, numFaces * totDim * totDim));
5777: {
5778: PetscFE fe;
5779: PetscInt Nb;
5780: /* Conforming batches */
5781: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
5782: /* Remainder */
5783: PetscFEGeom *chunkGeom = NULL;
5784: PetscInt fieldJ, Nr, offset;
5786: PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5787: PetscCall(PetscFEGetDimension(fe, &Nb));
5788: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5789: blockSize = Nb;
5790: batchSize = numBlocks * blockSize;
5791: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5792: numChunks = numFaces / (numBatches * batchSize);
5793: Ne = numChunks * numBatches * batchSize;
5794: Nr = numFaces % (numBatches * batchSize);
5795: offset = numFaces - Nr;
5796: PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
5797: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5798: key.field = fieldI * Nf + fieldJ;
5799: if (hasJac) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMat));
5800: if (hasPrec) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMatP));
5801: }
5802: PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
5803: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5804: key.field = fieldI * Nf + fieldJ;
5805: if (hasJac)
5806: PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
5807: if (hasPrec)
5808: PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
5809: }
5810: PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
5811: }
5812: for (face = 0; face < numFaces; ++face) {
5813: const PetscInt point = points[face], *support;
5815: /* Transform to global basis before insertion in Jacobian */
5816: PetscCall(DMPlexGetSupport(plex, point, &support));
5817: if (hasJac && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMat[face * totDim * totDim]));
5818: if (hasPrec && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMatP[face * totDim * totDim]));
5819: if (hasPrec) {
5820: if (hasJac) {
5821: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5822: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5823: }
5824: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMatP[face * totDim * totDim]));
5825: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, support[0], &elemMatP[face * totDim * totDim], ADD_VALUES));
5826: } else {
5827: if (hasJac) {
5828: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5829: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5830: }
5831: }
5832: }
5833: PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5834: PetscCall(PetscQuadratureDestroy(&qGeom));
5835: PetscCall(ISRestoreIndices(pointIS, &points));
5836: PetscCall(ISDestroy(&pointIS));
5837: PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, a));
5838: }
5839: if (plex) PetscCall(DMDestroy(&plex));
5840: if (plexA) PetscCall(DMDestroy(&plexA));
5841: PetscFunctionReturn(PETSC_SUCCESS);
5842: }
5844: PetscErrorCode DMPlexComputeBdJacobianSingle(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt field, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP)
5845: {
5846: DMField coordField;
5847: DMLabel depthLabel;
5848: IS facetIS;
5849: PetscInt dim;
5851: PetscFunctionBegin;
5852: PetscCall(DMGetDimension(dm, &dim));
5853: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5854: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5855: PetscCall(DMGetCoordinateField(dm, &coordField));
5856: PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, field, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
5857: PetscCall(ISDestroy(&facetIS));
5858: PetscFunctionReturn(PETSC_SUCCESS);
5859: }
5861: static PetscErrorCode DMPlexComputeBdJacobian_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, PetscReal X_tShift, Mat Jac, Mat JacP, void *user)
5862: {
5863: PetscDS prob;
5864: PetscInt dim, numBd, bd;
5865: DMLabel depthLabel;
5866: DMField coordField = NULL;
5867: IS facetIS;
5869: PetscFunctionBegin;
5870: PetscCall(DMGetDS(dm, &prob));
5871: PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5872: PetscCall(DMGetDimension(dm, &dim));
5873: PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5874: PetscCall(PetscDSGetNumBoundary(prob, &numBd));
5875: PetscCall(DMGetCoordinateField(dm, &coordField));
5876: for (bd = 0; bd < numBd; ++bd) {
5877: PetscWeakForm wf;
5878: DMBoundaryConditionType type;
5879: DMLabel label;
5880: const PetscInt *values;
5881: PetscInt fieldI, numValues;
5882: PetscObject obj;
5883: PetscClassId id;
5885: PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &fieldI, NULL, NULL, NULL, NULL, NULL));
5886: if (type & DM_BC_ESSENTIAL) continue;
5887: PetscCall(PetscDSGetDiscretization(prob, fieldI, &obj));
5888: PetscCall(PetscObjectGetClassId(obj, &id));
5889: if (id != PETSCFE_CLASSID) continue;
5890: PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, fieldI, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
5891: }
5892: PetscCall(ISDestroy(&facetIS));
5893: PetscFunctionReturn(PETSC_SUCCESS);
5894: }
5896: PetscErrorCode DMPlexComputeJacobian_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *user)
5897: {
5898: DM_Plex *mesh = (DM_Plex *)dm->data;
5899: const char *name = "Jacobian";
5900: DM dmAux = NULL, plex, tdm;
5901: DMEnclosureType encAux;
5902: Vec A, tv;
5903: DMField coordField;
5904: PetscDS prob, probAux = NULL;
5905: PetscSection section, globalSection, sectionAux;
5906: PetscScalar *elemMat, *elemMatP, *elemMatD, *u, *u_t, *a = NULL;
5907: const PetscInt *cells;
5908: PetscInt Nf, fieldI, fieldJ;
5909: PetscInt totDim, totDimAux = 0, cStart, cEnd, numCells, c;
5910: PetscBool hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, hasDyn, hasFV = PETSC_FALSE, transform;
5912: PetscFunctionBegin;
5913: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
5914: PetscCall(DMGetLocalSection(dm, §ion));
5915: PetscCall(DMGetGlobalSection(dm, &globalSection));
5916: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
5917: if (A) {
5918: PetscCall(VecGetDM(A, &dmAux));
5919: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
5920: PetscCall(DMConvert(dmAux, DMPLEX, &plex));
5921: PetscCall(DMGetLocalSection(plex, §ionAux));
5922: PetscCall(DMGetDS(dmAux, &probAux));
5923: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
5924: }
5925: PetscCall(DMGetCoordinateField(dm, &coordField));
5926: if (!cellIS) goto end;
5927: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5928: PetscCall(ISGetLocalSize(cellIS, &numCells));
5929: if (cStart >= cEnd) goto end;
5930: PetscCall(DMHasBasisTransform(dm, &transform));
5931: PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
5932: PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
5933: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
5934: PetscCall(PetscDSGetNumFields(prob, &Nf));
5935: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
5936: PetscCall(PetscDSHasJacobian(prob, &hasJac));
5937: PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
5938: /* user passed in the same matrix, avoid double contributions and
5939: only assemble the Jacobian */
5940: if (hasJac && Jac == JacP) hasPrec = PETSC_FALSE;
5941: PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
5942: hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
5943: PetscCall(PetscMalloc5(numCells * totDim, &u, (X_t ? (size_t)numCells * totDim : 0), &u_t, (hasJac ? (size_t)numCells * totDim * totDim : 0), &elemMat, (hasPrec ? (size_t)numCells * totDim * totDim : 0), &elemMatP, (hasDyn ? (size_t)numCells * totDim * totDim : 0), &elemMatD));
5944: if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
5945: for (c = cStart; c < cEnd; ++c) {
5946: const PetscInt cell = cells ? cells[c] : c;
5947: const PetscInt cind = c - cStart;
5948: PetscScalar *x = NULL, *x_t = NULL;
5949: PetscInt i;
5951: PetscCall(DMPlexVecGetClosure(dm, section, X, cell, NULL, &x));
5952: for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
5953: PetscCall(DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x));
5954: if (X_t) {
5955: PetscCall(DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t));
5956: for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
5957: PetscCall(DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t));
5958: }
5959: if (dmAux) {
5960: PetscInt subcell;
5961: PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
5962: PetscCall(DMPlexVecGetClosure(plex, sectionAux, A, subcell, NULL, &x));
5963: for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
5964: PetscCall(DMPlexVecRestoreClosure(plex, sectionAux, A, subcell, NULL, &x));
5965: }
5966: }
5967: if (hasJac) PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
5968: if (hasPrec) PetscCall(PetscArrayzero(elemMatP, numCells * totDim * totDim));
5969: if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
5970: for (fieldI = 0; fieldI < Nf; ++fieldI) {
5971: PetscClassId id;
5972: PetscFE fe;
5973: PetscQuadrature qGeom = NULL;
5974: PetscInt Nb;
5975: /* Conforming batches */
5976: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
5977: /* Remainder */
5978: PetscInt Nr, offset, Nq;
5979: PetscInt maxDegree;
5980: PetscFEGeom *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;
5982: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
5983: PetscCall(PetscObjectGetClassId((PetscObject)fe, &id));
5984: if (id == PETSCFV_CLASSID) {
5985: hasFV = PETSC_TRUE;
5986: continue;
5987: }
5988: PetscCall(PetscFEGetDimension(fe, &Nb));
5989: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5990: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5991: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
5992: if (!qGeom) {
5993: PetscCall(PetscFEGetQuadrature(fe, &qGeom));
5994: PetscCall(PetscObjectReference((PetscObject)qGeom));
5995: }
5996: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
5997: PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
5998: blockSize = Nb;
5999: batchSize = numBlocks * blockSize;
6000: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
6001: numChunks = numCells / (numBatches * batchSize);
6002: Ne = numChunks * numBatches * batchSize;
6003: Nr = numCells % (numBatches * batchSize);
6004: offset = numCells - Nr;
6005: PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
6006: PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
6007: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6008: key.field = fieldI * Nf + fieldJ;
6009: if (hasJac) {
6010: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
6011: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
6012: }
6013: if (hasPrec) {
6014: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatP));
6015: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
6016: }
6017: if (hasDyn) {
6018: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
6019: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatD[offset * totDim * totDim]));
6020: }
6021: }
6022: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
6023: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
6024: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6025: PetscCall(PetscQuadratureDestroy(&qGeom));
6026: }
6027: /* Add contribution from X_t */
6028: if (hasDyn) {
6029: for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
6030: }
6031: if (hasFV) {
6032: PetscClassId id;
6033: PetscFV fv;
6034: PetscInt offsetI, NcI, NbI = 1, fc, f;
6036: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6037: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
6038: PetscCall(PetscDSGetFieldOffset(prob, fieldI, &offsetI));
6039: PetscCall(PetscObjectGetClassId((PetscObject)fv, &id));
6040: if (id != PETSCFV_CLASSID) continue;
6041: /* Put in the weighted identity */
6042: PetscCall(PetscFVGetNumComponents(fv, &NcI));
6043: for (c = cStart; c < cEnd; ++c) {
6044: const PetscInt cind = c - cStart;
6045: const PetscInt eOffset = cind * totDim * totDim;
6046: PetscReal vol;
6048: PetscCall(DMPlexComputeCellGeometryFVM(dm, c, &vol, NULL, NULL));
6049: for (fc = 0; fc < NcI; ++fc) {
6050: for (f = 0; f < NbI; ++f) {
6051: const PetscInt i = offsetI + f * NcI + fc;
6052: if (hasPrec) {
6053: if (hasJac) elemMat[eOffset + i * totDim + i] = vol;
6054: elemMatP[eOffset + i * totDim + i] = vol;
6055: } else {
6056: elemMat[eOffset + i * totDim + i] = vol;
6057: }
6058: }
6059: }
6060: }
6061: }
6062: /* No allocated space for FV stuff, so ignore the zero entries */
6063: PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
6064: }
6065: /* Insert values into matrix */
6066: for (c = cStart; c < cEnd; ++c) {
6067: const PetscInt cell = cells ? cells[c] : c;
6068: const PetscInt cind = c - cStart;
6070: /* Transform to global basis before insertion in Jacobian */
6071: if (transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, cell, PETSC_TRUE, totDim, &elemMat[cind * totDim * totDim]));
6072: if (hasPrec) {
6073: if (hasJac) {
6074: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6075: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
6076: }
6077: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatP[cind * totDim * totDim]));
6078: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatP[cind * totDim * totDim], ADD_VALUES));
6079: } else {
6080: if (hasJac) {
6081: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6082: PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
6083: }
6084: }
6085: }
6086: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6087: if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
6088: PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, elemMatD));
6089: if (dmAux) {
6090: PetscCall(PetscFree(a));
6091: PetscCall(DMDestroy(&plex));
6092: }
6093: /* Compute boundary integrals */
6094: PetscCall(DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, user));
6095: /* Assemble matrix */
6096: end: {
6097: PetscBool assOp = hasJac && hasPrec ? PETSC_TRUE : PETSC_FALSE, gassOp;
6099: PetscCallMPI(MPIU_Allreduce(&assOp, &gassOp, 1, MPIU_BOOL, MPI_LOR, PetscObjectComm((PetscObject)dm)));
6100: if (hasJac && hasPrec) {
6101: PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
6102: PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
6103: }
6104: }
6105: PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
6106: PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
6107: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6108: PetscFunctionReturn(PETSC_SUCCESS);
6109: }
6111: PetscErrorCode DMPlexComputeJacobian_Hybrid_Internal(DM dm, PetscFormKey key[], IS cellIS, PetscReal t, PetscReal X_tShift, Vec locX, Vec locX_t, Mat Jac, Mat JacP, void *user)
6112: {
6113: DM_Plex *mesh = (DM_Plex *)dm->data;
6114: const char *name = "Hybrid Jacobian";
6115: DM dmAux[3] = {NULL, NULL, NULL};
6116: DMLabel ghostLabel = NULL;
6117: DM plex = NULL;
6118: DM plexA = NULL;
6119: PetscDS ds = NULL;
6120: PetscDS dsIn = NULL;
6121: PetscDS dsAux[3] = {NULL, NULL, NULL};
6122: Vec locA[3] = {NULL, NULL, NULL};
6123: DM dmScale[3] = {NULL, NULL, NULL};
6124: PetscDS dsScale[3] = {NULL, NULL, NULL};
6125: Vec locS[3] = {NULL, NULL, NULL};
6126: PetscSection section = NULL;
6127: PetscSection sectionAux[3] = {NULL, NULL, NULL};
6128: DMField coordField = NULL;
6129: PetscScalar *a[3] = {NULL, NULL, NULL};
6130: PetscScalar *s[3] = {NULL, NULL, NULL};
6131: PetscScalar *u = NULL, *u_t;
6132: PetscScalar *elemMatNeg, *elemMatPos, *elemMatCoh;
6133: PetscScalar *elemMatNegP, *elemMatPosP, *elemMatCohP;
6134: PetscSection globalSection;
6135: IS chunkIS;
6136: const PetscInt *cells;
6137: PetscInt *faces;
6138: PetscInt cStart, cEnd, numCells;
6139: PetscInt Nf, fieldI, fieldJ, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
6140: PetscInt maxDegree = PETSC_INT_MAX;
6141: PetscQuadrature affineQuad = NULL, *quads = NULL;
6142: PetscFEGeom *affineGeom = NULL, **geoms = NULL;
6143: PetscBool hasBdJac, hasBdPrec;
6145: PetscFunctionBegin;
6146: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6147: if (!cellIS) goto end;
6148: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6149: PetscCall(ISGetLocalSize(cellIS, &numCells));
6150: if (cStart >= cEnd) goto end;
6151: if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
6152: const char *name;
6153: PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
6154: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
6155: }
6156: PetscCall(DMConvert(dm, DMPLEX, &plex));
6157: PetscCall(DMGetSection(dm, §ion));
6158: PetscCall(DMGetGlobalSection(dm, &globalSection));
6159: PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
6160: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
6161: PetscCall(PetscDSGetNumFields(ds, &Nf));
6162: PetscCall(PetscDSGetTotalDimension(ds, &totDim));
6163: PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
6164: PetscCall(PetscDSHasBdJacobian(ds, &hasBdJac));
6165: PetscCall(PetscDSHasBdJacobianPreconditioner(ds, &hasBdPrec));
6166: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
6167: if (locA[2]) {
6168: const PetscInt cellStart = cells ? cells[cStart] : cStart;
6170: PetscCall(VecGetDM(locA[2], &dmAux[2]));
6171: PetscCall(DMConvert(dmAux[2], DMPLEX, &plexA));
6172: PetscCall(DMGetSection(dmAux[2], §ionAux[2]));
6173: PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
6174: PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
6175: {
6176: const PetscInt *cone;
6177: PetscInt c;
6179: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6180: for (c = 0; c < 2; ++c) {
6181: const PetscInt *support;
6182: PetscInt ssize, s;
6184: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6185: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6186: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6187: if (support[0] == cellStart) s = 1;
6188: else if (support[1] == cellStart) s = 0;
6189: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6190: PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
6191: if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
6192: else dmAux[c] = dmAux[2];
6193: PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
6194: PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
6195: }
6196: }
6197: }
6198: /* Handle mass matrix scaling
6199: The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
6200: PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
6201: if (locS[2]) {
6202: const PetscInt cellStart = cells ? cells[cStart] : cStart;
6203: PetscInt Nb, Nbs;
6205: PetscCall(VecGetDM(locS[2], &dmScale[2]));
6206: PetscCall(DMGetCellDS(dmScale[2], cells ? cells[cStart] : cStart, &dsScale[2], NULL));
6207: PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
6208: // BRAD: This is not set correctly
6209: key[2].field = 2;
6210: PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
6211: PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
6212: PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
6213: {
6214: const PetscInt *cone;
6215: PetscInt c;
6217: locS[1] = locS[0] = locS[2];
6218: dmScale[1] = dmScale[0] = dmScale[2];
6219: PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6220: for (c = 0; c < 2; ++c) {
6221: const PetscInt *support;
6222: PetscInt ssize, s;
6224: PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6225: PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6226: PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6227: if (support[0] == cellStart) s = 1;
6228: else if (support[1] == cellStart) s = 0;
6229: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6230: PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
6231: PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
6232: }
6233: }
6234: }
6235: /* 2: Setup geometric data */
6236: PetscCall(DMGetCoordinateField(dm, &coordField));
6237: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6238: if (maxDegree > 1) {
6239: PetscInt f;
6240: PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
6241: for (f = 0; f < Nf; ++f) {
6242: PetscFE fe;
6244: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
6245: if (fe) {
6246: PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
6247: PetscCall(PetscObjectReference((PetscObject)quads[f]));
6248: }
6249: }
6250: }
6251: /* Loop over chunks */
6252: cellChunkSize = numCells;
6253: numChunks = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
6254: PetscCall(PetscCalloc1(2 * cellChunkSize, &faces));
6255: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 1 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkIS));
6256: /* Extract field coefficients */
6257: /* NOTE This needs the end cap faces to have identical orientations */
6258: PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6259: PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6260: PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
6261: PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6262: PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6263: PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6264: PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6265: PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6266: PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6267: for (chunk = 0; chunk < numChunks; ++chunk) {
6268: PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
6270: if (hasBdJac) {
6271: PetscCall(PetscArrayzero(elemMatNeg, cellChunkSize * totDim * totDim));
6272: PetscCall(PetscArrayzero(elemMatPos, cellChunkSize * totDim * totDim));
6273: PetscCall(PetscArrayzero(elemMatCoh, cellChunkSize * totDim * totDim));
6274: }
6275: if (hasBdPrec) {
6276: PetscCall(PetscArrayzero(elemMatNegP, cellChunkSize * totDim * totDim));
6277: PetscCall(PetscArrayzero(elemMatPosP, cellChunkSize * totDim * totDim));
6278: PetscCall(PetscArrayzero(elemMatCohP, cellChunkSize * totDim * totDim));
6279: }
6280: /* Get faces */
6281: for (c = cS; c < cE; ++c) {
6282: const PetscInt cell = cells ? cells[c] : c;
6283: const PetscInt *cone;
6284: PetscCall(DMPlexGetCone(plex, cell, &cone));
6285: faces[(c - cS) * 2 + 0] = cone[0];
6286: faces[(c - cS) * 2 + 1] = cone[1];
6287: }
6288: PetscCall(ISGeneralSetIndices(chunkIS, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
6289: if (maxDegree <= 1) {
6290: if (!affineQuad) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkIS, &affineQuad));
6291: if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, affineQuad, PETSC_TRUE, &affineGeom));
6292: } else {
6293: PetscInt f;
6294: for (f = 0; f < Nf; ++f) {
6295: if (quads[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, quads[f], PETSC_TRUE, &geoms[f]));
6296: }
6297: }
6299: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6300: PetscFE feI;
6301: PetscFEGeom *geom = affineGeom ? affineGeom : geoms[fieldI];
6302: PetscFEGeom *chunkGeom = NULL, *remGeom = NULL;
6303: PetscQuadrature quad = affineQuad ? affineQuad : quads[fieldI];
6304: PetscInt numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
6305: PetscBool isCohesiveField;
6307: PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&feI));
6308: if (!feI) continue;
6309: PetscCall(PetscFEGetTileSizes(feI, NULL, &numBlocks, NULL, &numBatches));
6310: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
6311: PetscCall(PetscFEGetDimension(feI, &Nb));
6312: blockSize = Nb;
6313: batchSize = numBlocks * blockSize;
6314: PetscCall(PetscFESetTileSizes(feI, blockSize, numBlocks, batchSize, numBatches));
6315: numChunks = numCells / (numBatches * batchSize);
6316: Ne = numChunks * numBatches * batchSize;
6317: Nr = numCells % (numBatches * batchSize);
6318: offset = numCells - Nr;
6319: PetscCall(PetscFEGeomGetChunk(geom, 0, offset * 2, &chunkGeom));
6320: PetscCall(PetscFEGeomGetChunk(geom, offset * 2, numCells * 2, &remGeom));
6321: PetscCall(PetscDSGetCohesive(ds, fieldI, &isCohesiveField));
6322: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6323: PetscFE feJ;
6325: PetscCall(PetscDSGetDiscretization(ds, fieldJ, (PetscObject *)&feJ));
6326: if (!feJ) continue;
6327: key[0].field = fieldI * Nf + fieldJ;
6328: key[1].field = fieldI * Nf + fieldJ;
6329: key[2].field = fieldI * Nf + fieldJ;
6330: if (hasBdJac) {
6331: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNeg));
6332: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, X_tShift, &elemMatNeg[offset * totDim * totDim]));
6333: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPos));
6334: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, X_tShift, &elemMatPos[offset * totDim * totDim]));
6335: }
6336: if (hasBdPrec) {
6337: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNegP));
6338: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], &a[0][offset * totDimAux[0]], t, X_tShift, &elemMatNegP[offset * totDim * totDim]));
6339: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPosP));
6340: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], &a[1][offset * totDimAux[1]], t, X_tShift, &elemMatPosP[offset * totDim * totDim]));
6341: }
6342: if (hasBdJac) {
6343: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCoh));
6344: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, X_tShift, &elemMatCoh[offset * totDim * totDim]));
6345: }
6346: if (hasBdPrec) {
6347: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCohP));
6348: PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], &a[2][offset * totDimAux[2]], t, X_tShift, &elemMatCohP[offset * totDim * totDim]));
6349: }
6350: }
6351: PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &remGeom));
6352: PetscCall(PetscFEGeomRestoreChunk(geom, 0, offset, &chunkGeom));
6353: }
6354: /* Insert values into matrix */
6355: for (c = cS; c < cE; ++c) {
6356: const PetscInt cell = cells ? cells[c] : c;
6357: const PetscInt cind = c - cS, coff = cind * totDim * totDim;
6358: PetscInt i, j;
6360: /* Scale element values */
6361: if (locS[0]) {
6362: PetscInt Nb, soff = cind * totDimScale[0], off = 0;
6363: PetscBool cohesive;
6365: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6366: PetscCall(PetscDSGetFieldSize(ds, fieldI, &Nb));
6367: PetscCall(PetscDSGetCohesive(ds, fieldI, &cohesive));
6369: if (fieldI == key[2].field) {
6370: PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
6371: for (i = 0; i < Nb; ++i) {
6372: for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNeg[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPos[coff + (off + i) * totDim + j];
6373: if (hasBdPrec)
6374: for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNegP[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPosP[coff + (off + i) * totDim + j];
6375: }
6376: off += Nb;
6377: } else {
6378: const PetscInt N = cohesive ? Nb : Nb * 2;
6380: for (i = 0; i < N; ++i) {
6381: for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += elemMatNeg[coff + (off + i) * totDim + j] + elemMatPos[coff + (off + i) * totDim + j];
6382: if (hasBdPrec)
6383: for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += elemMatNegP[coff + (off + i) * totDim + j] + elemMatPosP[coff + (off + i) * totDim + j];
6384: }
6385: off += N;
6386: }
6387: }
6388: } else {
6389: for (i = 0; i < totDim * totDim; ++i) elemMatCoh[coff + i] += elemMatNeg[coff + i] + elemMatPos[coff + i];
6390: if (hasBdPrec)
6391: for (i = 0; i < totDim * totDim; ++i) elemMatCohP[coff + i] += elemMatNegP[coff + i] + elemMatPosP[coff + i];
6392: }
6393: if (hasBdPrec) {
6394: if (hasBdJac) {
6395: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6396: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6397: }
6398: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCohP[cind * totDim * totDim]));
6399: PetscCall(DMPlexMatSetClosure(plex, section, globalSection, JacP, cell, &elemMatCohP[cind * totDim * totDim], ADD_VALUES));
6400: } else if (hasBdJac) {
6401: if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6402: PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6403: }
6404: }
6405: }
6406: PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6407: PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6408: PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6409: PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6410: PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6411: PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6412: PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6413: PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6414: PetscCall(PetscFree(faces));
6415: PetscCall(ISDestroy(&chunkIS));
6416: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6417: if (maxDegree <= 1) {
6418: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
6419: PetscCall(PetscQuadratureDestroy(&affineQuad));
6420: } else {
6421: PetscInt f;
6422: for (f = 0; f < Nf; ++f) {
6423: if (geoms) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
6424: if (quads) PetscCall(PetscQuadratureDestroy(&quads[f]));
6425: }
6426: PetscCall(PetscFree2(quads, geoms));
6427: }
6428: if (dmAux[2]) PetscCall(DMDestroy(&plexA));
6429: PetscCall(DMDestroy(&plex));
6430: end:
6431: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6432: PetscFunctionReturn(PETSC_SUCCESS);
6433: }
6435: /*
6436: DMPlexComputeJacobian_Action_Internal - Form the local portion of the Jacobian action Z = J(X) Y at the local solution X using pointwise functions specified by the user.
6438: Input Parameters:
6439: + dm - The mesh
6440: . key - The PetscWeakFormKey indicating where integration should happen
6441: . cellIS - The cells to integrate over
6442: . t - The time
6443: . X_tShift - The multiplier for the Jacobian with respect to X_t
6444: . X - Local solution vector
6445: . X_t - Time-derivative of the local solution vector
6446: . Y - Local input vector
6447: - user - the user context
6449: Output Parameter:
6450: . Z - Local output vector
6452: Note:
6453: We form the residual one batch of elements at a time. This allows us to offload work onto an accelerator,
6454: like a GPU, or vectorize on a multicore machine.
6455: */
6456: PetscErrorCode DMPlexComputeJacobian_Action_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Vec Y, Vec Z, void *user)
6457: {
6458: DM_Plex *mesh = (DM_Plex *)dm->data;
6459: const char *name = "Jacobian";
6460: DM dmAux = NULL, plex, plexAux = NULL;
6461: DMEnclosureType encAux;
6462: Vec A;
6463: DMField coordField;
6464: PetscDS prob, probAux = NULL;
6465: PetscQuadrature quad;
6466: PetscSection section, globalSection, sectionAux;
6467: PetscScalar *elemMat, *elemMatD, *u, *u_t, *a = NULL, *y, *z;
6468: const PetscInt *cells;
6469: PetscInt Nf, fieldI, fieldJ;
6470: PetscInt totDim, totDimAux = 0, cStart, cEnd, numCells, c;
6471: PetscBool hasDyn;
6473: PetscFunctionBegin;
6474: PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6475: PetscCall(DMConvert(dm, DMPLEX, &plex));
6476: PetscCall(ISGetLocalSize(cellIS, &numCells));
6477: PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6478: PetscCall(DMGetLocalSection(dm, §ion));
6479: PetscCall(DMGetGlobalSection(dm, &globalSection));
6480: PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
6481: PetscCall(PetscDSGetNumFields(prob, &Nf));
6482: PetscCall(PetscDSGetTotalDimension(prob, &totDim));
6483: PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
6484: hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
6485: PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
6486: if (A) {
6487: PetscCall(VecGetDM(A, &dmAux));
6488: PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
6489: PetscCall(DMConvert(dmAux, DMPLEX, &plexAux));
6490: PetscCall(DMGetLocalSection(plexAux, §ionAux));
6491: PetscCall(DMGetDS(dmAux, &probAux));
6492: PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
6493: }
6494: PetscCall(VecSet(Z, 0.0));
6495: PetscCall(PetscMalloc6(numCells * totDim, &u, (X_t ? (size_t)numCells * totDim : 0), &u_t, numCells * totDim * totDim, &elemMat, (hasDyn ? (size_t)numCells * totDim * totDim : 0), &elemMatD, numCells * totDim, &y, totDim, &z));
6496: if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
6497: PetscCall(DMGetCoordinateField(dm, &coordField));
6498: for (c = cStart; c < cEnd; ++c) {
6499: const PetscInt cell = cells ? cells[c] : c;
6500: const PetscInt cind = c - cStart;
6501: PetscScalar *x = NULL, *x_t = NULL;
6502: PetscInt i;
6504: PetscCall(DMPlexVecGetClosure(plex, section, X, cell, NULL, &x));
6505: for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
6506: PetscCall(DMPlexVecRestoreClosure(plex, section, X, cell, NULL, &x));
6507: if (X_t) {
6508: PetscCall(DMPlexVecGetClosure(plex, section, X_t, cell, NULL, &x_t));
6509: for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
6510: PetscCall(DMPlexVecRestoreClosure(plex, section, X_t, cell, NULL, &x_t));
6511: }
6512: if (dmAux) {
6513: PetscInt subcell;
6514: PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
6515: PetscCall(DMPlexVecGetClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6516: for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
6517: PetscCall(DMPlexVecRestoreClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6518: }
6519: PetscCall(DMPlexVecGetClosure(plex, section, Y, cell, NULL, &x));
6520: for (i = 0; i < totDim; ++i) y[cind * totDim + i] = x[i];
6521: PetscCall(DMPlexVecRestoreClosure(plex, section, Y, cell, NULL, &x));
6522: }
6523: PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
6524: if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
6525: for (fieldI = 0; fieldI < Nf; ++fieldI) {
6526: PetscFE fe;
6527: PetscInt Nb;
6528: /* Conforming batches */
6529: PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
6530: /* Remainder */
6531: PetscInt Nr, offset, Nq;
6532: PetscQuadrature qGeom = NULL;
6533: PetscInt maxDegree;
6534: PetscFEGeom *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;
6536: PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
6537: PetscCall(PetscFEGetQuadrature(fe, &quad));
6538: PetscCall(PetscFEGetDimension(fe, &Nb));
6539: PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
6540: PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6541: if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
6542: if (!qGeom) {
6543: PetscCall(PetscFEGetQuadrature(fe, &qGeom));
6544: PetscCall(PetscObjectReference((PetscObject)qGeom));
6545: }
6546: PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
6547: PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6548: blockSize = Nb;
6549: batchSize = numBlocks * blockSize;
6550: PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
6551: numChunks = numCells / (numBatches * batchSize);
6552: Ne = numChunks * numBatches * batchSize;
6553: Nr = numCells % (numBatches * batchSize);
6554: offset = numCells - Nr;
6555: PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
6556: PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
6557: for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6558: key.field = fieldI * Nf + fieldJ;
6559: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
6560: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
6561: if (hasDyn) {
6562: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
6563: PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, X_tShift, &elemMatD[offset * totDim * totDim]));
6564: }
6565: }
6566: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
6567: PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
6568: PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6569: PetscCall(PetscQuadratureDestroy(&qGeom));
6570: }
6571: if (hasDyn) {
6572: for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
6573: }
6574: for (c = cStart; c < cEnd; ++c) {
6575: const PetscInt cell = cells ? cells[c] : c;
6576: const PetscInt cind = c - cStart;
6577: const PetscBLASInt one = 1;
6578: PetscBLASInt M;
6579: const PetscScalar a = 1.0, b = 0.0;
6581: PetscCall(PetscBLASIntCast(totDim, &M));
6582: PetscCallBLAS("BLASgemv", BLASgemv_("N", &M, &M, &a, &elemMat[cind * totDim * totDim], &M, &y[cind * totDim], &one, &b, z, &one));
6583: if (mesh->printFEM > 1) {
6584: PetscCall(DMPrintCellMatrix(c, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6585: PetscCall(DMPrintCellVector(c, "Y", totDim, &y[cind * totDim]));
6586: PetscCall(DMPrintCellVector(c, "Z", totDim, z));
6587: }
6588: PetscCall(DMPlexVecSetClosure(dm, section, Z, cell, z, ADD_VALUES));
6589: }
6590: PetscCall(PetscFree6(u, u_t, elemMat, elemMatD, y, z));
6591: if (mesh->printFEM) {
6592: PetscCall(PetscPrintf(PetscObjectComm((PetscObject)Z), "Z:\n"));
6593: PetscCall(VecView(Z, NULL));
6594: }
6595: PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6596: PetscCall(PetscFree(a));
6597: PetscCall(DMDestroy(&plexAux));
6598: PetscCall(DMDestroy(&plex));
6599: PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6600: PetscFunctionReturn(PETSC_SUCCESS);
6601: }