Actual source code: plexfem.c

  1: #include <petsc/private/dmpleximpl.h>
  2: #include <petscsf.h>

  4: #include <petscblaslapack.h>
  5: #include <petsc/private/hashsetij.h>
  6: #include <petsc/private/petscfeimpl.h>
  7: #include <petsc/private/petscfvimpl.h>

  9: PetscBool  Clementcite       = PETSC_FALSE;
 10: const char ClementCitation[] = "@article{clement1975approximation,\n"
 11:                                "  title   = {Approximation by finite element functions using local regularization},\n"
 12:                                "  author  = {Philippe Cl{\\'e}ment},\n"
 13:                                "  journal = {Revue fran{\\c{c}}aise d'automatique, informatique, recherche op{\\'e}rationnelle. Analyse num{\\'e}rique},\n"
 14:                                "  volume  = {9},\n"
 15:                                "  number  = {R2},\n"
 16:                                "  pages   = {77--84},\n"
 17:                                "  year    = {1975}\n}\n";

 19: static PetscErrorCode DMPlexConvertPlex(DM dm, DM *plex, PetscBool copy)
 20: {
 21:   PetscBool isPlex;

 23:   PetscFunctionBegin;
 24:   PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
 25:   if (isPlex) {
 26:     *plex = dm;
 27:     PetscCall(PetscObjectReference((PetscObject)dm));
 28:   } else {
 29:     PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
 30:     if (!*plex) {
 31:       PetscCall(DMConvert(dm, DMPLEX, plex));
 32:       PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
 33:     } else {
 34:       PetscCall(PetscObjectReference((PetscObject)*plex));
 35:     }
 36:     if (copy) {
 37:       DMSubDomainHookLink link;

 39:       PetscCall(DMCopyDS(dm, PETSC_DETERMINE, PETSC_DETERMINE, *plex));
 40:       PetscCall(DMCopyAuxiliaryVec(dm, *plex));
 41:       /* Run the subdomain hook (this will copy the DMSNES/DMTS) */
 42:       for (link = dm->subdomainhook; link; link = link->next) {
 43:         if (link->ddhook) PetscCall((*link->ddhook)(dm, *plex, link->ctx));
 44:       }
 45:     }
 46:   }
 47:   PetscFunctionReturn(PETSC_SUCCESS);
 48: }

 50: static PetscErrorCode PetscContainerUserDestroy_PetscFEGeom(void *ctx)
 51: {
 52:   PetscFEGeom *geom = (PetscFEGeom *)ctx;

 54:   PetscFunctionBegin;
 55:   PetscCall(PetscFEGeomDestroy(&geom));
 56:   PetscFunctionReturn(PETSC_SUCCESS);
 57: }

 59: static PetscErrorCode DMPlexGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
 60: {
 61:   char           composeStr[33] = {0};
 62:   PetscObjectId  id;
 63:   PetscContainer container;

 65:   PetscFunctionBegin;
 66:   PetscCall(PetscObjectGetId((PetscObject)quad, &id));
 67:   PetscCall(PetscSNPrintf(composeStr, 32, "DMPlexGetFEGeom_%" PetscInt64_FMT "\n", id));
 68:   PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
 69:   if (container) {
 70:     PetscCall(PetscContainerGetPointer(container, (void **)geom));
 71:   } else {
 72:     PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom));
 73:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
 74:     PetscCall(PetscContainerSetPointer(container, (void *)*geom));
 75:     PetscCall(PetscContainerSetUserDestroy(container, PetscContainerUserDestroy_PetscFEGeom));
 76:     PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
 77:     PetscCall(PetscContainerDestroy(&container));
 78:   }
 79:   PetscFunctionReturn(PETSC_SUCCESS);
 80: }

 82: static PetscErrorCode DMPlexRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
 83: {
 84:   PetscFunctionBegin;
 85:   *geom = NULL;
 86:   PetscFunctionReturn(PETSC_SUCCESS);
 87: }

 89: /*@
 90:   DMPlexGetScale - Get the scale for the specified fundamental unit

 92:   Not Collective

 94:   Input Parameters:
 95: + dm   - the `DM`
 96: - unit - The SI unit

 98:   Output Parameter:
 99: . scale - The value used to scale all quantities with this unit

101:   Level: advanced

103: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetScale()`, `PetscUnit`
104: @*/
105: PetscErrorCode DMPlexGetScale(DM dm, PetscUnit unit, PetscReal *scale)
106: {
107:   DM_Plex *mesh = (DM_Plex *)dm->data;

109:   PetscFunctionBegin;
111:   PetscAssertPointer(scale, 3);
112:   *scale = mesh->scale[unit];
113:   PetscFunctionReturn(PETSC_SUCCESS);
114: }

116: /*@
117:   DMPlexSetScale - Set the scale for the specified fundamental unit

119:   Not Collective

121:   Input Parameters:
122: + dm    - the `DM`
123: . unit  - The SI unit
124: - scale - The value used to scale all quantities with this unit

126:   Level: advanced

128: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetScale()`, `PetscUnit`
129: @*/
130: PetscErrorCode DMPlexSetScale(DM dm, PetscUnit unit, PetscReal scale)
131: {
132:   DM_Plex *mesh = (DM_Plex *)dm->data;

134:   PetscFunctionBegin;
136:   mesh->scale[unit] = scale;
137:   PetscFunctionReturn(PETSC_SUCCESS);
138: }

140: PetscErrorCode DMPlexGetUseCeed_Plex(DM dm, PetscBool *useCeed)
141: {
142:   DM_Plex *mesh = (DM_Plex *)dm->data;

144:   PetscFunctionBegin;
145:   *useCeed = mesh->useCeed;
146:   PetscFunctionReturn(PETSC_SUCCESS);
147: }
148: PetscErrorCode DMPlexSetUseCeed_Plex(DM dm, PetscBool useCeed)
149: {
150:   DM_Plex *mesh = (DM_Plex *)dm->data;

152:   PetscFunctionBegin;
153:   mesh->useCeed = useCeed;
154:   PetscFunctionReturn(PETSC_SUCCESS);
155: }

157: /*@
158:   DMPlexGetUseCeed - Get flag for using the LibCEED backend

160:   Not collective

162:   Input Parameter:
163: . dm - The `DM`

165:   Output Parameter:
166: . useCeed - The flag

168:   Level: intermediate

170: .seealso: `DMPlexSetUseCeed()`
171: @*/
172: PetscErrorCode DMPlexGetUseCeed(DM dm, PetscBool *useCeed)
173: {
174:   PetscFunctionBegin;
176:   PetscAssertPointer(useCeed, 2);
177:   *useCeed = PETSC_FALSE;
178:   PetscTryMethod(dm, "DMPlexGetUseCeed_C", (DM, PetscBool *), (dm, useCeed));
179:   PetscFunctionReturn(PETSC_SUCCESS);
180: }

182: /*@
183:   DMPlexSetUseCeed - Set flag for using the LibCEED backend

185:   Not collective

187:   Input Parameters:
188: + dm      - The `DM`
189: - useCeed - The flag

191:   Level: intermediate

193: .seealso: `DMPlexGetUseCeed()`
194: @*/
195: PetscErrorCode DMPlexSetUseCeed(DM dm, PetscBool useCeed)
196: {
197:   PetscFunctionBegin;
200:   PetscUseMethod(dm, "DMPlexSetUseCeed_C", (DM, PetscBool), (dm, useCeed));
201:   PetscFunctionReturn(PETSC_SUCCESS);
202: }

204: /*@
205:   DMPlexGetUseMatClosurePermutation - Get flag for using a closure permutation for matrix insertion

207:   Not collective

209:   Input Parameter:
210: . dm - The `DM`

212:   Output Parameter:
213: . useClPerm - The flag

215:   Level: intermediate

217: .seealso: `DMPlexSetUseMatClosurePermutation()`
218: @*/
219: PetscErrorCode DMPlexGetUseMatClosurePermutation(DM dm, PetscBool *useClPerm)
220: {
221:   DM_Plex *mesh = (DM_Plex *)dm->data;

223:   PetscFunctionBegin;
225:   PetscAssertPointer(useClPerm, 2);
226:   *useClPerm = mesh->useMatClPerm;
227:   PetscFunctionReturn(PETSC_SUCCESS);
228: }

230: /*@
231:   DMPlexSetUseMatClosurePermutation - Set flag for using a closure permutation for matrix insertion

233:   Not collective

235:   Input Parameters:
236: + dm        - The `DM`
237: - useClPerm - The flag

239:   Level: intermediate

241: .seealso: `DMPlexGetUseMatClosurePermutation()`
242: @*/
243: PetscErrorCode DMPlexSetUseMatClosurePermutation(DM dm, PetscBool useClPerm)
244: {
245:   DM_Plex *mesh = (DM_Plex *)dm->data;

247:   PetscFunctionBegin;
250:   mesh->useMatClPerm = useClPerm;
251:   PetscFunctionReturn(PETSC_SUCCESS);
252: }

254: static PetscErrorCode DMPlexProjectRigidBody_Private(PetscInt dim, PetscReal t, const PetscReal X[], PetscInt Nc, PetscScalar *mode, void *ctx)
255: {
256:   const PetscInt eps[3][3][3] = {
257:     {{0, 0, 0},  {0, 0, 1},  {0, -1, 0}},
258:     {{0, 0, -1}, {0, 0, 0},  {1, 0, 0} },
259:     {{0, 1, 0},  {-1, 0, 0}, {0, 0, 0} }
260:   };
261:   PetscInt *ctxInt = (PetscInt *)ctx;
262:   PetscInt  dim2   = ctxInt[0];
263:   PetscInt  d      = ctxInt[1];
264:   PetscInt  i, j, k = dim > 2 ? d - dim : d;

266:   PetscFunctionBegin;
267:   PetscCheck(dim == dim2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input dimension %" PetscInt_FMT " does not match context dimension %" PetscInt_FMT, dim, dim2);
268:   for (i = 0; i < dim; i++) mode[i] = 0.;
269:   if (d < dim) {
270:     mode[d] = 1.; /* Translation along axis d */
271:   } else {
272:     for (i = 0; i < dim; i++) {
273:       for (j = 0; j < dim; j++) { mode[j] += eps[i][j][k] * X[i]; /* Rotation about axis d */ }
274:     }
275:   }
276:   PetscFunctionReturn(PETSC_SUCCESS);
277: }

279: /*@
280:   DMPlexCreateRigidBody - For the default global section, create rigid body modes by function space interpolation

282:   Collective

284:   Input Parameters:
285: + dm    - the `DM`
286: - field - The field number for the rigid body space, or 0 for the default

288:   Output Parameter:
289: . sp - the null space

291:   Level: advanced

293:   Note:
294:   This is necessary to provide a suitable coarse space for algebraic multigrid

296: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`, `PCGAMG`
297: @*/
298: PetscErrorCode DMPlexCreateRigidBody(DM dm, PetscInt field, MatNullSpace *sp)
299: {
300:   PetscErrorCode (**func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *);
301:   MPI_Comm     comm;
302:   Vec          mode[6];
303:   PetscSection section, globalSection;
304:   PetscInt     dim, dimEmbed, Nf, n, m, mmin, d, i, j;
305:   void       **ctxs;

307:   PetscFunctionBegin;
308:   PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
309:   PetscCall(DMGetDimension(dm, &dim));
310:   PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
311:   PetscCall(DMGetNumFields(dm, &Nf));
312:   PetscCheck(!Nf || !(field < 0 || field >= Nf), comm, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", field, Nf);
313:   if (dim == 1 && Nf < 2) {
314:     PetscCall(MatNullSpaceCreate(comm, PETSC_TRUE, 0, NULL, sp));
315:     PetscFunctionReturn(PETSC_SUCCESS);
316:   }
317:   PetscCall(DMGetLocalSection(dm, &section));
318:   PetscCall(DMGetGlobalSection(dm, &globalSection));
319:   PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
320:   PetscCall(PetscCalloc2(Nf, &func, Nf, &ctxs));
321:   m = (dim * (dim + 1)) / 2;
322:   PetscCall(VecCreate(comm, &mode[0]));
323:   PetscCall(VecSetType(mode[0], dm->vectype));
324:   PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
325:   PetscCall(VecSetUp(mode[0]));
326:   PetscCall(VecGetSize(mode[0], &n));
327:   mmin        = PetscMin(m, n);
328:   func[field] = DMPlexProjectRigidBody_Private;
329:   for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
330:   for (d = 0; d < m; d++) {
331:     PetscInt ctx[2];

333:     ctxs[field] = (void *)(&ctx[0]);
334:     ctx[0]      = dimEmbed;
335:     ctx[1]      = d;
336:     PetscCall(DMProjectFunction(dm, 0.0, func, ctxs, INSERT_VALUES, mode[d]));
337:   }
338:   /* Orthonormalize system */
339:   for (i = 0; i < mmin; ++i) {
340:     PetscScalar dots[6];

342:     PetscCall(VecNormalize(mode[i], NULL));
343:     PetscCall(VecMDot(mode[i], mmin - i - 1, mode + i + 1, dots + i + 1));
344:     for (j = i + 1; j < mmin; ++j) {
345:       dots[j] *= -1.0;
346:       PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
347:     }
348:   }
349:   PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, mmin, mode, sp));
350:   for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
351:   PetscCall(PetscFree2(func, ctxs));
352:   PetscFunctionReturn(PETSC_SUCCESS);
353: }

355: /*@
356:   DMPlexCreateRigidBodies - For the default global section, create rigid body modes by function space interpolation

358:   Collective

360:   Input Parameters:
361: + dm    - the `DM`
362: . nb    - The number of bodies
363: . label - The `DMLabel` marking each domain
364: . nids  - The number of ids per body
365: - ids   - An array of the label ids in sequence for each domain

367:   Output Parameter:
368: . sp - the null space

370:   Level: advanced

372:   Note:
373:   This is necessary to provide a suitable coarse space for algebraic multigrid

375: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `MatNullSpaceCreate()`
376: @*/
377: PetscErrorCode DMPlexCreateRigidBodies(DM dm, PetscInt nb, DMLabel label, const PetscInt nids[], const PetscInt ids[], MatNullSpace *sp)
378: {
379:   MPI_Comm     comm;
380:   PetscSection section, globalSection;
381:   Vec         *mode;
382:   PetscScalar *dots;
383:   PetscInt     dim, dimEmbed, n, m, b, d, i, j, off;

385:   PetscFunctionBegin;
386:   PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
387:   PetscCall(DMGetDimension(dm, &dim));
388:   PetscCall(DMGetCoordinateDim(dm, &dimEmbed));
389:   PetscCall(DMGetLocalSection(dm, &section));
390:   PetscCall(DMGetGlobalSection(dm, &globalSection));
391:   PetscCall(PetscSectionGetConstrainedStorageSize(globalSection, &n));
392:   m = nb * (dim * (dim + 1)) / 2;
393:   PetscCall(PetscMalloc2(m, &mode, m, &dots));
394:   PetscCall(VecCreate(comm, &mode[0]));
395:   PetscCall(VecSetSizes(mode[0], n, PETSC_DETERMINE));
396:   PetscCall(VecSetUp(mode[0]));
397:   for (i = 1; i < m; ++i) PetscCall(VecDuplicate(mode[0], &mode[i]));
398:   for (b = 0, off = 0; b < nb; ++b) {
399:     for (d = 0; d < m / nb; ++d) {
400:       PetscInt ctx[2];
401:       PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *) = DMPlexProjectRigidBody_Private;
402:       void *voidctx                                                                                   = (void *)(&ctx[0]);

404:       ctx[0] = dimEmbed;
405:       ctx[1] = d;
406:       PetscCall(DMProjectFunctionLabel(dm, 0.0, label, nids[b], &ids[off], 0, NULL, &func, &voidctx, INSERT_VALUES, mode[d]));
407:       off += nids[b];
408:     }
409:   }
410:   /* Orthonormalize system */
411:   for (i = 0; i < m; ++i) {
412:     PetscScalar dots[6];

414:     PetscCall(VecNormalize(mode[i], NULL));
415:     PetscCall(VecMDot(mode[i], m - i - 1, mode + i + 1, dots + i + 1));
416:     for (j = i + 1; j < m; ++j) {
417:       dots[j] *= -1.0;
418:       PetscCall(VecAXPY(mode[j], dots[j], mode[i]));
419:     }
420:   }
421:   PetscCall(MatNullSpaceCreate(comm, PETSC_FALSE, m, mode, sp));
422:   for (i = 0; i < m; ++i) PetscCall(VecDestroy(&mode[i]));
423:   PetscCall(PetscFree2(mode, dots));
424:   PetscFunctionReturn(PETSC_SUCCESS);
425: }

427: /*@
428:   DMPlexSetMaxProjectionHeight - In DMPlexProjectXXXLocal() functions, the projected values of a basis function's dofs
429:   are computed by associating the basis function with one of the mesh points in its transitively-closed support, and
430:   evaluating the dual space basis of that point.

432:   Input Parameters:
433: + dm     - the `DMPLEX` object
434: - height - the maximum projection height >= 0

436:   Level: advanced

438:   Notes:
439:   A basis function is associated with the point in its transitively-closed support whose mesh
440:   height is highest (w.r.t. DAG height), but not greater than the maximum projection height,
441:   which is set with this function.  By default, the maximum projection height is zero, which
442:   means that only mesh cells are used to project basis functions.  A height of one, for
443:   example, evaluates a cell-interior basis functions using its cells dual space basis, but all
444:   other basis functions with the dual space basis of a face.

446: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
447: @*/
448: PetscErrorCode DMPlexSetMaxProjectionHeight(DM dm, PetscInt height)
449: {
450:   DM_Plex *plex = (DM_Plex *)dm->data;

452:   PetscFunctionBegin;
454:   plex->maxProjectionHeight = height;
455:   PetscFunctionReturn(PETSC_SUCCESS);
456: }

458: /*@
459:   DMPlexGetMaxProjectionHeight - Get the maximum height (w.r.t. DAG) of mesh points used to evaluate dual bases in
460:   DMPlexProjectXXXLocal() functions.

462:   Input Parameter:
463: . dm - the `DMPLEX` object

465:   Output Parameter:
466: . height - the maximum projection height

468:   Level: intermediate

470: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSetMaxProjectionHeight()`, `DMProjectFunctionLocal()`, `DMProjectFunctionLabelLocal()`
471: @*/
472: PetscErrorCode DMPlexGetMaxProjectionHeight(DM dm, PetscInt *height)
473: {
474:   DM_Plex *plex = (DM_Plex *)dm->data;

476:   PetscFunctionBegin;
478:   *height = plex->maxProjectionHeight;
479:   PetscFunctionReturn(PETSC_SUCCESS);
480: }

482: typedef struct {
483:   PetscReal    alpha; /* The first Euler angle, and in 2D the only one */
484:   PetscReal    beta;  /* The second Euler angle */
485:   PetscReal    gamma; /* The third Euler angle */
486:   PetscInt     dim;   /* The dimension of R */
487:   PetscScalar *R;     /* The rotation matrix, transforming a vector in the local basis to the global basis */
488:   PetscScalar *RT;    /* The transposed rotation matrix, transforming a vector in the global basis to the local basis */
489: } RotCtx;

491: /*
492:   Note: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
493:   we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows:
494:   $ The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
495:   $ The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
496:   $ The XYZ system rotates a third time about the z axis by gamma.
497: */
498: static PetscErrorCode DMPlexBasisTransformSetUp_Rotation_Internal(DM dm, void *ctx)
499: {
500:   RotCtx   *rc  = (RotCtx *)ctx;
501:   PetscInt  dim = rc->dim;
502:   PetscReal c1, s1, c2, s2, c3, s3;

504:   PetscFunctionBegin;
505:   PetscCall(PetscMalloc2(PetscSqr(dim), &rc->R, PetscSqr(dim), &rc->RT));
506:   switch (dim) {
507:   case 2:
508:     c1       = PetscCosReal(rc->alpha);
509:     s1       = PetscSinReal(rc->alpha);
510:     rc->R[0] = c1;
511:     rc->R[1] = s1;
512:     rc->R[2] = -s1;
513:     rc->R[3] = c1;
514:     PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
515:     DMPlex_Transpose2D_Internal(rc->RT);
516:     break;
517:   case 3:
518:     c1       = PetscCosReal(rc->alpha);
519:     s1       = PetscSinReal(rc->alpha);
520:     c2       = PetscCosReal(rc->beta);
521:     s2       = PetscSinReal(rc->beta);
522:     c3       = PetscCosReal(rc->gamma);
523:     s3       = PetscSinReal(rc->gamma);
524:     rc->R[0] = c1 * c3 - c2 * s1 * s3;
525:     rc->R[1] = c3 * s1 + c1 * c2 * s3;
526:     rc->R[2] = s2 * s3;
527:     rc->R[3] = -c1 * s3 - c2 * c3 * s1;
528:     rc->R[4] = c1 * c2 * c3 - s1 * s3;
529:     rc->R[5] = c3 * s2;
530:     rc->R[6] = s1 * s2;
531:     rc->R[7] = -c1 * s2;
532:     rc->R[8] = c2;
533:     PetscCall(PetscArraycpy(rc->RT, rc->R, PetscSqr(dim)));
534:     DMPlex_Transpose3D_Internal(rc->RT);
535:     break;
536:   default:
537:     SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Dimension %" PetscInt_FMT " not supported", dim);
538:   }
539:   PetscFunctionReturn(PETSC_SUCCESS);
540: }

542: static PetscErrorCode DMPlexBasisTransformDestroy_Rotation_Internal(DM dm, void *ctx)
543: {
544:   RotCtx *rc = (RotCtx *)ctx;

546:   PetscFunctionBegin;
547:   PetscCall(PetscFree2(rc->R, rc->RT));
548:   PetscCall(PetscFree(rc));
549:   PetscFunctionReturn(PETSC_SUCCESS);
550: }

552: static PetscErrorCode DMPlexBasisTransformGetMatrix_Rotation_Internal(DM dm, const PetscReal x[], PetscBool l2g, const PetscScalar **A, void *ctx)
553: {
554:   RotCtx *rc = (RotCtx *)ctx;

556:   PetscFunctionBeginHot;
557:   PetscAssertPointer(ctx, 5);
558:   if (l2g) {
559:     *A = rc->R;
560:   } else {
561:     *A = rc->RT;
562:   }
563:   PetscFunctionReturn(PETSC_SUCCESS);
564: }

566: PetscErrorCode DMPlexBasisTransformApplyReal_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscReal *y, PetscReal *z, void *ctx)
567: {
568:   PetscFunctionBegin;
569: #if defined(PETSC_USE_COMPLEX)
570:   switch (dim) {
571:   case 2: {
572:     PetscScalar yt[2] = {y[0], y[1]}, zt[2] = {0.0, 0.0};

574:     PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
575:     z[0] = PetscRealPart(zt[0]);
576:     z[1] = PetscRealPart(zt[1]);
577:   } break;
578:   case 3: {
579:     PetscScalar yt[3] = {y[0], y[1], y[2]}, zt[3] = {0.0, 0.0, 0.0};

581:     PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx));
582:     z[0] = PetscRealPart(zt[0]);
583:     z[1] = PetscRealPart(zt[1]);
584:     z[2] = PetscRealPart(zt[2]);
585:   } break;
586:   }
587: #else
588:   PetscCall(DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, y, z, ctx));
589: #endif
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: PetscErrorCode DMPlexBasisTransformApply_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscScalar *y, PetscScalar *z, void *ctx)
594: {
595:   const PetscScalar *A;

597:   PetscFunctionBeginHot;
598:   PetscCall((*dm->transformGetMatrix)(dm, x, l2g, &A, ctx));
599:   switch (dim) {
600:   case 2:
601:     DMPlex_Mult2D_Internal(A, 1, y, z);
602:     break;
603:   case 3:
604:     DMPlex_Mult3D_Internal(A, 1, y, z);
605:     break;
606:   }
607:   PetscFunctionReturn(PETSC_SUCCESS);
608: }

610: static PetscErrorCode DMPlexBasisTransformField_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscInt f, PetscBool l2g, PetscScalar *a)
611: {
612:   PetscSection       ts;
613:   const PetscScalar *ta, *tva;
614:   PetscInt           dof;

616:   PetscFunctionBeginHot;
617:   PetscCall(DMGetLocalSection(tdm, &ts));
618:   PetscCall(PetscSectionGetFieldDof(ts, p, f, &dof));
619:   PetscCall(VecGetArrayRead(tv, &ta));
620:   PetscCall(DMPlexPointLocalFieldRead(tdm, p, f, ta, &tva));
621:   if (l2g) {
622:     switch (dof) {
623:     case 4:
624:       DMPlex_Mult2D_Internal(tva, 1, a, a);
625:       break;
626:     case 9:
627:       DMPlex_Mult3D_Internal(tva, 1, a, a);
628:       break;
629:     }
630:   } else {
631:     switch (dof) {
632:     case 4:
633:       DMPlex_MultTranspose2D_Internal(tva, 1, a, a);
634:       break;
635:     case 9:
636:       DMPlex_MultTranspose3D_Internal(tva, 1, a, a);
637:       break;
638:     }
639:   }
640:   PetscCall(VecRestoreArrayRead(tv, &ta));
641:   PetscFunctionReturn(PETSC_SUCCESS);
642: }

644: static PetscErrorCode DMPlexBasisTransformFieldTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt pf, PetscInt f, PetscInt pg, PetscInt g, PetscBool l2g, PetscInt lda, PetscScalar *a)
645: {
646:   PetscSection       s, ts;
647:   const PetscScalar *ta, *tvaf, *tvag;
648:   PetscInt           fdof, gdof, fpdof, gpdof;

650:   PetscFunctionBeginHot;
651:   PetscCall(DMGetLocalSection(dm, &s));
652:   PetscCall(DMGetLocalSection(tdm, &ts));
653:   PetscCall(PetscSectionGetFieldDof(s, pf, f, &fpdof));
654:   PetscCall(PetscSectionGetFieldDof(s, pg, g, &gpdof));
655:   PetscCall(PetscSectionGetFieldDof(ts, pf, f, &fdof));
656:   PetscCall(PetscSectionGetFieldDof(ts, pg, g, &gdof));
657:   PetscCall(VecGetArrayRead(tv, &ta));
658:   PetscCall(DMPlexPointLocalFieldRead(tdm, pf, f, ta, &tvaf));
659:   PetscCall(DMPlexPointLocalFieldRead(tdm, pg, g, ta, &tvag));
660:   if (l2g) {
661:     switch (fdof) {
662:     case 4:
663:       DMPlex_MatMult2D_Internal(tvaf, gpdof, lda, a, a);
664:       break;
665:     case 9:
666:       DMPlex_MatMult3D_Internal(tvaf, gpdof, lda, a, a);
667:       break;
668:     }
669:     switch (gdof) {
670:     case 4:
671:       DMPlex_MatMultTransposeLeft2D_Internal(tvag, fpdof, lda, a, a);
672:       break;
673:     case 9:
674:       DMPlex_MatMultTransposeLeft3D_Internal(tvag, fpdof, lda, a, a);
675:       break;
676:     }
677:   } else {
678:     switch (fdof) {
679:     case 4:
680:       DMPlex_MatMultTranspose2D_Internal(tvaf, gpdof, lda, a, a);
681:       break;
682:     case 9:
683:       DMPlex_MatMultTranspose3D_Internal(tvaf, gpdof, lda, a, a);
684:       break;
685:     }
686:     switch (gdof) {
687:     case 4:
688:       DMPlex_MatMultLeft2D_Internal(tvag, fpdof, lda, a, a);
689:       break;
690:     case 9:
691:       DMPlex_MatMultLeft3D_Internal(tvag, fpdof, lda, a, a);
692:       break;
693:     }
694:   }
695:   PetscCall(VecRestoreArrayRead(tv, &ta));
696:   PetscFunctionReturn(PETSC_SUCCESS);
697: }

699: PetscErrorCode DMPlexBasisTransformPoint_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool fieldActive[], PetscBool l2g, PetscScalar *a)
700: {
701:   PetscSection    s;
702:   PetscSection    clSection;
703:   IS              clPoints;
704:   const PetscInt *clp;
705:   PetscInt       *points = NULL;
706:   PetscInt        Nf, f, Np, cp, dof, d = 0;

708:   PetscFunctionBegin;
709:   PetscCall(DMGetLocalSection(dm, &s));
710:   PetscCall(PetscSectionGetNumFields(s, &Nf));
711:   PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
712:   for (f = 0; f < Nf; ++f) {
713:     for (cp = 0; cp < Np * 2; cp += 2) {
714:       PetscCall(PetscSectionGetFieldDof(s, points[cp], f, &dof));
715:       if (!dof) continue;
716:       if (fieldActive[f]) PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, points[cp], f, l2g, &a[d]));
717:       d += dof;
718:     }
719:   }
720:   PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
721:   PetscFunctionReturn(PETSC_SUCCESS);
722: }

724: PetscErrorCode DMPlexBasisTransformPointTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool l2g, PetscInt lda, PetscScalar *a)
725: {
726:   PetscSection    s;
727:   PetscSection    clSection;
728:   IS              clPoints;
729:   const PetscInt *clp;
730:   PetscInt       *points = NULL;
731:   PetscInt        Nf, f, g, Np, cpf, cpg, fdof, gdof, r, c = 0;

733:   PetscFunctionBegin;
734:   PetscCall(DMGetLocalSection(dm, &s));
735:   PetscCall(PetscSectionGetNumFields(s, &Nf));
736:   PetscCall(DMPlexGetCompressedClosure(dm, s, p, 0, &Np, &points, &clSection, &clPoints, &clp));
737:   for (f = 0, r = 0; f < Nf; ++f) {
738:     for (cpf = 0; cpf < Np * 2; cpf += 2) {
739:       PetscCall(PetscSectionGetFieldDof(s, points[cpf], f, &fdof));
740:       for (g = 0, c = 0; g < Nf; ++g) {
741:         for (cpg = 0; cpg < Np * 2; cpg += 2) {
742:           PetscCall(PetscSectionGetFieldDof(s, points[cpg], g, &gdof));
743:           PetscCall(DMPlexBasisTransformFieldTensor_Internal(dm, tdm, tv, points[cpf], f, points[cpg], g, l2g, lda, &a[r * lda + c]));
744:           c += gdof;
745:         }
746:       }
747:       PetscCheck(c == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of columns %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
748:       r += fdof;
749:     }
750:   }
751:   PetscCheck(r == lda, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of rows %" PetscInt_FMT " should be %" PetscInt_FMT, c, lda);
752:   PetscCall(DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp));
753:   PetscFunctionReturn(PETSC_SUCCESS);
754: }

756: static PetscErrorCode DMPlexBasisTransform_Internal(DM dm, Vec lv, PetscBool l2g)
757: {
758:   DM                 tdm;
759:   Vec                tv;
760:   PetscSection       ts, s;
761:   const PetscScalar *ta;
762:   PetscScalar       *a, *va;
763:   PetscInt           pStart, pEnd, p, Nf, f;

765:   PetscFunctionBegin;
766:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
767:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
768:   PetscCall(DMGetLocalSection(tdm, &ts));
769:   PetscCall(DMGetLocalSection(dm, &s));
770:   PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
771:   PetscCall(PetscSectionGetNumFields(s, &Nf));
772:   PetscCall(VecGetArray(lv, &a));
773:   PetscCall(VecGetArrayRead(tv, &ta));
774:   for (p = pStart; p < pEnd; ++p) {
775:     for (f = 0; f < Nf; ++f) {
776:       PetscCall(DMPlexPointLocalFieldRef(dm, p, f, a, &va));
777:       PetscCall(DMPlexBasisTransformField_Internal(dm, tdm, tv, p, f, l2g, va));
778:     }
779:   }
780:   PetscCall(VecRestoreArray(lv, &a));
781:   PetscCall(VecRestoreArrayRead(tv, &ta));
782:   PetscFunctionReturn(PETSC_SUCCESS);
783: }

785: /*@
786:   DMPlexGlobalToLocalBasis - Transform the values in the given local vector from the global basis to the local basis

788:   Input Parameters:
789: + dm - The `DM`
790: - lv - A local vector with values in the global basis

792:   Output Parameter:
793: . lv - A local vector with values in the local basis

795:   Level: developer

797:   Note:
798:   This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user will have a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.

800: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexLocalToGlobalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
801: @*/
802: PetscErrorCode DMPlexGlobalToLocalBasis(DM dm, Vec lv)
803: {
804:   PetscFunctionBegin;
807:   PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_FALSE));
808:   PetscFunctionReturn(PETSC_SUCCESS);
809: }

811: /*@
812:   DMPlexLocalToGlobalBasis - Transform the values in the given local vector from the local basis to the global basis

814:   Input Parameters:
815: + dm - The `DM`
816: - lv - A local vector with values in the local basis

818:   Output Parameter:
819: . lv - A local vector with values in the global basis

821:   Level: developer

823:   Note:
824:   This method is only intended to be called inside `DMGlobalToLocal()`. It is unlikely that a user would want a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.

826: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMGetLocalSection()`, `DMPlexCreateBasisRotation()`
827: @*/
828: PetscErrorCode DMPlexLocalToGlobalBasis(DM dm, Vec lv)
829: {
830:   PetscFunctionBegin;
833:   PetscCall(DMPlexBasisTransform_Internal(dm, lv, PETSC_TRUE));
834:   PetscFunctionReturn(PETSC_SUCCESS);
835: }

837: /*@
838:   DMPlexCreateBasisRotation - Create an internal transformation from the global basis, used to specify boundary conditions
839:   and global solutions, to a local basis, appropriate for discretization integrals and assembly.

841:   Input Parameters:
842: + dm    - The `DM`
843: . alpha - The first Euler angle, and in 2D the only one
844: . beta  - The second Euler angle
845: - gamma - The third Euler angle

847:   Level: developer

849:   Note:
850:   Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
851:   we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows
852: .vb
853:    The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
854:    The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
855:    The XYZ system rotates a third time about the z axis by gamma.
856: .ve

858: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGlobalToLocalBasis()`, `DMPlexLocalToGlobalBasis()`
859: @*/
860: PetscErrorCode DMPlexCreateBasisRotation(DM dm, PetscReal alpha, PetscReal beta, PetscReal gamma)
861: {
862:   RotCtx  *rc;
863:   PetscInt cdim;

865:   PetscFunctionBegin;
866:   PetscCall(DMGetCoordinateDim(dm, &cdim));
867:   PetscCall(PetscMalloc1(1, &rc));
868:   dm->transformCtx       = rc;
869:   dm->transformSetUp     = DMPlexBasisTransformSetUp_Rotation_Internal;
870:   dm->transformDestroy   = DMPlexBasisTransformDestroy_Rotation_Internal;
871:   dm->transformGetMatrix = DMPlexBasisTransformGetMatrix_Rotation_Internal;
872:   rc->dim                = cdim;
873:   rc->alpha              = alpha;
874:   rc->beta               = beta;
875:   rc->gamma              = gamma;
876:   PetscCall((*dm->transformSetUp)(dm, dm->transformCtx));
877:   PetscCall(DMConstructBasisTransform_Internal(dm));
878:   PetscFunctionReturn(PETSC_SUCCESS);
879: }

881: /*@C
882:   DMPlexInsertBoundaryValuesEssential - Insert boundary values into a local vector using a function of the coordinates

884:   Input Parameters:
885: + dm     - The `DM`, with a `PetscDS` that matches the problem being constrained
886: . time   - The time
887: . field  - The field to constrain
888: . Nc     - The number of constrained field components, or 0 for all components
889: . comps  - An array of constrained component numbers, or `NULL` for all components
890: . label  - The `DMLabel` defining constrained points
891: . numids - The number of `DMLabel` ids for constrained points
892: . ids    - An array of ids for constrained points
893: . func   - A pointwise function giving boundary values
894: - ctx    - An optional user context for bcFunc

896:   Output Parameter:
897: . locX - A local vector to receives the boundary values

899:   Level: developer

901: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMLabel`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
902: @*/
903: PetscErrorCode DMPlexInsertBoundaryValuesEssential(DM dm, PetscReal time, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, Vec locX)
904: {
905:   PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
906:   void   **ctxs;
907:   PetscInt numFields;

909:   PetscFunctionBegin;
910:   PetscCall(DMGetNumFields(dm, &numFields));
911:   PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
912:   funcs[field] = func;
913:   ctxs[field]  = ctx;
914:   PetscCall(DMProjectFunctionLabelLocal(dm, time, label, numids, ids, Nc, comps, funcs, ctxs, INSERT_BC_VALUES, locX));
915:   PetscCall(PetscFree2(funcs, ctxs));
916:   PetscFunctionReturn(PETSC_SUCCESS);
917: }

919: /*@C
920:   DMPlexInsertBoundaryValuesEssentialField - Insert boundary values into a local vector using a function of the coordinates and field data

922:   Input Parameters:
923: + dm     - The `DM`, with a `PetscDS` that matches the problem being constrained
924: . time   - The time
925: . locU   - A local vector with the input solution values
926: . field  - The field to constrain
927: . Nc     - The number of constrained field components, or 0 for all components
928: . comps  - An array of constrained component numbers, or `NULL` for all components
929: . label  - The `DMLabel` defining constrained points
930: . numids - The number of `DMLabel` ids for constrained points
931: . ids    - An array of ids for constrained points
932: . func   - A pointwise function giving boundary values
933: - ctx    - An optional user context for bcFunc

935:   Output Parameter:
936: . locX - A local vector to receives the boundary values

938:   Level: developer

940: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialBdField()`, `DMAddBoundary()`
941: @*/
942: PetscErrorCode DMPlexInsertBoundaryValuesEssentialField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
943: {
944:   void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
945:   void   **ctxs;
946:   PetscInt numFields;

948:   PetscFunctionBegin;
949:   PetscCall(DMGetNumFields(dm, &numFields));
950:   PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
951:   funcs[field] = func;
952:   ctxs[field]  = ctx;
953:   PetscCall(DMProjectFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
954:   PetscCall(PetscFree2(funcs, ctxs));
955:   PetscFunctionReturn(PETSC_SUCCESS);
956: }

958: /*@C
959:   DMPlexInsertBoundaryValuesEssentialBdField - Insert boundary values into a local vector using a function of the coordinates and boundary field data

961:   Collective

963:   Input Parameters:
964: + dm     - The `DM`, with a `PetscDS` that matches the problem being constrained
965: . time   - The time
966: . locU   - A local vector with the input solution values
967: . field  - The field to constrain
968: . Nc     - The number of constrained field components, or 0 for all components
969: . comps  - An array of constrained component numbers, or `NULL` for all components
970: . label  - The `DMLabel` defining constrained points
971: . numids - The number of `DMLabel` ids for constrained points
972: . ids    - An array of ids for constrained points
973: . func   - A pointwise function giving boundary values, the calling sequence is given in `DMProjectBdFieldLabelLocal()`
974: - ctx    - An optional user context for `func`

976:   Output Parameter:
977: . locX - A local vector to receive the boundary values

979:   Level: developer

981: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectBdFieldLabelLocal()`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
982: @*/
983: PetscErrorCode DMPlexInsertBoundaryValuesEssentialBdField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], void (*func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), void *ctx, Vec locX)
984: {
985:   void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
986:   void   **ctxs;
987:   PetscInt numFields;

989:   PetscFunctionBegin;
990:   PetscCall(DMGetNumFields(dm, &numFields));
991:   PetscCall(PetscCalloc2(numFields, &funcs, numFields, &ctxs));
992:   funcs[field] = func;
993:   ctxs[field]  = ctx;
994:   PetscCall(DMProjectBdFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX));
995:   PetscCall(PetscFree2(funcs, ctxs));
996:   PetscFunctionReturn(PETSC_SUCCESS);
997: }

999: /*@C
1000:   DMPlexInsertBoundaryValuesRiemann - Insert boundary values into a local vector

1002:   Input Parameters:
1003: + dm           - The `DM`, with a `PetscDS` that matches the problem being constrained
1004: . time         - The time
1005: . faceGeometry - A vector with the FVM face geometry information
1006: . cellGeometry - A vector with the FVM cell geometry information
1007: . Grad         - A vector with the FVM cell gradient information
1008: . field        - The field to constrain
1009: . Nc           - The number of constrained field components, or 0 for all components
1010: . comps        - An array of constrained component numbers, or `NULL` for all components
1011: . label        - The `DMLabel` defining constrained points
1012: . numids       - The number of `DMLabel` ids for constrained points
1013: . ids          - An array of ids for constrained points
1014: . func         - A pointwise function giving boundary values
1015: - ctx          - An optional user context for bcFunc

1017:   Output Parameter:
1018: . locX - A local vector to receives the boundary values

1020:   Level: developer

1022:   Note:
1023:   This implementation currently ignores the numcomps/comps argument from `DMAddBoundary()`

1025: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexInsertBoundaryValuesEssential()`, `DMPlexInsertBoundaryValuesEssentialField()`, `DMAddBoundary()`
1026: @*/
1027: PetscErrorCode DMPlexInsertBoundaryValuesRiemann(DM dm, PetscReal time, Vec faceGeometry, Vec cellGeometry, Vec Grad, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *), void *ctx, Vec locX)
1028: {
1029:   PetscDS            prob;
1030:   PetscSF            sf;
1031:   DM                 dmFace, dmCell, dmGrad;
1032:   const PetscScalar *facegeom, *cellgeom = NULL, *grad;
1033:   const PetscInt    *leaves;
1034:   PetscScalar       *x, *fx;
1035:   PetscInt           dim, nleaves, loc, fStart, fEnd, pdim, i;
1036:   PetscErrorCode     ierru = PETSC_SUCCESS;

1038:   PetscFunctionBegin;
1039:   PetscCall(DMGetPointSF(dm, &sf));
1040:   PetscCall(PetscSFGetGraph(sf, NULL, &nleaves, &leaves, NULL));
1041:   nleaves = PetscMax(0, nleaves);
1042:   PetscCall(DMGetDimension(dm, &dim));
1043:   PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1044:   PetscCall(DMGetDS(dm, &prob));
1045:   PetscCall(VecGetDM(faceGeometry, &dmFace));
1046:   PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
1047:   if (cellGeometry) {
1048:     PetscCall(VecGetDM(cellGeometry, &dmCell));
1049:     PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
1050:   }
1051:   if (Grad) {
1052:     PetscFV fv;

1054:     PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fv));
1055:     PetscCall(VecGetDM(Grad, &dmGrad));
1056:     PetscCall(VecGetArrayRead(Grad, &grad));
1057:     PetscCall(PetscFVGetNumComponents(fv, &pdim));
1058:     PetscCall(DMGetWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1059:   }
1060:   PetscCall(VecGetArray(locX, &x));
1061:   for (i = 0; i < numids; ++i) {
1062:     IS              faceIS;
1063:     const PetscInt *faces;
1064:     PetscInt        numFaces, f;

1066:     PetscCall(DMLabelGetStratumIS(label, ids[i], &faceIS));
1067:     if (!faceIS) continue; /* No points with that id on this process */
1068:     PetscCall(ISGetLocalSize(faceIS, &numFaces));
1069:     PetscCall(ISGetIndices(faceIS, &faces));
1070:     for (f = 0; f < numFaces; ++f) {
1071:       const PetscInt   face = faces[f], *cells;
1072:       PetscFVFaceGeom *fg;

1074:       if ((face < fStart) || (face >= fEnd)) continue; /* Refinement adds non-faces to labels */
1075:       PetscCall(PetscFindInt(face, nleaves, (PetscInt *)leaves, &loc));
1076:       if (loc >= 0) continue;
1077:       PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
1078:       PetscCall(DMPlexGetSupport(dm, face, &cells));
1079:       if (Grad) {
1080:         PetscFVCellGeom *cg;
1081:         PetscScalar     *cx, *cgrad;
1082:         PetscScalar     *xG;
1083:         PetscReal        dx[3];
1084:         PetscInt         d;

1086:         PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cg));
1087:         PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &cx));
1088:         PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], grad, &cgrad));
1089:         PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1090:         DMPlex_WaxpyD_Internal(dim, -1, cg->centroid, fg->centroid, dx);
1091:         for (d = 0; d < pdim; ++d) fx[d] = cx[d] + DMPlex_DotD_Internal(dim, &cgrad[d * dim], dx);
1092:         PetscCall((*func)(time, fg->centroid, fg->normal, fx, xG, ctx));
1093:       } else {
1094:         PetscScalar *xI;
1095:         PetscScalar *xG;

1097:         PetscCall(DMPlexPointLocalRead(dm, cells[0], x, &xI));
1098:         PetscCall(DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG));
1099:         ierru = (*func)(time, fg->centroid, fg->normal, xI, xG, ctx);
1100:         if (ierru) {
1101:           PetscCall(ISRestoreIndices(faceIS, &faces));
1102:           PetscCall(ISDestroy(&faceIS));
1103:           goto cleanup;
1104:         }
1105:       }
1106:     }
1107:     PetscCall(ISRestoreIndices(faceIS, &faces));
1108:     PetscCall(ISDestroy(&faceIS));
1109:   }
1110: cleanup:
1111:   PetscCall(VecRestoreArray(locX, &x));
1112:   if (Grad) {
1113:     PetscCall(DMRestoreWorkArray(dm, pdim, MPIU_SCALAR, &fx));
1114:     PetscCall(VecRestoreArrayRead(Grad, &grad));
1115:   }
1116:   if (cellGeometry) PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
1117:   PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
1118:   PetscCall(ierru);
1119:   PetscFunctionReturn(PETSC_SUCCESS);
1120: }

1122: static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
1123: {
1124:   PetscInt c;
1125:   for (c = 0; c < Nc; ++c) u[c] = 0.0;
1126:   return PETSC_SUCCESS;
1127: }

1129: PetscErrorCode DMPlexInsertBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1130: {
1131:   PetscObject isZero;
1132:   PetscDS     prob;
1133:   PetscInt    numBd, b;

1135:   PetscFunctionBegin;
1136:   PetscCall(DMGetDS(dm, &prob));
1137:   PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1138:   PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1139:   PetscCall(PetscDSUpdateBoundaryLabels(prob, dm));
1140:   for (b = 0; b < numBd; ++b) {
1141:     PetscWeakForm           wf;
1142:     DMBoundaryConditionType type;
1143:     const char             *name;
1144:     DMLabel                 label;
1145:     PetscInt                field, Nc;
1146:     const PetscInt         *comps;
1147:     PetscObject             obj;
1148:     PetscClassId            id;
1149:     void (*bvfunc)(void);
1150:     PetscInt        numids;
1151:     const PetscInt *ids;
1152:     void           *ctx;

1154:     PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, &bvfunc, NULL, &ctx));
1155:     if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1156:     PetscCall(DMGetField(dm, field, NULL, &obj));
1157:     PetscCall(PetscObjectGetClassId(obj, &id));
1158:     if (id == PETSCFE_CLASSID) {
1159:       switch (type) {
1160:         /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1161:       case DM_BC_ESSENTIAL: {
1162:         PetscSimplePointFn *func = (PetscSimplePointFn *)bvfunc;

1164:         if (isZero) func = zero;
1165:         PetscCall(DMPlexLabelAddCells(dm, label));
1166:         PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func, ctx, locX));
1167:         PetscCall(DMPlexLabelClearCells(dm, label));
1168:       } break;
1169:       case DM_BC_ESSENTIAL_FIELD: {
1170:         PetscPointFunc func = (PetscPointFunc)bvfunc;

1172:         PetscCall(DMPlexLabelAddCells(dm, label));
1173:         PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func, ctx, locX));
1174:         PetscCall(DMPlexLabelClearCells(dm, label));
1175:       } break;
1176:       default:
1177:         break;
1178:       }
1179:     } else if (id == PETSCFV_CLASSID) {
1180:       {
1181:         PetscErrorCode (*func)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *) = (PetscErrorCode (*)(PetscReal, const PetscReal *, const PetscReal *, const PetscScalar *, PetscScalar *, void *))bvfunc;

1183:         if (!faceGeomFVM) continue;
1184:         PetscCall(DMPlexInsertBoundaryValuesRiemann(dm, time, faceGeomFVM, cellGeomFVM, gradFVM, field, Nc, comps, label, numids, ids, func, ctx, locX));
1185:       }
1186:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1187:   }
1188:   PetscFunctionReturn(PETSC_SUCCESS);
1189: }

1191: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1192: {
1193:   PetscObject isZero;
1194:   PetscDS     prob;
1195:   PetscInt    numBd, b;

1197:   PetscFunctionBegin;
1198:   if (!locX) PetscFunctionReturn(PETSC_SUCCESS);
1199:   PetscCall(DMGetDS(dm, &prob));
1200:   PetscCall(PetscDSGetNumBoundary(prob, &numBd));
1201:   PetscCall(PetscObjectQuery((PetscObject)locX, "__Vec_bc_zero__", &isZero));
1202:   for (b = 0; b < numBd; ++b) {
1203:     PetscWeakForm           wf;
1204:     DMBoundaryConditionType type;
1205:     const char             *name;
1206:     DMLabel                 label;
1207:     PetscInt                field, Nc;
1208:     const PetscInt         *comps;
1209:     PetscObject             obj;
1210:     PetscClassId            id;
1211:     PetscInt                numids;
1212:     const PetscInt         *ids;
1213:     void (*bvfunc)(void);
1214:     void *ctx;

1216:     PetscCall(PetscDSGetBoundary(prob, b, &wf, &type, &name, &label, &numids, &ids, &field, &Nc, &comps, NULL, &bvfunc, &ctx));
1217:     if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
1218:     PetscCall(DMGetField(dm, field, NULL, &obj));
1219:     PetscCall(PetscObjectGetClassId(obj, &id));
1220:     if (id == PETSCFE_CLASSID) {
1221:       switch (type) {
1222:         /* for FEM, there is no insertion to be done for non-essential boundary conditions */
1223:       case DM_BC_ESSENTIAL: {
1224:         PetscSimplePointFn *func_t = (PetscSimplePointFn *)bvfunc;

1226:         if (isZero) func_t = zero;
1227:         PetscCall(DMPlexLabelAddCells(dm, label));
1228:         PetscCall(DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1229:         PetscCall(DMPlexLabelClearCells(dm, label));
1230:       } break;
1231:       case DM_BC_ESSENTIAL_FIELD: {
1232:         PetscPointFunc func_t = (PetscPointFunc)bvfunc;

1234:         PetscCall(DMPlexLabelAddCells(dm, label));
1235:         PetscCall(DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids, func_t, ctx, locX));
1236:         PetscCall(DMPlexLabelClearCells(dm, label));
1237:       } break;
1238:       default:
1239:         break;
1240:       }
1241:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1242:   }
1243:   PetscFunctionReturn(PETSC_SUCCESS);
1244: }

1246: /*@
1247:   DMPlexInsertBoundaryValues - Puts coefficients which represent boundary values into the local solution vector

1249:   Not Collective

1251:   Input Parameters:
1252: + dm              - The `DM`
1253: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1254: . time            - The time
1255: . faceGeomFVM     - Face geometry data for FV discretizations
1256: . cellGeomFVM     - Cell geometry data for FV discretizations
1257: - gradFVM         - Gradient reconstruction data for FV discretizations

1259:   Output Parameter:
1260: . locX - Solution updated with boundary values

1262:   Level: intermediate

1264: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`, `DMAddBoundary()`
1265: @*/
1266: PetscErrorCode DMPlexInsertBoundaryValues(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1267: {
1268:   PetscFunctionBegin;
1274:   PetscTryMethod(dm, "DMPlexInsertBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX, time, faceGeomFVM, cellGeomFVM, gradFVM));
1275:   PetscFunctionReturn(PETSC_SUCCESS);
1276: }

1278: /*@
1279:   DMPlexInsertTimeDerivativeBoundaryValues - Puts coefficients which represent boundary values of the time derivative into the local solution vector

1281:   Input Parameters:
1282: + dm              - The `DM`
1283: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
1284: . time            - The time
1285: . faceGeomFVM     - Face geometry data for FV discretizations
1286: . cellGeomFVM     - Cell geometry data for FV discretizations
1287: - gradFVM         - Gradient reconstruction data for FV discretizations

1289:   Output Parameter:
1290: . locX_t - Solution updated with boundary values

1292:   Level: developer

1294: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunctionLabelLocal()`
1295: @*/
1296: PetscErrorCode DMPlexInsertTimeDerivativeBoundaryValues(DM dm, PetscBool insertEssential, Vec locX_t, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1297: {
1298:   PetscFunctionBegin;
1304:   PetscTryMethod(dm, "DMPlexInsertTimeDerivativeBoundaryValues_C", (DM, PetscBool, Vec, PetscReal, Vec, Vec, Vec), (dm, insertEssential, locX_t, time, faceGeomFVM, cellGeomFVM, gradFVM));
1305:   PetscFunctionReturn(PETSC_SUCCESS);
1306: }

1308: // Handle non-essential (e.g. outflow) boundary values
1309: PetscErrorCode DMPlexInsertBoundaryValuesFVM(DM dm, PetscFV fv, Vec locX, PetscReal time, Vec *locGradient)
1310: {
1311:   DM  dmGrad;
1312:   Vec cellGeometryFVM, faceGeometryFVM, locGrad = NULL;

1314:   PetscFunctionBegin;
1318:   if (locGradient) {
1319:     PetscAssertPointer(locGradient, 5);
1320:     *locGradient = NULL;
1321:   }
1322:   PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
1323:   /* Reconstruct and limit cell gradients */
1324:   PetscCall(DMPlexGetGradientDM(dm, fv, &dmGrad));
1325:   if (dmGrad) {
1326:     Vec      grad;
1327:     PetscInt fStart, fEnd;

1329:     PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
1330:     PetscCall(DMGetGlobalVector(dmGrad, &grad));
1331:     PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
1332:     /* Communicate gradient values */
1333:     PetscCall(DMGetLocalVector(dmGrad, &locGrad));
1334:     PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
1335:     PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
1336:     PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
1337:   }
1338:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, time, faceGeometryFVM, cellGeometryFVM, locGrad));
1339:   if (locGradient) *locGradient = locGrad;
1340:   else if (locGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
1341:   PetscFunctionReturn(PETSC_SUCCESS);
1342: }

1344: PetscErrorCode DMComputeL2Diff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1345: {
1346:   Vec localX;

1348:   PetscFunctionBegin;
1349:   PetscCall(DMGetLocalVector(dm, &localX));
1350:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, localX, time, NULL, NULL, NULL));
1351:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1352:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1353:   PetscCall(DMPlexComputeL2DiffLocal(dm, time, funcs, ctxs, localX, diff));
1354:   PetscCall(DMRestoreLocalVector(dm, &localX));
1355:   PetscFunctionReturn(PETSC_SUCCESS);
1356: }

1358: /*@C
1359:   DMPlexComputeL2DiffLocal - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h.

1361:   Collective

1363:   Input Parameters:
1364: + dm     - The `DM`
1365: . time   - The time
1366: . funcs  - The functions to evaluate for each field component
1367: . ctxs   - Optional array of contexts to pass to each function, or `NULL`.
1368: - localX - The coefficient vector u_h, a local vector

1370:   Output Parameter:
1371: . diff - The diff ||u - u_h||_2

1373:   Level: developer

1375: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1376: @*/
1377: PetscErrorCode DMPlexComputeL2DiffLocal(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec localX, PetscReal *diff)
1378: {
1379:   const PetscInt   debug = ((DM_Plex *)dm->data)->printL2;
1380:   DM               tdm;
1381:   Vec              tv;
1382:   PetscSection     section;
1383:   PetscQuadrature  quad;
1384:   PetscFEGeom      fegeom;
1385:   PetscScalar     *funcVal, *interpolant;
1386:   PetscReal       *coords, *gcoords;
1387:   PetscReal        localDiff = 0.0;
1388:   const PetscReal *quadWeights;
1389:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cellHeight, cStart, cEnd, c, field, fieldOffset;
1390:   PetscBool        transform;

1392:   PetscFunctionBegin;
1393:   PetscCall(DMGetDimension(dm, &dim));
1394:   PetscCall(DMGetCoordinateDim(dm, &coordDim));
1395:   fegeom.dimEmbed = coordDim;
1396:   PetscCall(DMGetLocalSection(dm, &section));
1397:   PetscCall(PetscSectionGetNumFields(section, &numFields));
1398:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1399:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1400:   PetscCall(DMHasBasisTransform(dm, &transform));
1401:   PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
1402:   for (field = 0; field < numFields; ++field) {
1403:     PetscObject  obj;
1404:     PetscClassId id;
1405:     PetscInt     Nc;

1407:     PetscCall(DMGetField(dm, field, NULL, &obj));
1408:     PetscCall(PetscObjectGetClassId(obj, &id));
1409:     if (id == PETSCFE_CLASSID) {
1410:       PetscFE fe = (PetscFE)obj;

1412:       PetscCall(PetscFEGetQuadrature(fe, &quad));
1413:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
1414:     } else if (id == PETSCFV_CLASSID) {
1415:       PetscFV fv = (PetscFV)obj;

1417:       PetscCall(PetscFVGetQuadrature(fv, &quad));
1418:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
1419:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1420:     numComponents += Nc;
1421:   }
1422:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1423:   PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1424:   PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * (Nq + 1), &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1425:   PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
1426:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
1427:   for (c = cStart; c < cEnd; ++c) {
1428:     PetscScalar *x        = NULL;
1429:     PetscReal    elemDiff = 0.0;
1430:     PetscInt     qc       = 0;

1432:     PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1433:     PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));

1435:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1436:       PetscObject  obj;
1437:       PetscClassId id;
1438:       void *const  ctx = ctxs ? ctxs[field] : NULL;
1439:       PetscInt     Nb, Nc, q, fc;

1441:       PetscCall(DMGetField(dm, field, NULL, &obj));
1442:       PetscCall(PetscObjectGetClassId(obj, &id));
1443:       if (id == PETSCFE_CLASSID) {
1444:         PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1445:         PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1446:       } else if (id == PETSCFV_CLASSID) {
1447:         PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1448:         Nb = 1;
1449:       } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1450:       if (debug) {
1451:         char title[1024];
1452:         PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1453:         PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1454:       }
1455:       for (q = 0; q < Nq; ++q) {
1456:         PetscFEGeom    qgeom;
1457:         PetscErrorCode ierr;

1459:         qgeom.dimEmbed = fegeom.dimEmbed;
1460:         qgeom.J        = &fegeom.J[q * coordDim * coordDim];
1461:         qgeom.invJ     = &fegeom.invJ[q * coordDim * coordDim];
1462:         qgeom.detJ     = &fegeom.detJ[q];
1463:         PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", point %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1464:         if (transform) {
1465:           gcoords = &coords[coordDim * Nq];
1466:           PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1467:         } else {
1468:           gcoords = &coords[coordDim * q];
1469:         }
1470:         PetscCall(PetscArrayzero(funcVal, Nc));
1471:         ierr = (*funcs[field])(coordDim, time, gcoords, Nc, funcVal, ctx);
1472:         if (ierr) {
1473:           PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1474:           PetscCall(DMRestoreLocalVector(dm, &localX));
1475:           PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1476:         }
1477:         if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1478:         if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1479:         else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1480:         else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1481:         for (fc = 0; fc < Nc; ++fc) {
1482:           const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1483:           if (debug)
1484:             PetscCall(PetscPrintf(PETSC_COMM_SELF, "    elem %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g (%g, %g)\n", c, field, fc, (double)(coordDim > 0 ? coords[coordDim * q] : 0.), (double)(coordDim > 1 ? coords[coordDim * q + 1] : 0.), (double)(coordDim > 2 ? coords[coordDim * q + 2] : 0.),
1485:                                   (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q]), (double)PetscRealPart(interpolant[fc]), (double)PetscRealPart(funcVal[fc])));
1486:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1487:         }
1488:       }
1489:       fieldOffset += Nb;
1490:       qc += Nc;
1491:     }
1492:     PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1493:     if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1494:     localDiff += elemDiff;
1495:   }
1496:   PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1497:   PetscCallMPI(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1498:   *diff = PetscSqrtReal(*diff);
1499:   PetscFunctionReturn(PETSC_SUCCESS);
1500: }

1502: PetscErrorCode DMComputeL2GradientDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, const PetscReal n[], PetscReal *diff)
1503: {
1504:   const PetscInt   debug = ((DM_Plex *)dm->data)->printL2;
1505:   DM               tdm;
1506:   PetscSection     section;
1507:   PetscQuadrature  quad;
1508:   Vec              localX, tv;
1509:   PetscScalar     *funcVal, *interpolant;
1510:   const PetscReal *quadWeights;
1511:   PetscFEGeom      fegeom;
1512:   PetscReal       *coords, *gcoords;
1513:   PetscReal        localDiff = 0.0;
1514:   PetscInt         dim, coordDim, qNc = 0, Nq = 0, numFields, numComponents = 0, cStart, cEnd, c, field, fieldOffset;
1515:   PetscBool        transform;

1517:   PetscFunctionBegin;
1518:   PetscCall(DMGetDimension(dm, &dim));
1519:   PetscCall(DMGetCoordinateDim(dm, &coordDim));
1520:   fegeom.dimEmbed = coordDim;
1521:   PetscCall(DMGetLocalSection(dm, &section));
1522:   PetscCall(PetscSectionGetNumFields(section, &numFields));
1523:   PetscCall(DMGetLocalVector(dm, &localX));
1524:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1525:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1526:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1527:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1528:   PetscCall(DMHasBasisTransform(dm, &transform));
1529:   for (field = 0; field < numFields; ++field) {
1530:     PetscFE  fe;
1531:     PetscInt Nc;

1533:     PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1534:     PetscCall(PetscFEGetQuadrature(fe, &quad));
1535:     PetscCall(PetscFEGetNumComponents(fe, &Nc));
1536:     numComponents += Nc;
1537:   }
1538:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1539:   PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1540:   /* PetscCall(DMProjectFunctionLocal(dm, fe, funcs, INSERT_BC_VALUES, localX)); */
1541:   PetscCall(PetscMalloc6(numComponents, &funcVal, coordDim * (Nq + 1), &coords, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ, numComponents * coordDim, &interpolant, Nq, &fegeom.detJ));
1542:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1543:   for (c = cStart; c < cEnd; ++c) {
1544:     PetscScalar *x        = NULL;
1545:     PetscReal    elemDiff = 0.0;
1546:     PetscInt     qc       = 0;

1548:     PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1549:     PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));

1551:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1552:       PetscFE     fe;
1553:       void *const ctx = ctxs ? ctxs[field] : NULL;
1554:       PetscInt    Nb, Nc, q, fc;

1556:       PetscCall(DMGetField(dm, field, NULL, (PetscObject *)&fe));
1557:       PetscCall(PetscFEGetDimension(fe, &Nb));
1558:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
1559:       if (debug) {
1560:         char title[1024];
1561:         PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, field));
1562:         PetscCall(DMPrintCellVector(c, title, Nb, &x[fieldOffset]));
1563:       }
1564:       for (q = 0; q < Nq; ++q) {
1565:         PetscFEGeom    qgeom;
1566:         PetscErrorCode ierr;

1568:         qgeom.dimEmbed = fegeom.dimEmbed;
1569:         qgeom.J        = &fegeom.J[q * coordDim * coordDim];
1570:         qgeom.invJ     = &fegeom.invJ[q * coordDim * coordDim];
1571:         qgeom.detJ     = &fegeom.detJ[q];
1572:         PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1573:         if (transform) {
1574:           gcoords = &coords[coordDim * Nq];
1575:           PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim * q], PETSC_TRUE, coordDim, &coords[coordDim * q], gcoords, dm->transformCtx));
1576:         } else {
1577:           gcoords = &coords[coordDim * q];
1578:         }
1579:         PetscCall(PetscArrayzero(funcVal, Nc));
1580:         ierr = (*funcs[field])(coordDim, time, gcoords, n, Nc, funcVal, ctx);
1581:         if (ierr) {
1582:           PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1583:           PetscCall(DMRestoreLocalVector(dm, &localX));
1584:           PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1585:         }
1586:         if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[coordDim * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1587:         PetscCall(PetscFEInterpolateGradient_Static(fe, 1, &x[fieldOffset], &qgeom, q, interpolant));
1588:         /* Overwrite with the dot product if the normal is given */
1589:         if (n) {
1590:           for (fc = 0; fc < Nc; ++fc) {
1591:             PetscScalar sum = 0.0;
1592:             PetscInt    d;
1593:             for (d = 0; d < dim; ++d) sum += interpolant[fc * dim + d] * n[d];
1594:             interpolant[fc] = sum;
1595:           }
1596:         }
1597:         for (fc = 0; fc < Nc; ++fc) {
1598:           const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1599:           if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "    elem %" PetscInt_FMT " fieldDer %" PetscInt_FMT ",%" PetscInt_FMT " diff %g\n", c, field, fc, (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1600:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1601:         }
1602:       }
1603:       fieldOffset += Nb;
1604:       qc += Nc;
1605:     }
1606:     PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1607:     if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  elem %" PetscInt_FMT " diff %g\n", c, (double)elemDiff));
1608:     localDiff += elemDiff;
1609:   }
1610:   PetscCall(PetscFree6(funcVal, coords, fegeom.J, fegeom.invJ, interpolant, fegeom.detJ));
1611:   PetscCall(DMRestoreLocalVector(dm, &localX));
1612:   PetscCallMPI(MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1613:   *diff = PetscSqrtReal(*diff);
1614:   PetscFunctionReturn(PETSC_SUCCESS);
1615: }

1617: PetscErrorCode DMComputeL2FieldDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1618: {
1619:   const PetscInt debug = ((DM_Plex *)dm->data)->printL2;
1620:   DM             tdm;
1621:   DMLabel        depthLabel;
1622:   PetscSection   section;
1623:   Vec            localX, tv;
1624:   PetscReal     *localDiff;
1625:   PetscInt       dim, depth, dE, Nf, f, Nds, s;
1626:   PetscBool      transform;

1628:   PetscFunctionBegin;
1629:   PetscCall(DMGetDimension(dm, &dim));
1630:   PetscCall(DMGetCoordinateDim(dm, &dE));
1631:   PetscCall(DMGetLocalSection(dm, &section));
1632:   PetscCall(DMGetLocalVector(dm, &localX));
1633:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
1634:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
1635:   PetscCall(DMHasBasisTransform(dm, &transform));
1636:   PetscCall(DMGetNumFields(dm, &Nf));
1637:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
1638:   PetscCall(DMLabelGetNumValues(depthLabel, &depth));

1640:   PetscCall(VecSet(localX, 0.0));
1641:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1642:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1643:   PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1644:   PetscCall(DMGetNumDS(dm, &Nds));
1645:   PetscCall(PetscCalloc1(Nf, &localDiff));
1646:   for (s = 0; s < Nds; ++s) {
1647:     PetscDS          ds;
1648:     DMLabel          label;
1649:     IS               fieldIS, pointIS;
1650:     const PetscInt  *fields, *points = NULL;
1651:     PetscQuadrature  quad;
1652:     const PetscReal *quadPoints, *quadWeights;
1653:     PetscFEGeom      fegeom;
1654:     PetscReal       *coords, *gcoords;
1655:     PetscScalar     *funcVal, *interpolant;
1656:     PetscBool        isCohesive;
1657:     PetscInt         qNc, Nq, totNc, cStart = 0, cEnd, c, dsNf;

1659:     PetscCall(DMGetRegionNumDS(dm, s, &label, &fieldIS, &ds, NULL));
1660:     PetscCall(ISGetIndices(fieldIS, &fields));
1661:     PetscCall(PetscDSIsCohesive(ds, &isCohesive));
1662:     PetscCall(PetscDSGetNumFields(ds, &dsNf));
1663:     PetscCall(PetscDSGetTotalComponents(ds, &totNc));
1664:     PetscCall(PetscDSGetQuadrature(ds, &quad));
1665:     PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1666:     PetscCheck(!(qNc != 1) || !(qNc != totNc), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, totNc);
1667:     PetscCall(PetscCalloc6(totNc, &funcVal, totNc, &interpolant, dE * (Nq + 1), &coords, Nq, &fegeom.detJ, dE * dE * Nq, &fegeom.J, dE * dE * Nq, &fegeom.invJ));
1668:     if (!label) {
1669:       PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1670:     } else {
1671:       PetscCall(DMLabelGetStratumIS(label, 1, &pointIS));
1672:       PetscCall(ISGetLocalSize(pointIS, &cEnd));
1673:       PetscCall(ISGetIndices(pointIS, &points));
1674:     }
1675:     for (c = cStart; c < cEnd; ++c) {
1676:       const PetscInt  cell = points ? points[c] : c;
1677:       PetscScalar    *x    = NULL;
1678:       const PetscInt *cone;
1679:       PetscInt        qc = 0, fOff = 0, dep;

1681:       PetscCall(DMLabelGetValue(depthLabel, cell, &dep));
1682:       if (dep != depth - 1) continue;
1683:       if (isCohesive) {
1684:         PetscCall(DMPlexGetCone(dm, cell, &cone));
1685:         PetscCall(DMPlexComputeCellGeometryFEM(dm, cone[0], quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1686:       } else {
1687:         PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1688:       }
1689:       PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, cell, 0, NULL, &x));
1690:       for (f = 0; f < dsNf; ++f) {
1691:         PetscObject  obj;
1692:         PetscClassId id;
1693:         void *const  ctx = ctxs ? ctxs[fields[f]] : NULL;
1694:         PetscInt     Nb, Nc, q, fc;
1695:         PetscReal    elemDiff = 0.0;
1696:         PetscBool    cohesive;

1698:         PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
1699:         PetscCall(PetscDSGetDiscretization(ds, f, &obj));
1700:         PetscCall(PetscObjectGetClassId(obj, &id));
1701:         if (id == PETSCFE_CLASSID) {
1702:           PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1703:           PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1704:         } else if (id == PETSCFV_CLASSID) {
1705:           PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1706:           Nb = 1;
1707:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1708:         if (isCohesive && !cohesive) {
1709:           fOff += Nb * 2;
1710:           qc += Nc;
1711:           continue;
1712:         }
1713:         if (debug) {
1714:           char title[1024];
1715:           PetscCall(PetscSNPrintf(title, 1023, "Solution for Field %" PetscInt_FMT, fields[f]));
1716:           PetscCall(DMPrintCellVector(cell, title, Nb, &x[fOff]));
1717:         }
1718:         for (q = 0; q < Nq; ++q) {
1719:           PetscFEGeom    qgeom;
1720:           PetscErrorCode ierr;

1722:           qgeom.dimEmbed = fegeom.dimEmbed;
1723:           qgeom.J        = &fegeom.J[q * dE * dE];
1724:           qgeom.invJ     = &fegeom.invJ[q * dE * dE];
1725:           qgeom.detJ     = &fegeom.detJ[q];
1726:           PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for cell %" PetscInt_FMT ", quadrature point %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
1727:           if (transform) {
1728:             gcoords = &coords[dE * Nq];
1729:             PetscCall(DMPlexBasisTransformApplyReal_Internal(dm, &coords[dE * q], PETSC_TRUE, dE, &coords[dE * q], gcoords, dm->transformCtx));
1730:           } else {
1731:             gcoords = &coords[dE * q];
1732:           }
1733:           for (fc = 0; fc < Nc; ++fc) funcVal[fc] = 0.;
1734:           ierr = (*funcs[fields[f]])(dE, time, gcoords, Nc, funcVal, ctx);
1735:           if (ierr) {
1736:             PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1737:             PetscCall(DMRestoreLocalVector(dm, &localX));
1738:             PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1739:           }
1740:           if (transform) PetscCall(DMPlexBasisTransformApply_Internal(dm, &coords[dE * q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx));
1741:           /* Call once for each face, except for lagrange field */
1742:           if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fOff], &qgeom, q, interpolant));
1743:           else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fOff], q, interpolant));
1744:           else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, fields[f]);
1745:           for (fc = 0; fc < Nc; ++fc) {
1746:             const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1747:             if (debug)
1748:               PetscCall(PetscPrintf(PETSC_COMM_SELF, "    cell %" PetscInt_FMT " field %" PetscInt_FMT ",%" PetscInt_FMT " point %g %g %g diff %g\n", cell, fields[f], fc, (double)(dE > 0 ? coords[dE * q] : 0.), (double)(dE > 1 ? coords[dE * q + 1] : 0.), (double)(dE > 2 ? coords[dE * q + 2] : 0.),
1749:                                     (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q])));
1750:             elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1751:           }
1752:         }
1753:         fOff += Nb;
1754:         qc += Nc;
1755:         localDiff[fields[f]] += elemDiff;
1756:         if (debug) PetscCall(PetscPrintf(PETSC_COMM_SELF, "  cell %" PetscInt_FMT " field %" PetscInt_FMT " cum diff %g\n", cell, fields[f], (double)localDiff[fields[f]]));
1757:       }
1758:       PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, cell, NULL, &x));
1759:     }
1760:     if (label) {
1761:       PetscCall(ISRestoreIndices(pointIS, &points));
1762:       PetscCall(ISDestroy(&pointIS));
1763:     }
1764:     PetscCall(ISRestoreIndices(fieldIS, &fields));
1765:     PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1766:   }
1767:   PetscCall(DMRestoreLocalVector(dm, &localX));
1768:   PetscCallMPI(MPIU_Allreduce(localDiff, diff, (PetscMPIInt)Nf, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
1769:   PetscCall(PetscFree(localDiff));
1770:   for (f = 0; f < Nf; ++f) diff[f] = PetscSqrtReal(diff[f]);
1771:   PetscFunctionReturn(PETSC_SUCCESS);
1772: }

1774: /*@C
1775:   DMPlexComputeL2DiffVec - This function computes the cellwise L_2 difference between a function u and an FEM interpolant solution u_h, and stores it in a Vec.

1777:   Collective

1779:   Input Parameters:
1780: + dm    - The `DM`
1781: . time  - The time
1782: . funcs - The functions to evaluate for each field component: `NULL` means that component does not contribute to error calculation
1783: . ctxs  - Optional array of contexts to pass to each function, or `NULL`.
1784: - X     - The coefficient vector u_h

1786:   Output Parameter:
1787: . D - A `Vec` which holds the difference ||u - u_h||_2 for each cell

1789:   Level: developer

1791: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1792: @*/
1793: PetscErrorCode DMPlexComputeL2DiffVec(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, Vec D)
1794: {
1795:   PetscSection     section;
1796:   PetscQuadrature  quad;
1797:   Vec              localX;
1798:   PetscFEGeom      fegeom;
1799:   PetscScalar     *funcVal, *interpolant;
1800:   PetscReal       *coords;
1801:   const PetscReal *quadPoints, *quadWeights;
1802:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, c, field, fieldOffset;

1804:   PetscFunctionBegin;
1805:   PetscCall(VecSet(D, 0.0));
1806:   PetscCall(DMGetDimension(dm, &dim));
1807:   PetscCall(DMGetCoordinateDim(dm, &coordDim));
1808:   PetscCall(DMGetLocalSection(dm, &section));
1809:   PetscCall(PetscSectionGetNumFields(section, &numFields));
1810:   PetscCall(DMGetLocalVector(dm, &localX));
1811:   PetscCall(DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX));
1812:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX));
1813:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX));
1814:   for (field = 0; field < numFields; ++field) {
1815:     PetscObject  obj;
1816:     PetscClassId id;
1817:     PetscInt     Nc;

1819:     PetscCall(DMGetField(dm, field, NULL, &obj));
1820:     PetscCall(PetscObjectGetClassId(obj, &id));
1821:     if (id == PETSCFE_CLASSID) {
1822:       PetscFE fe = (PetscFE)obj;

1824:       PetscCall(PetscFEGetQuadrature(fe, &quad));
1825:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
1826:     } else if (id == PETSCFV_CLASSID) {
1827:       PetscFV fv = (PetscFV)obj;

1829:       PetscCall(PetscFVGetQuadrature(fv, &quad));
1830:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
1831:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1832:     numComponents += Nc;
1833:   }
1834:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
1835:   PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
1836:   PetscCall(PetscMalloc6(numComponents, &funcVal, numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
1837:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1838:   for (c = cStart; c < cEnd; ++c) {
1839:     PetscScalar *x        = NULL;
1840:     PetscScalar  elemDiff = 0.0;
1841:     PetscInt     qc       = 0;

1843:     PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1844:     PetscCall(DMPlexVecGetOrientedClosure_Internal(dm, NULL, PETSC_FALSE, localX, c, 0, NULL, &x));

1846:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1847:       PetscObject  obj;
1848:       PetscClassId id;
1849:       void *const  ctx = ctxs ? ctxs[field] : NULL;
1850:       PetscInt     Nb, Nc, q, fc;

1852:       PetscCall(DMGetField(dm, field, NULL, &obj));
1853:       PetscCall(PetscObjectGetClassId(obj, &id));
1854:       if (id == PETSCFE_CLASSID) {
1855:         PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
1856:         PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
1857:       } else if (id == PETSCFV_CLASSID) {
1858:         PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
1859:         Nb = 1;
1860:       } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1861:       if (funcs[field]) {
1862:         for (q = 0; q < Nq; ++q) {
1863:           PetscFEGeom qgeom;

1865:           qgeom.dimEmbed = fegeom.dimEmbed;
1866:           qgeom.J        = &fegeom.J[q * coordDim * coordDim];
1867:           qgeom.invJ     = &fegeom.invJ[q * coordDim * coordDim];
1868:           qgeom.detJ     = &fegeom.detJ[q];
1869:           PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);
1870:           PetscCall((*funcs[field])(coordDim, time, &coords[q * coordDim], Nc, funcVal, ctx));
1871: #if defined(needs_fix_with_return_code_argument)
1872:           if (ierr) {
1873:             PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1874:             PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1875:             PetscCall(DMRestoreLocalVector(dm, &localX));
1876:           }
1877: #endif
1878:           if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[fieldOffset], &qgeom, q, interpolant));
1879:           else if (id == PETSCFV_CLASSID) PetscCall(PetscFVInterpolate_Static((PetscFV)obj, &x[fieldOffset], q, interpolant));
1880:           else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
1881:           for (fc = 0; fc < Nc; ++fc) {
1882:             const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : qc + fc)];
1883:             elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc])) * wt * fegeom.detJ[q];
1884:           }
1885:         }
1886:       }
1887:       fieldOffset += Nb;
1888:       qc += Nc;
1889:     }
1890:     PetscCall(DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x));
1891:     PetscCall(VecSetValue(D, c - cStart, elemDiff, INSERT_VALUES));
1892:   }
1893:   PetscCall(PetscFree6(funcVal, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1894:   PetscCall(DMRestoreLocalVector(dm, &localX));
1895:   PetscCall(VecSqrtAbs(D));
1896:   PetscFunctionReturn(PETSC_SUCCESS);
1897: }

1899: /*@
1900:   DMPlexComputeL2FluxDiffVecLocal - This function computes the integral of the difference between the gradient of field `f`in `u` and field `mf` in `mu`

1902:   Collective

1904:   Input Parameters:
1905: + lu  - The local `Vec` containing the primal solution
1906: . f   - The field number for the potential
1907: . lmu - The local `Vec` containing the mixed solution
1908: - mf  - The field number for the flux

1910:   Output Parameter:
1911: . eFlux - A global `Vec` which holds $||\nabla u_f - \mu_{mf}||$

1913:   Level: advanced

1915:   Notes:
1916:   We assume that the `DM` for each solution has the same topology, geometry, and quadrature.

1918:   This is usually used to get an error estimate for the primal solution, using the flux from a mixed solution.

1920: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeL2FluxDiffVec()`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
1921: @*/
1922: PetscErrorCode DMPlexComputeL2FluxDiffVecLocal(Vec lu, PetscInt f, Vec lmu, PetscInt mf, Vec eFlux)
1923: {
1924:   DM               dm, mdm, edm;
1925:   PetscFE          fe, mfe;
1926:   PetscFEGeom      fegeom;
1927:   PetscQuadrature  quad;
1928:   const PetscReal *quadWeights;
1929:   PetscReal       *coords;
1930:   PetscScalar     *interpolant, *minterpolant, *earray;
1931:   PetscInt         cdim, mcdim, cStart, cEnd, Nc, mNc, qNc, Nq;
1932:   MPI_Comm         comm;

1934:   PetscFunctionBegin;
1935:   PetscCall(VecGetDM(lu, &dm));
1936:   PetscCall(VecGetDM(lmu, &mdm));
1937:   PetscCall(VecGetDM(eFlux, &edm));
1938:   PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
1939:   PetscCall(VecSet(eFlux, 0.0));

1941:   // Check if the both problems are on the same mesh
1942:   PetscCall(DMGetCoordinateDim(dm, &cdim));
1943:   PetscCall(DMGetCoordinateDim(mdm, &mcdim));
1944:   PetscCheck(cdim == mcdim, comm, PETSC_ERR_ARG_SIZ, "primal coordinate Dim %" PetscInt_FMT " != %" PetscInt_FMT " mixed coordinate Dim", cdim, mcdim);
1945:   fegeom.dimEmbed = cdim;

1947:   PetscCall(DMGetField(dm, f, NULL, (PetscObject *)&fe));
1948:   PetscCall(DMGetField(mdm, mf, NULL, (PetscObject *)&mfe));
1949:   PetscCall(PetscFEGetNumComponents(fe, &Nc));
1950:   PetscCall(PetscFEGetNumComponents(mfe, &mNc));
1951:   PetscCall(PetscFEGetQuadrature(fe, &quad));
1952:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights));
1953:   PetscCheck(qNc == 1 || qNc == mNc, comm, PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, mNc);

1955:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
1956:   PetscCall(VecGetArrayWrite(eFlux, &earray));
1957:   PetscCall(PetscMalloc6(Nc * cdim, &interpolant, mNc * cdim, &minterpolant, cdim * (Nq + 1), &coords, cdim * cdim * Nq, &fegeom.J, cdim * cdim * Nq, &fegeom.invJ, Nq, &fegeom.detJ));
1958:   for (PetscInt c = cStart; c < cEnd; ++c) {
1959:     PetscScalar *x            = NULL;
1960:     PetscScalar *mx           = NULL;
1961:     PetscScalar *eval         = NULL;
1962:     PetscReal    fluxElemDiff = 0.0;

1964:     PetscCall(DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
1965:     PetscCall(DMPlexVecGetClosure(dm, NULL, lu, c, NULL, &x));
1966:     PetscCall(DMPlexVecGetClosure(mdm, NULL, lmu, c, NULL, &mx));

1968:     for (PetscInt q = 0; q < Nq; ++q) {
1969:       PetscFEGeom qgeom;

1971:       qgeom.dimEmbed = fegeom.dimEmbed;
1972:       qgeom.J        = &fegeom.J[q * cdim * cdim];
1973:       qgeom.invJ     = &fegeom.invJ[q * cdim * cdim];
1974:       qgeom.detJ     = &fegeom.detJ[q];

1976:       PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], c, q);

1978:       PetscCall(PetscFEInterpolate_Static(mfe, &mx[0], &qgeom, q, minterpolant));
1979:       PetscCall(PetscFEInterpolateGradient_Static(fe, 1, &x[0], &qgeom, q, interpolant));

1981:       /* Now take the elementwise difference and store that in a vector. */
1982:       for (PetscInt fc = 0; fc < mNc; ++fc) {
1983:         const PetscReal wt = quadWeights[q * qNc + (qNc == 1 ? 0 : fc)];
1984:         fluxElemDiff += PetscSqr(PetscRealPart(interpolant[fc] - minterpolant[fc])) * wt * fegeom.detJ[q];
1985:       }
1986:     }
1987:     PetscCall(DMPlexVecRestoreClosure(dm, NULL, lu, c, NULL, &x));
1988:     PetscCall(DMPlexVecRestoreClosure(mdm, NULL, lmu, c, NULL, &mx));
1989:     PetscCall(DMPlexPointGlobalRef(edm, c, earray, (void *)&eval));
1990:     if (eval) eval[0] = fluxElemDiff;
1991:   }
1992:   PetscCall(PetscFree6(interpolant, minterpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
1993:   PetscCall(VecRestoreArrayWrite(eFlux, &earray));

1995:   PetscCall(VecAssemblyBegin(eFlux));
1996:   PetscCall(VecAssemblyEnd(eFlux));
1997:   PetscCall(VecSqrtAbs(eFlux));
1998:   PetscFunctionReturn(PETSC_SUCCESS);
1999: }

2001: /*@
2002:   DMPlexComputeL2FluxDiffVec - This function computes the integral of the difference between the gradient of field `f`in `u` and field `mf` in `mu`

2004:   Collective

2006:   Input Parameters:
2007: + u  - The global `Vec` containing the primal solution
2008: . f  - The field number for the potential
2009: . mu - The global `Vec` containing the mixed solution
2010: - mf - The field number for the flux

2012:   Output Parameter:
2013: . eFlux - A global `Vec` which holds $||\nabla u_f - \mu_{mf}||$

2015:   Level: advanced

2017:   Notes:
2018:   We assume that the `DM` for each solution has the same topology, geometry, and quadrature.

2020:   This is usually used to get an error estimate for the primal solution, using the flux from a mixed solution.

2022: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeL2FluxDiffVecLocal()`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2023: @*/
2024: PetscErrorCode DMPlexComputeL2FluxDiffVec(Vec u, PetscInt f, Vec mu, PetscInt mf, Vec eFlux)
2025: {
2026:   DM  dm, mdm;
2027:   Vec lu, lmu;

2029:   PetscFunctionBegin;
2030:   PetscCall(VecGetDM(u, &dm));
2031:   PetscCall(DMGetLocalVector(dm, &lu));
2032:   PetscCall(DMGlobalToLocal(dm, u, INSERT_VALUES, lu));
2033:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, lu, 0.0, NULL, NULL, NULL));

2035:   PetscCall(VecGetDM(mu, &mdm));
2036:   PetscCall(DMGetLocalVector(mdm, &lmu));
2037:   PetscCall(DMGlobalToLocal(mdm, mu, INSERT_VALUES, lmu));
2038:   PetscCall(DMPlexInsertBoundaryValues(mdm, PETSC_TRUE, lmu, 0.0, NULL, NULL, NULL));

2040:   PetscCall(DMPlexComputeL2FluxDiffVecLocal(lu, f, lmu, mf, eFlux));

2042:   PetscCall(DMRestoreLocalVector(dm, &lu));
2043:   PetscCall(DMRestoreLocalVector(mdm, &lmu));
2044:   PetscFunctionReturn(PETSC_SUCCESS);
2045: }

2047: /*@
2048:   DMPlexComputeClementInterpolant - This function computes the L2 projection of the cellwise values of a function u onto P1

2050:   Collective

2052:   Input Parameters:
2053: + dm   - The `DM`
2054: - locX - The coefficient vector u_h

2056:   Output Parameter:
2057: . locC - A `Vec` which holds the Clement interpolant of the function

2059:   Level: developer

2061:   Note:
2062:   $ u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume

2064: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2065: @*/
2066: PetscErrorCode DMPlexComputeClementInterpolant(DM dm, Vec locX, Vec locC)
2067: {
2068:   PetscInt         debug = ((DM_Plex *)dm->data)->printFEM;
2069:   DM               dmc;
2070:   PetscQuadrature  quad;
2071:   PetscScalar     *interpolant, *valsum;
2072:   PetscFEGeom      fegeom;
2073:   PetscReal       *coords;
2074:   const PetscReal *quadPoints, *quadWeights;
2075:   PetscInt         dim, cdim, Nf, f, Nc = 0, Nq, qNc, cStart, cEnd, vStart, vEnd, v;

2077:   PetscFunctionBegin;
2078:   PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
2079:   PetscCall(VecGetDM(locC, &dmc));
2080:   PetscCall(VecSet(locC, 0.0));
2081:   PetscCall(DMGetDimension(dm, &dim));
2082:   PetscCall(DMGetCoordinateDim(dm, &cdim));
2083:   fegeom.dimEmbed = cdim;
2084:   PetscCall(DMGetNumFields(dm, &Nf));
2085:   PetscCheck(Nf > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
2086:   for (f = 0; f < Nf; ++f) {
2087:     PetscObject  obj;
2088:     PetscClassId id;
2089:     PetscInt     fNc;

2091:     PetscCall(DMGetField(dm, f, NULL, &obj));
2092:     PetscCall(PetscObjectGetClassId(obj, &id));
2093:     if (id == PETSCFE_CLASSID) {
2094:       PetscFE fe = (PetscFE)obj;

2096:       PetscCall(PetscFEGetQuadrature(fe, &quad));
2097:       PetscCall(PetscFEGetNumComponents(fe, &fNc));
2098:     } else if (id == PETSCFV_CLASSID) {
2099:       PetscFV fv = (PetscFV)obj;

2101:       PetscCall(PetscFVGetQuadrature(fv, &quad));
2102:       PetscCall(PetscFVGetNumComponents(fv, &fNc));
2103:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2104:     Nc += fNc;
2105:   }
2106:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
2107:   PetscCheck(qNc == 1, PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " > 1", qNc);
2108:   PetscCall(PetscMalloc6(Nc * 2, &valsum, Nc, &interpolant, cdim * Nq, &coords, Nq, &fegeom.detJ, cdim * cdim * Nq, &fegeom.J, cdim * cdim * Nq, &fegeom.invJ));
2109:   PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
2110:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2111:   for (v = vStart; v < vEnd; ++v) {
2112:     PetscScalar volsum = 0.0;
2113:     PetscInt   *star   = NULL;
2114:     PetscInt    starSize, st, fc;

2116:     PetscCall(PetscArrayzero(valsum, Nc));
2117:     PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2118:     for (st = 0; st < starSize * 2; st += 2) {
2119:       const PetscInt cell = star[st];
2120:       PetscScalar   *val  = &valsum[Nc];
2121:       PetscScalar   *x    = NULL;
2122:       PetscReal      vol  = 0.0;
2123:       PetscInt       foff = 0;

2125:       if ((cell < cStart) || (cell >= cEnd)) continue;
2126:       PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2127:       PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
2128:       for (f = 0; f < Nf; ++f) {
2129:         PetscObject  obj;
2130:         PetscClassId id;
2131:         PetscInt     Nb, fNc, q;

2133:         PetscCall(PetscArrayzero(val, Nc));
2134:         PetscCall(DMGetField(dm, f, NULL, &obj));
2135:         PetscCall(PetscObjectGetClassId(obj, &id));
2136:         if (id == PETSCFE_CLASSID) {
2137:           PetscCall(PetscFEGetNumComponents((PetscFE)obj, &fNc));
2138:           PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
2139:         } else if (id == PETSCFV_CLASSID) {
2140:           PetscCall(PetscFVGetNumComponents((PetscFV)obj, &fNc));
2141:           Nb = 1;
2142:         } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2143:         for (q = 0; q < Nq; ++q) {
2144:           const PetscReal wt = quadWeights[q] * fegeom.detJ[q];
2145:           PetscFEGeom     qgeom;

2147:           qgeom.dimEmbed = fegeom.dimEmbed;
2148:           qgeom.J        = &fegeom.J[q * cdim * cdim];
2149:           qgeom.invJ     = &fegeom.invJ[q * cdim * cdim];
2150:           qgeom.detJ     = &fegeom.detJ[q];
2151:           PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2152:           if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolate_Static((PetscFE)obj, &x[foff], &qgeom, q, interpolant));
2153:           else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2154:           for (fc = 0; fc < fNc; ++fc) val[foff + fc] += interpolant[fc] * wt;
2155:           vol += wt;
2156:         }
2157:         foff += Nb;
2158:       }
2159:       PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2160:       for (fc = 0; fc < Nc; ++fc) valsum[fc] += val[fc];
2161:       volsum += vol;
2162:       if (debug) {
2163:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " value: [", v, cell));
2164:         for (fc = 0; fc < Nc; ++fc) {
2165:           if (fc) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2166:           PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(val[fc])));
2167:         }
2168:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2169:       }
2170:     }
2171:     for (fc = 0; fc < Nc; ++fc) valsum[fc] /= volsum;
2172:     PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2173:     PetscCall(DMPlexVecSetClosure(dmc, NULL, locC, v, valsum, INSERT_VALUES));
2174:   }
2175:   PetscCall(PetscFree6(valsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2176:   PetscFunctionReturn(PETSC_SUCCESS);
2177: }

2179: /*@
2180:   DMPlexComputeGradientClementInterpolant - This function computes the L2 projection of the cellwise gradient of a function u onto P1

2182:   Collective

2184:   Input Parameters:
2185: + dm   - The `DM`
2186: - locX - The coefficient vector u_h

2188:   Output Parameter:
2189: . locC - A `Vec` which holds the Clement interpolant of the gradient

2191:   Level: developer

2193:   Note:
2194:   $\nabla u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| \nabla u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| $ where $ |T_i| $ is the cell volume

2196: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMProjectFunction()`, `DMComputeL2Diff()`, `DMPlexComputeL2FieldDiff()`, `DMComputeL2GradientDiff()`
2197: @*/
2198: PetscErrorCode DMPlexComputeGradientClementInterpolant(DM dm, Vec locX, Vec locC)
2199: {
2200:   DM_Plex         *mesh  = (DM_Plex *)dm->data;
2201:   PetscInt         debug = mesh->printFEM;
2202:   DM               dmC;
2203:   PetscQuadrature  quad;
2204:   PetscScalar     *interpolant, *gradsum;
2205:   PetscFEGeom      fegeom;
2206:   PetscReal       *coords;
2207:   const PetscReal *quadPoints, *quadWeights;
2208:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, vStart, vEnd, v, field, fieldOffset;

2210:   PetscFunctionBegin;
2211:   PetscCall(PetscCitationsRegister(ClementCitation, &Clementcite));
2212:   PetscCall(VecGetDM(locC, &dmC));
2213:   PetscCall(VecSet(locC, 0.0));
2214:   PetscCall(DMGetDimension(dm, &dim));
2215:   PetscCall(DMGetCoordinateDim(dm, &coordDim));
2216:   fegeom.dimEmbed = coordDim;
2217:   PetscCall(DMGetNumFields(dm, &numFields));
2218:   PetscCheck(numFields, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fields is zero!");
2219:   for (field = 0; field < numFields; ++field) {
2220:     PetscObject  obj;
2221:     PetscClassId id;
2222:     PetscInt     Nc;

2224:     PetscCall(DMGetField(dm, field, NULL, &obj));
2225:     PetscCall(PetscObjectGetClassId(obj, &id));
2226:     if (id == PETSCFE_CLASSID) {
2227:       PetscFE fe = (PetscFE)obj;

2229:       PetscCall(PetscFEGetQuadrature(fe, &quad));
2230:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
2231:     } else if (id == PETSCFV_CLASSID) {
2232:       PetscFV fv = (PetscFV)obj;

2234:       PetscCall(PetscFVGetQuadrature(fv, &quad));
2235:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
2236:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2237:     numComponents += Nc;
2238:   }
2239:   PetscCall(PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights));
2240:   PetscCheck(!(qNc != 1) || !(qNc != numComponents), PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_SIZ, "Quadrature components %" PetscInt_FMT " != %" PetscInt_FMT " field components", qNc, numComponents);
2241:   PetscCall(PetscMalloc6(coordDim * numComponents * 2, &gradsum, coordDim * numComponents, &interpolant, coordDim * Nq, &coords, Nq, &fegeom.detJ, coordDim * coordDim * Nq, &fegeom.J, coordDim * coordDim * Nq, &fegeom.invJ));
2242:   PetscCall(DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd));
2243:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, 0, &cStart, &cEnd));
2244:   for (v = vStart; v < vEnd; ++v) {
2245:     PetscScalar volsum = 0.0;
2246:     PetscInt   *star   = NULL;
2247:     PetscInt    starSize, st, d, fc;

2249:     PetscCall(PetscArrayzero(gradsum, coordDim * numComponents));
2250:     PetscCall(DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2251:     for (st = 0; st < starSize * 2; st += 2) {
2252:       const PetscInt cell = star[st];
2253:       PetscScalar   *grad = &gradsum[coordDim * numComponents];
2254:       PetscScalar   *x    = NULL;
2255:       PetscReal      vol  = 0.0;

2257:       if ((cell < cStart) || (cell >= cEnd)) continue;
2258:       PetscCall(DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ));
2259:       PetscCall(DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x));
2260:       for (field = 0, fieldOffset = 0; field < numFields; ++field) {
2261:         PetscObject  obj;
2262:         PetscClassId id;
2263:         PetscInt     Nb, Nc, q, qc = 0;

2265:         PetscCall(PetscArrayzero(grad, coordDim * numComponents));
2266:         PetscCall(DMGetField(dm, field, NULL, &obj));
2267:         PetscCall(PetscObjectGetClassId(obj, &id));
2268:         if (id == PETSCFE_CLASSID) {
2269:           PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
2270:           PetscCall(PetscFEGetDimension((PetscFE)obj, &Nb));
2271:         } else if (id == PETSCFV_CLASSID) {
2272:           PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
2273:           Nb = 1;
2274:         } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2275:         for (q = 0; q < Nq; ++q) {
2276:           PetscFEGeom qgeom;

2278:           qgeom.dimEmbed = fegeom.dimEmbed;
2279:           qgeom.J        = &fegeom.J[q * coordDim * coordDim];
2280:           qgeom.invJ     = &fegeom.invJ[q * coordDim * coordDim];
2281:           qgeom.detJ     = &fegeom.detJ[q];
2282:           PetscCheck(fegeom.detJ[q] > 0.0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %" PetscInt_FMT ", quadrature points %" PetscInt_FMT, (double)fegeom.detJ[q], cell, q);
2283:           if (id == PETSCFE_CLASSID) PetscCall(PetscFEInterpolateGradient_Static((PetscFE)obj, 1, &x[fieldOffset], &qgeom, q, interpolant));
2284:           else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
2285:           for (fc = 0; fc < Nc; ++fc) {
2286:             const PetscReal wt = quadWeights[q * qNc + qc];

2288:             for (d = 0; d < coordDim; ++d) grad[fc * coordDim + d] += interpolant[fc * dim + d] * wt * fegeom.detJ[q];
2289:           }
2290:           vol += quadWeights[q * qNc] * fegeom.detJ[q];
2291:         }
2292:         fieldOffset += Nb;
2293:         qc += Nc;
2294:       }
2295:       PetscCall(DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x));
2296:       for (fc = 0; fc < numComponents; ++fc) {
2297:         for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] += grad[fc * coordDim + d];
2298:       }
2299:       volsum += vol;
2300:       if (debug) {
2301:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "Vertex %" PetscInt_FMT " Cell %" PetscInt_FMT " gradient: [", v, cell));
2302:         for (fc = 0; fc < numComponents; ++fc) {
2303:           for (d = 0; d < coordDim; ++d) {
2304:             if (fc || d > 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, ", "));
2305:             PetscCall(PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(grad[fc * coordDim + d])));
2306:           }
2307:         }
2308:         PetscCall(PetscPrintf(PETSC_COMM_SELF, "]\n"));
2309:       }
2310:     }
2311:     for (fc = 0; fc < numComponents; ++fc) {
2312:       for (d = 0; d < coordDim; ++d) gradsum[fc * coordDim + d] /= volsum;
2313:     }
2314:     PetscCall(DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star));
2315:     PetscCall(DMPlexVecSetClosure(dmC, NULL, locC, v, gradsum, INSERT_VALUES));
2316:   }
2317:   PetscCall(PetscFree6(gradsum, interpolant, coords, fegeom.detJ, fegeom.J, fegeom.invJ));
2318:   PetscFunctionReturn(PETSC_SUCCESS);
2319: }

2321: PetscErrorCode DMPlexComputeIntegral_Internal(DM dm, Vec locX, PetscInt cStart, PetscInt cEnd, PetscScalar *cintegral, void *user)
2322: {
2323:   DM           dmAux = NULL, plexA = NULL;
2324:   PetscDS      prob, probAux       = NULL;
2325:   PetscSection section, sectionAux;
2326:   Vec          locA;
2327:   PetscInt     dim, numCells = cEnd - cStart, c, f;
2328:   PetscBool    useFVM = PETSC_FALSE;
2329:   /* DS */
2330:   PetscInt           Nf, totDim, *uOff, *uOff_x, numConstants;
2331:   PetscInt           NfAux, totDimAux, *aOff;
2332:   PetscScalar       *u, *a = NULL;
2333:   const PetscScalar *constants;
2334:   /* Geometry */
2335:   PetscFEGeom       *cgeomFEM;
2336:   DM                 dmGrad;
2337:   PetscQuadrature    affineQuad      = NULL;
2338:   Vec                cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
2339:   PetscFVCellGeom   *cgeomFVM;
2340:   const PetscScalar *lgrad;
2341:   PetscInt           maxDegree;
2342:   DMField            coordField;
2343:   IS                 cellIS;

2345:   PetscFunctionBegin;
2346:   PetscCall(DMGetDS(dm, &prob));
2347:   PetscCall(DMGetDimension(dm, &dim));
2348:   PetscCall(DMGetLocalSection(dm, &section));
2349:   PetscCall(DMGetNumFields(dm, &Nf));
2350:   /* Determine which discretizations we have */
2351:   for (f = 0; f < Nf; ++f) {
2352:     PetscObject  obj;
2353:     PetscClassId id;

2355:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2356:     PetscCall(PetscObjectGetClassId(obj, &id));
2357:     if (id == PETSCFV_CLASSID) useFVM = PETSC_TRUE;
2358:   }
2359:   /* Read DS information */
2360:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2361:   PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2362:   PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2363:   PetscCall(ISCreateStride(PETSC_COMM_SELF, numCells, cStart, 1, &cellIS));
2364:   PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2365:   /* Read Auxiliary DS information */
2366:   PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2367:   if (locA) {
2368:     PetscCall(VecGetDM(locA, &dmAux));
2369:     PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2370:     PetscCall(DMGetDS(dmAux, &probAux));
2371:     PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2372:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
2373:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2374:     PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2375:   }
2376:   /* Allocate data  arrays */
2377:   PetscCall(PetscCalloc1(numCells * totDim, &u));
2378:   if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
2379:   /* Read out geometry */
2380:   PetscCall(DMGetCoordinateField(dm, &coordField));
2381:   PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
2382:   if (maxDegree <= 1) {
2383:     PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
2384:     if (affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &cgeomFEM));
2385:   }
2386:   if (useFVM) {
2387:     PetscFV   fv = NULL;
2388:     Vec       grad;
2389:     PetscInt  fStart, fEnd;
2390:     PetscBool compGrad;

2392:     for (f = 0; f < Nf; ++f) {
2393:       PetscObject  obj;
2394:       PetscClassId id;

2396:       PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2397:       PetscCall(PetscObjectGetClassId(obj, &id));
2398:       if (id == PETSCFV_CLASSID) {
2399:         fv = (PetscFV)obj;
2400:         break;
2401:       }
2402:     }
2403:     PetscCall(PetscFVGetComputeGradients(fv, &compGrad));
2404:     PetscCall(PetscFVSetComputeGradients(fv, PETSC_TRUE));
2405:     PetscCall(DMPlexComputeGeometryFVM(dm, &cellGeometryFVM, &faceGeometryFVM));
2406:     PetscCall(DMPlexComputeGradientFVM(dm, fv, faceGeometryFVM, cellGeometryFVM, &dmGrad));
2407:     PetscCall(PetscFVSetComputeGradients(fv, compGrad));
2408:     PetscCall(VecGetArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2409:     /* Reconstruct and limit cell gradients */
2410:     PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
2411:     PetscCall(DMGetGlobalVector(dmGrad, &grad));
2412:     PetscCall(DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad));
2413:     /* Communicate gradient values */
2414:     PetscCall(DMGetLocalVector(dmGrad, &locGrad));
2415:     PetscCall(DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad));
2416:     PetscCall(DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad));
2417:     PetscCall(DMRestoreGlobalVector(dmGrad, &grad));
2418:     /* Handle non-essential (e.g. outflow) boundary values */
2419:     PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, 0.0, faceGeometryFVM, cellGeometryFVM, locGrad));
2420:     PetscCall(VecGetArrayRead(locGrad, &lgrad));
2421:   }
2422:   /* Read out data from inputs */
2423:   for (c = cStart; c < cEnd; ++c) {
2424:     PetscScalar *x = NULL;
2425:     PetscInt     i;

2427:     PetscCall(DMPlexVecGetClosure(dm, section, locX, c, NULL, &x));
2428:     for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
2429:     PetscCall(DMPlexVecRestoreClosure(dm, section, locX, c, NULL, &x));
2430:     if (dmAux) {
2431:       PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, c, NULL, &x));
2432:       for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
2433:       PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, c, NULL, &x));
2434:     }
2435:   }
2436:   /* Do integration for each field */
2437:   for (f = 0; f < Nf; ++f) {
2438:     PetscObject  obj;
2439:     PetscClassId id;
2440:     PetscInt     numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;

2442:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2443:     PetscCall(PetscObjectGetClassId(obj, &id));
2444:     if (id == PETSCFE_CLASSID) {
2445:       PetscFE         fe = (PetscFE)obj;
2446:       PetscQuadrature q;
2447:       PetscFEGeom    *chunkGeom = NULL;
2448:       PetscInt        Nq, Nb;

2450:       PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2451:       PetscCall(PetscFEGetQuadrature(fe, &q));
2452:       PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2453:       PetscCall(PetscFEGetDimension(fe, &Nb));
2454:       blockSize = Nb * Nq;
2455:       batchSize = numBlocks * blockSize;
2456:       PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2457:       numChunks = numCells / (numBatches * batchSize);
2458:       Ne        = numChunks * numBatches * batchSize;
2459:       Nr        = numCells % (numBatches * batchSize);
2460:       offset    = numCells - Nr;
2461:       if (!affineQuad) PetscCall(DMFieldCreateFEGeom(coordField, cellIS, q, PETSC_FALSE, &cgeomFEM));
2462:       PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
2463:       PetscCall(PetscFEIntegrate(prob, f, Ne, chunkGeom, u, probAux, a, cintegral));
2464:       PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &chunkGeom));
2465:       PetscCall(PetscFEIntegrate(prob, f, Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &cintegral[offset * Nf]));
2466:       PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &chunkGeom));
2467:       if (!affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2468:     } else if (id == PETSCFV_CLASSID) {
2469:       PetscInt       foff;
2470:       PetscPointFunc obj_func;

2472:       PetscCall(PetscDSGetObjective(prob, f, &obj_func));
2473:       PetscCall(PetscDSGetFieldOffset(prob, f, &foff));
2474:       if (obj_func) {
2475:         for (c = 0; c < numCells; ++c) {
2476:           PetscScalar *u_x;
2477:           PetscScalar  lint = 0.;

2479:           PetscCall(DMPlexPointLocalRead(dmGrad, c, lgrad, &u_x));
2480:           obj_func(dim, Nf, NfAux, uOff, uOff_x, &u[totDim * c + foff], NULL, u_x, aOff, NULL, PetscSafePointerPlusOffset(a, totDimAux * c), NULL, NULL, 0.0, cgeomFVM[c].centroid, numConstants, constants, &lint);
2481:           cintegral[c * Nf + f] += PetscRealPart(lint) * cgeomFVM[c].volume;
2482:         }
2483:       }
2484:     } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
2485:   }
2486:   /* Cleanup data arrays */
2487:   if (useFVM) {
2488:     PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
2489:     PetscCall(VecRestoreArrayRead(cellGeometryFVM, (const PetscScalar **)&cgeomFVM));
2490:     PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
2491:     PetscCall(VecDestroy(&faceGeometryFVM));
2492:     PetscCall(VecDestroy(&cellGeometryFVM));
2493:     PetscCall(DMDestroy(&dmGrad));
2494:   }
2495:   if (dmAux) PetscCall(PetscFree(a));
2496:   PetscCall(DMDestroy(&plexA));
2497:   PetscCall(PetscFree(u));
2498:   /* Cleanup */
2499:   if (affineQuad) PetscCall(PetscFEGeomDestroy(&cgeomFEM));
2500:   PetscCall(PetscQuadratureDestroy(&affineQuad));
2501:   PetscCall(ISDestroy(&cellIS));
2502:   PetscFunctionReturn(PETSC_SUCCESS);
2503: }

2505: /*@
2506:   DMPlexComputeIntegralFEM - Form the integral over the domain from the global input X using pointwise functions specified by the user

2508:   Input Parameters:
2509: + dm   - The mesh
2510: . X    - Global input vector
2511: - user - The user context

2513:   Output Parameter:
2514: . integral - Integral for each field

2516:   Level: developer

2518: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2519: @*/
2520: PetscErrorCode DMPlexComputeIntegralFEM(DM dm, Vec X, PetscScalar *integral, void *user)
2521: {
2522:   PetscInt     printFEM;
2523:   PetscScalar *cintegral, *lintegral;
2524:   PetscInt     Nf, f, cellHeight, cStart, cEnd, cell;
2525:   Vec          locX;

2527:   PetscFunctionBegin;
2530:   PetscAssertPointer(integral, 3);
2531:   PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2532:   PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2533:   PetscCall(DMGetNumFields(dm, &Nf));
2534:   PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2535:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2536:   /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2537:   PetscCall(PetscCalloc2(Nf, &lintegral, (cEnd - cStart) * Nf, &cintegral));
2538:   /* Get local solution with boundary values */
2539:   PetscCall(DMGetLocalVector(dm, &locX));
2540:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2541:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2542:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2543:   PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2544:   PetscCall(DMRestoreLocalVector(dm, &locX));
2545:   printFEM = ((DM_Plex *)dm->data)->printFEM;
2546:   /* Sum up values */
2547:   for (cell = cStart; cell < cEnd; ++cell) {
2548:     const PetscInt c = cell - cStart;

2550:     if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2551:     for (f = 0; f < Nf; ++f) lintegral[f] += cintegral[c * Nf + f];
2552:   }
2553:   PetscCallMPI(MPIU_Allreduce(lintegral, integral, (PetscMPIInt)Nf, MPIU_SCALAR, MPIU_SUM, PetscObjectComm((PetscObject)dm)));
2554:   if (printFEM) {
2555:     PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "Integral:"));
2556:     for (f = 0; f < Nf; ++f) PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), " %g", (double)PetscRealPart(integral[f])));
2557:     PetscCall(PetscPrintf(PetscObjectComm((PetscObject)dm), "\n"));
2558:   }
2559:   PetscCall(PetscFree2(lintegral, cintegral));
2560:   PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2561:   PetscCall(DMDestroy(&dm));
2562:   PetscFunctionReturn(PETSC_SUCCESS);
2563: }

2565: /*@
2566:   DMPlexComputeCellwiseIntegralFEM - Form the vector of cellwise integrals F from the global input X using pointwise functions specified by the user

2568:   Input Parameters:
2569: + dm   - The mesh
2570: . X    - Global input vector
2571: - user - The user context

2573:   Output Parameter:
2574: . F - Cellwise integrals for each field

2576:   Level: developer

2578: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexSNESComputeResidualFEM()`
2579: @*/
2580: PetscErrorCode DMPlexComputeCellwiseIntegralFEM(DM dm, Vec X, Vec F, void *user)
2581: {
2582:   PetscInt     printFEM;
2583:   DM           dmF;
2584:   PetscSection sectionF = NULL;
2585:   PetscScalar *cintegral, *af;
2586:   PetscInt     Nf, f, cellHeight, cStart, cEnd, cell, n;
2587:   Vec          locX;

2589:   PetscFunctionBegin;
2593:   PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2594:   PetscCall(DMPlexConvertPlex(dm, &dm, PETSC_TRUE));
2595:   PetscCall(DMGetNumFields(dm, &Nf));
2596:   PetscCall(DMPlexGetVTKCellHeight(dm, &cellHeight));
2597:   PetscCall(DMPlexGetSimplexOrBoxCells(dm, cellHeight, &cStart, &cEnd));
2598:   /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
2599:   PetscCall(PetscCalloc1((cEnd - cStart) * Nf, &cintegral));
2600:   /* Get local solution with boundary values */
2601:   PetscCall(DMGetLocalVector(dm, &locX));
2602:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2603:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2604:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2605:   PetscCall(DMPlexComputeIntegral_Internal(dm, locX, cStart, cEnd, cintegral, user));
2606:   PetscCall(DMRestoreLocalVector(dm, &locX));
2607:   /* Put values in F */
2608:   PetscCall(VecGetArray(F, &af));
2609:   PetscCall(VecGetDM(F, &dmF));
2610:   if (dmF) PetscCall(DMGetLocalSection(dmF, &sectionF));
2611:   PetscCall(VecGetLocalSize(F, &n));
2612:   PetscCheck(n >= (cEnd - cStart) * Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Vector size %" PetscInt_FMT " < %" PetscInt_FMT, n, (cEnd - cStart) * Nf);
2613:   printFEM = ((DM_Plex *)dm->data)->printFEM;
2614:   for (cell = cStart; cell < cEnd; ++cell) {
2615:     const PetscInt c   = cell - cStart;
2616:     PetscInt       dof = Nf, off = c * Nf;

2618:     if (printFEM > 1) PetscCall(DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c * Nf]));
2619:     if (sectionF) {
2620:       PetscCall(PetscSectionGetDof(sectionF, cell, &dof));
2621:       PetscCall(PetscSectionGetOffset(sectionF, cell, &off));
2622:     }
2623:     PetscCheck(dof == Nf, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The number of cell dofs %" PetscInt_FMT " != %" PetscInt_FMT, dof, Nf);
2624:     for (f = 0; f < Nf; ++f) af[off + f] = cintegral[c * Nf + f];
2625:   }
2626:   PetscCall(VecRestoreArray(F, &af));
2627:   PetscCall(PetscFree(cintegral));
2628:   PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2629:   PetscCall(DMDestroy(&dm));
2630:   PetscFunctionReturn(PETSC_SUCCESS);
2631: }

2633: static PetscErrorCode DMPlexComputeBdIntegral_Internal(DM dm, Vec locX, IS pointIS, void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *fintegral, void *user)
2634: {
2635:   DM                 plex = NULL, plexA = NULL;
2636:   DMEnclosureType    encAux;
2637:   PetscDS            prob, probAux       = NULL;
2638:   PetscSection       section, sectionAux = NULL;
2639:   Vec                locA = NULL;
2640:   DMField            coordField;
2641:   PetscInt           Nf, totDim, *uOff, *uOff_x;
2642:   PetscInt           NfAux = 0, totDimAux = 0, *aOff = NULL;
2643:   PetscScalar       *u, *a = NULL;
2644:   const PetscScalar *constants;
2645:   PetscInt           numConstants, f;

2647:   PetscFunctionBegin;
2648:   PetscCall(DMGetCoordinateField(dm, &coordField));
2649:   PetscCall(DMConvert(dm, DMPLEX, &plex));
2650:   PetscCall(DMGetDS(dm, &prob));
2651:   PetscCall(DMGetLocalSection(dm, &section));
2652:   PetscCall(PetscSectionGetNumFields(section, &Nf));
2653:   /* Determine which discretizations we have */
2654:   for (f = 0; f < Nf; ++f) {
2655:     PetscObject  obj;
2656:     PetscClassId id;

2658:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
2659:     PetscCall(PetscObjectGetClassId(obj, &id));
2660:     PetscCheck(id != PETSCFV_CLASSID, PetscObjectComm((PetscObject)dm), PETSC_ERR_SUP, "Not supported for FVM (field %" PetscInt_FMT ")", f);
2661:   }
2662:   /* Read DS information */
2663:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
2664:   PetscCall(PetscDSGetComponentOffsets(prob, &uOff));
2665:   PetscCall(PetscDSGetComponentDerivativeOffsets(prob, &uOff_x));
2666:   PetscCall(PetscDSGetConstants(prob, &numConstants, &constants));
2667:   /* Read Auxiliary DS information */
2668:   PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
2669:   if (locA) {
2670:     DM dmAux;

2672:     PetscCall(VecGetDM(locA, &dmAux));
2673:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
2674:     PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
2675:     PetscCall(DMGetDS(dmAux, &probAux));
2676:     PetscCall(PetscDSGetNumFields(probAux, &NfAux));
2677:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
2678:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
2679:     PetscCall(PetscDSGetComponentOffsets(probAux, &aOff));
2680:   }
2681:   /* Integrate over points */
2682:   {
2683:     PetscFEGeom    *fgeom, *chunkGeom = NULL;
2684:     PetscInt        maxDegree;
2685:     PetscQuadrature qGeom = NULL;
2686:     const PetscInt *points;
2687:     PetscInt        numFaces, face, Nq, field;
2688:     PetscInt        numChunks, chunkSize, chunk, Nr, offset;

2690:     PetscCall(ISGetLocalSize(pointIS, &numFaces));
2691:     PetscCall(ISGetIndices(pointIS, &points));
2692:     PetscCall(PetscCalloc2(numFaces * totDim, &u, (locA ? (size_t)numFaces * totDimAux : 0), &a));
2693:     PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
2694:     for (face = 0; face < numFaces; ++face) {
2695:       const PetscInt point = points[face], *support;
2696:       PetscScalar   *x     = NULL;

2698:       PetscCall(DMPlexGetSupport(dm, point, &support));
2699:       PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
2700:       for (PetscInt i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
2701:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
2702:       if (locA) {
2703:         PetscInt subp;
2704:         PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
2705:         PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
2706:         for (PetscInt i = 0; i < totDimAux; ++i) a[f * totDimAux + i] = x[i];
2707:         PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
2708:       }
2709:     }
2710:     for (field = 0; field < Nf; ++field) {
2711:       PetscFE fe;

2713:       PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
2714:       if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
2715:       if (!qGeom) {
2716:         PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
2717:         PetscCall(PetscObjectReference((PetscObject)qGeom));
2718:       }
2719:       PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
2720:       PetscCall(DMPlexGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
2721:       /* Get blocking */
2722:       {
2723:         PetscQuadrature q;
2724:         PetscInt        numBatches, batchSize, numBlocks, blockSize;
2725:         PetscInt        Nq, Nb;

2727:         PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
2728:         PetscCall(PetscFEGetQuadrature(fe, &q));
2729:         PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
2730:         PetscCall(PetscFEGetDimension(fe, &Nb));
2731:         blockSize = Nb * Nq;
2732:         batchSize = numBlocks * blockSize;
2733:         chunkSize = numBatches * batchSize;
2734:         PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
2735:         numChunks = numFaces / chunkSize;
2736:         Nr        = numFaces % chunkSize;
2737:         offset    = numFaces - Nr;
2738:       }
2739:       /* Do integration for each field */
2740:       for (chunk = 0; chunk < numChunks; ++chunk) {
2741:         PetscCall(PetscFEGeomGetChunk(fgeom, chunk * chunkSize, (chunk + 1) * chunkSize, &chunkGeom));
2742:         PetscCall(PetscFEIntegrateBd(prob, field, funcs[field], chunkSize, chunkGeom, &u[chunk * chunkSize * totDim], probAux, PetscSafePointerPlusOffset(a, chunk * chunkSize * totDimAux), &fintegral[chunk * chunkSize * Nf]));
2743:         PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
2744:       }
2745:       PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
2746:       PetscCall(PetscFEIntegrateBd(prob, field, funcs[field], Nr, chunkGeom, &u[offset * totDim], probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), &fintegral[offset * Nf]));
2747:       PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
2748:       /* Cleanup data arrays */
2749:       PetscCall(DMPlexRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
2750:       PetscCall(PetscQuadratureDestroy(&qGeom));
2751:     }
2752:     PetscCall(PetscFree2(u, a));
2753:     PetscCall(ISRestoreIndices(pointIS, &points));
2754:   }
2755:   if (plex) PetscCall(DMDestroy(&plex));
2756:   if (plexA) PetscCall(DMDestroy(&plexA));
2757:   PetscFunctionReturn(PETSC_SUCCESS);
2758: }

2760: /*@C
2761:   DMPlexComputeBdIntegral - Form the integral over the specified boundary from the global input X using pointwise functions specified by the user

2763:   Input Parameters:
2764: + dm      - The mesh
2765: . X       - Global input vector
2766: . label   - The boundary `DMLabel`
2767: . numVals - The number of label values to use, or `PETSC_DETERMINE` for all values
2768: . vals    - The label values to use, or NULL for all values
2769: . funcs   - The functions to integrate along the boundary for each field
2770: - user    - The user context

2772:   Output Parameter:
2773: . integral - Integral for each field

2775:   Level: developer

2777: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeIntegralFEM()`, `DMPlexComputeBdResidualFEM()`
2778: @*/
2779: PetscErrorCode DMPlexComputeBdIntegral(DM dm, Vec X, DMLabel label, PetscInt numVals, const PetscInt vals[], void (**funcs)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscScalar *integral, void *user)
2780: {
2781:   Vec          locX;
2782:   PetscSection section;
2783:   DMLabel      depthLabel;
2784:   IS           facetIS;
2785:   PetscInt     dim, Nf, f, v;

2787:   PetscFunctionBegin;
2791:   if (vals) PetscAssertPointer(vals, 5);
2792:   PetscAssertPointer(integral, 7);
2793:   PetscCall(PetscLogEventBegin(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2794:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
2795:   PetscCall(DMGetDimension(dm, &dim));
2796:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
2797:   PetscCall(DMGetLocalSection(dm, &section));
2798:   PetscCall(PetscSectionGetNumFields(section, &Nf));
2799:   /* Get local solution with boundary values */
2800:   PetscCall(DMGetLocalVector(dm, &locX));
2801:   PetscCall(DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL));
2802:   PetscCall(DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX));
2803:   PetscCall(DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX));
2804:   /* Loop over label values */
2805:   PetscCall(PetscArrayzero(integral, Nf));
2806:   for (v = 0; v < numVals; ++v) {
2807:     IS           pointIS;
2808:     PetscInt     numFaces, face;
2809:     PetscScalar *fintegral;

2811:     PetscCall(DMLabelGetStratumIS(label, vals[v], &pointIS));
2812:     if (!pointIS) continue; /* No points with that id on this process */
2813:     {
2814:       IS isectIS;

2816:       /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
2817:       PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
2818:       PetscCall(ISDestroy(&pointIS));
2819:       pointIS = isectIS;
2820:     }
2821:     PetscCall(ISGetLocalSize(pointIS, &numFaces));
2822:     PetscCall(PetscCalloc1(numFaces * Nf, &fintegral));
2823:     PetscCall(DMPlexComputeBdIntegral_Internal(dm, locX, pointIS, funcs, fintegral, user));
2824:     /* Sum point contributions into integral */
2825:     for (f = 0; f < Nf; ++f)
2826:       for (face = 0; face < numFaces; ++face) integral[f] += fintegral[face * Nf + f];
2827:     PetscCall(PetscFree(fintegral));
2828:     PetscCall(ISDestroy(&pointIS));
2829:   }
2830:   PetscCall(DMRestoreLocalVector(dm, &locX));
2831:   PetscCall(ISDestroy(&facetIS));
2832:   PetscCall(PetscLogEventEnd(DMPLEX_IntegralFEM, dm, 0, 0, 0));
2833:   PetscFunctionReturn(PETSC_SUCCESS);
2834: }

2836: /*@
2837:   DMPlexComputeInterpolatorNested - Form the local portion of the interpolation matrix from the coarse `DM` to a uniformly refined `DM`.

2839:   Input Parameters:
2840: + dmc       - The coarse mesh
2841: . dmf       - The fine mesh
2842: . isRefined - Flag indicating regular refinement, rather than the same topology
2843: - user      - The user context

2845:   Output Parameter:
2846: . In - The interpolation matrix

2848:   Level: developer

2850: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorGeneral()`
2851: @*/
2852: PetscErrorCode DMPlexComputeInterpolatorNested(DM dmc, DM dmf, PetscBool isRefined, Mat In, void *user)
2853: {
2854:   DM_Plex     *mesh = (DM_Plex *)dmc->data;
2855:   const char  *name = "Interpolator";
2856:   PetscFE     *feRef;
2857:   PetscFV     *fvRef;
2858:   PetscSection fsection, fglobalSection;
2859:   PetscSection csection, cglobalSection;
2860:   PetscScalar *elemMat;
2861:   PetscInt     dim, Nf, f, fieldI, fieldJ, offsetI, offsetJ, cStart, cEnd, c;
2862:   PetscInt     cTotDim = 0, rTotDim = 0;

2864:   PetscFunctionBegin;
2865:   PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
2866:   PetscCall(DMGetDimension(dmf, &dim));
2867:   PetscCall(DMGetLocalSection(dmf, &fsection));
2868:   PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
2869:   PetscCall(DMGetLocalSection(dmc, &csection));
2870:   PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
2871:   PetscCall(PetscSectionGetNumFields(fsection, &Nf));
2872:   PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
2873:   PetscCall(PetscCalloc2(Nf, &feRef, Nf, &fvRef));
2874:   for (f = 0; f < Nf; ++f) {
2875:     PetscObject  obj, objc;
2876:     PetscClassId id, idc;
2877:     PetscInt     rNb = 0, Nc = 0, cNb = 0;

2879:     PetscCall(DMGetField(dmf, f, NULL, &obj));
2880:     PetscCall(PetscObjectGetClassId(obj, &id));
2881:     if (id == PETSCFE_CLASSID) {
2882:       PetscFE fe = (PetscFE)obj;

2884:       if (isRefined) {
2885:         PetscCall(PetscFERefine(fe, &feRef[f]));
2886:       } else {
2887:         PetscCall(PetscObjectReference((PetscObject)fe));
2888:         feRef[f] = fe;
2889:       }
2890:       PetscCall(PetscFEGetDimension(feRef[f], &rNb));
2891:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
2892:     } else if (id == PETSCFV_CLASSID) {
2893:       PetscFV        fv = (PetscFV)obj;
2894:       PetscDualSpace Q;

2896:       if (isRefined) {
2897:         PetscCall(PetscFVRefine(fv, &fvRef[f]));
2898:       } else {
2899:         PetscCall(PetscObjectReference((PetscObject)fv));
2900:         fvRef[f] = fv;
2901:       }
2902:       PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
2903:       PetscCall(PetscDualSpaceGetDimension(Q, &rNb));
2904:       PetscCall(PetscFVGetDualSpace(fv, &Q));
2905:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
2906:     }
2907:     PetscCall(DMGetField(dmc, f, NULL, &objc));
2908:     PetscCall(PetscObjectGetClassId(objc, &idc));
2909:     if (idc == PETSCFE_CLASSID) {
2910:       PetscFE fe = (PetscFE)objc;

2912:       PetscCall(PetscFEGetDimension(fe, &cNb));
2913:     } else if (id == PETSCFV_CLASSID) {
2914:       PetscFV        fv = (PetscFV)obj;
2915:       PetscDualSpace Q;

2917:       PetscCall(PetscFVGetDualSpace(fv, &Q));
2918:       PetscCall(PetscDualSpaceGetDimension(Q, &cNb));
2919:     }
2920:     rTotDim += rNb;
2921:     cTotDim += cNb;
2922:   }
2923:   PetscCall(PetscMalloc1(rTotDim * cTotDim, &elemMat));
2924:   PetscCall(PetscArrayzero(elemMat, rTotDim * cTotDim));
2925:   for (fieldI = 0, offsetI = 0; fieldI < Nf; ++fieldI) {
2926:     PetscDualSpace   Qref;
2927:     PetscQuadrature  f;
2928:     const PetscReal *qpoints, *qweights;
2929:     PetscReal       *points;
2930:     PetscInt         npoints = 0, Nc, Np, fpdim, i, k, p, d;

2932:     /* Compose points from all dual basis functionals */
2933:     if (feRef[fieldI]) {
2934:       PetscCall(PetscFEGetDualSpace(feRef[fieldI], &Qref));
2935:       PetscCall(PetscFEGetNumComponents(feRef[fieldI], &Nc));
2936:     } else {
2937:       PetscCall(PetscFVGetDualSpace(fvRef[fieldI], &Qref));
2938:       PetscCall(PetscFVGetNumComponents(fvRef[fieldI], &Nc));
2939:     }
2940:     PetscCall(PetscDualSpaceGetDimension(Qref, &fpdim));
2941:     for (i = 0; i < fpdim; ++i) {
2942:       PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2943:       PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, NULL, NULL));
2944:       npoints += Np;
2945:     }
2946:     PetscCall(PetscMalloc1(npoints * dim, &points));
2947:     for (i = 0, k = 0; i < fpdim; ++i) {
2948:       PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2949:       PetscCall(PetscQuadratureGetData(f, NULL, NULL, &Np, &qpoints, NULL));
2950:       for (p = 0; p < Np; ++p, ++k)
2951:         for (d = 0; d < dim; ++d) points[k * dim + d] = qpoints[p * dim + d];
2952:     }

2954:     for (fieldJ = 0, offsetJ = 0; fieldJ < Nf; ++fieldJ) {
2955:       PetscObject  obj;
2956:       PetscClassId id;
2957:       PetscInt     NcJ = 0, cpdim = 0, j, qNc;

2959:       PetscCall(DMGetField(dmc, fieldJ, NULL, &obj));
2960:       PetscCall(PetscObjectGetClassId(obj, &id));
2961:       if (id == PETSCFE_CLASSID) {
2962:         PetscFE         fe = (PetscFE)obj;
2963:         PetscTabulation T  = NULL;

2965:         /* Evaluate basis at points */
2966:         PetscCall(PetscFEGetNumComponents(fe, &NcJ));
2967:         PetscCall(PetscFEGetDimension(fe, &cpdim));
2968:         /* For now, fields only interpolate themselves */
2969:         if (fieldI == fieldJ) {
2970:           PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
2971:           PetscCall(PetscFECreateTabulation(fe, 1, npoints, points, 0, &T));
2972:           for (i = 0, k = 0; i < fpdim; ++i) {
2973:             PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
2974:             PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
2975:             PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
2976:             for (p = 0; p < Np; ++p, ++k) {
2977:               for (j = 0; j < cpdim; ++j) {
2978:                 /*
2979:                    cTotDim:            Total columns in element interpolation matrix, sum of number of dual basis functionals in each field
2980:                    offsetI, offsetJ:   Offsets into the larger element interpolation matrix for different fields
2981:                    fpdim, i, cpdim, j: Dofs for fine and coarse grids, correspond to dual space basis functionals
2982:                    qNC, Nc, Ncj, c:    Number of components in this field
2983:                    Np, p:              Number of quad points in the fine grid functional i
2984:                    k:                  i*Np + p, overall point number for the interpolation
2985:                 */
2986:                 for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += T->T[0][k * cpdim * NcJ + j * Nc + c] * qweights[p * qNc + c];
2987:               }
2988:             }
2989:           }
2990:           PetscCall(PetscTabulationDestroy(&T));
2991:         }
2992:       } else if (id == PETSCFV_CLASSID) {
2993:         PetscFV fv = (PetscFV)obj;

2995:         /* Evaluate constant function at points */
2996:         PetscCall(PetscFVGetNumComponents(fv, &NcJ));
2997:         cpdim = 1;
2998:         /* For now, fields only interpolate themselves */
2999:         if (fieldI == fieldJ) {
3000:           PetscCheck(Nc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, Nc, NcJ);
3001:           for (i = 0, k = 0; i < fpdim; ++i) {
3002:             PetscCall(PetscDualSpaceGetFunctional(Qref, i, &f));
3003:             PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights));
3004:             PetscCheck(qNc == NcJ, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, NcJ);
3005:             for (p = 0; p < Np; ++p, ++k) {
3006:               for (j = 0; j < cpdim; ++j) {
3007:                 for (c = 0; c < Nc; ++c) elemMat[(offsetI + i) * cTotDim + offsetJ + j] += 1.0 * qweights[p * qNc + c];
3008:               }
3009:             }
3010:           }
3011:         }
3012:       }
3013:       offsetJ += cpdim;
3014:     }
3015:     offsetI += fpdim;
3016:     PetscCall(PetscFree(points));
3017:   }
3018:   if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(0, name, rTotDim, cTotDim, elemMat));
3019:   /* Preallocate matrix */
3020:   {
3021:     Mat          preallocator;
3022:     PetscScalar *vals;
3023:     PetscInt    *cellCIndices, *cellFIndices;
3024:     PetscInt     locRows, locCols, cell;

3026:     PetscCall(MatGetLocalSize(In, &locRows, &locCols));
3027:     PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &preallocator));
3028:     PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
3029:     PetscCall(MatSetSizes(preallocator, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
3030:     PetscCall(MatSetUp(preallocator));
3031:     PetscCall(PetscCalloc3(rTotDim * cTotDim, &vals, cTotDim, &cellCIndices, rTotDim, &cellFIndices));
3032:     for (cell = cStart; cell < cEnd; ++cell) {
3033:       if (isRefined) {
3034:         PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, cell, cellCIndices, cellFIndices));
3035:         PetscCall(MatSetValues(preallocator, rTotDim, cellFIndices, cTotDim, cellCIndices, vals, INSERT_VALUES));
3036:       } else {
3037:         PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, preallocator, cell, vals, INSERT_VALUES));
3038:       }
3039:     }
3040:     PetscCall(PetscFree3(vals, cellCIndices, cellFIndices));
3041:     PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
3042:     PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
3043:     PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_TRUE, In));
3044:     PetscCall(MatDestroy(&preallocator));
3045:   }
3046:   /* Fill matrix */
3047:   PetscCall(MatZeroEntries(In));
3048:   for (c = cStart; c < cEnd; ++c) {
3049:     if (isRefined) {
3050:       PetscCall(DMPlexMatSetClosureRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, In, c, elemMat, INSERT_VALUES));
3051:     } else {
3052:       PetscCall(DMPlexMatSetClosureGeneral(dmf, fsection, fglobalSection, PETSC_FALSE, dmc, csection, cglobalSection, PETSC_FALSE, In, c, elemMat, INSERT_VALUES));
3053:     }
3054:   }
3055:   for (f = 0; f < Nf; ++f) PetscCall(PetscFEDestroy(&feRef[f]));
3056:   PetscCall(PetscFree2(feRef, fvRef));
3057:   PetscCall(PetscFree(elemMat));
3058:   PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
3059:   PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
3060:   if (mesh->printFEM > 1) {
3061:     PetscCall(PetscPrintf(PetscObjectComm((PetscObject)In), "%s:\n", name));
3062:     PetscCall(MatFilter(In, 1.0e-10, PETSC_FALSE, PETSC_FALSE));
3063:     PetscCall(MatView(In, NULL));
3064:   }
3065:   PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3066:   PetscFunctionReturn(PETSC_SUCCESS);
3067: }

3069: PetscErrorCode DMPlexComputeMassMatrixNested(DM dmc, DM dmf, Mat mass, void *user)
3070: {
3071:   SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_SUP, "Laziness");
3072: }

3074: /*@
3075:   DMPlexComputeInterpolatorGeneral - Form the local portion of the interpolation matrix from the coarse `DM` to a non-nested fine `DM`.

3077:   Input Parameters:
3078: + dmf  - The fine mesh
3079: . dmc  - The coarse mesh
3080: - user - The user context

3082:   Output Parameter:
3083: . In - The interpolation matrix

3085:   Level: developer

3087: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`
3088: @*/
3089: PetscErrorCode DMPlexComputeInterpolatorGeneral(DM dmc, DM dmf, Mat In, void *user)
3090: {
3091:   DM_Plex     *mesh = (DM_Plex *)dmf->data;
3092:   const char  *name = "Interpolator";
3093:   PetscDS      prob;
3094:   Mat          interp;
3095:   PetscSection fsection, globalFSection;
3096:   PetscSection csection, globalCSection;
3097:   PetscInt     locRows, locCols;
3098:   PetscReal   *x, *v0, *J, *invJ, detJ;
3099:   PetscReal   *v0c, *Jc, *invJc, detJc;
3100:   PetscScalar *elemMat;
3101:   PetscInt     dim, Nf, field, totDim, cStart, cEnd, cell, ccell, s;

3103:   PetscFunctionBegin;
3104:   PetscCall(PetscLogEventBegin(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3105:   PetscCall(DMGetCoordinateDim(dmc, &dim));
3106:   PetscCall(DMGetDS(dmc, &prob));
3107:   PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
3108:   PetscCall(PetscDSGetNumFields(prob, &Nf));
3109:   PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
3110:   PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
3111:   PetscCall(DMGetLocalSection(dmf, &fsection));
3112:   PetscCall(DMGetGlobalSection(dmf, &globalFSection));
3113:   PetscCall(DMGetLocalSection(dmc, &csection));
3114:   PetscCall(DMGetGlobalSection(dmc, &globalCSection));
3115:   PetscCall(DMPlexGetSimplexOrBoxCells(dmf, 0, &cStart, &cEnd));
3116:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3117:   PetscCall(PetscMalloc1(totDim, &elemMat));

3119:   PetscCall(MatGetLocalSize(In, &locRows, &locCols));
3120:   PetscCall(MatCreate(PetscObjectComm((PetscObject)In), &interp));
3121:   PetscCall(MatSetType(interp, MATPREALLOCATOR));
3122:   PetscCall(MatSetSizes(interp, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE));
3123:   PetscCall(MatSetUp(interp));
3124:   for (s = 0; s < 2; ++s) {
3125:     for (field = 0; field < Nf; ++field) {
3126:       PetscObject      obj;
3127:       PetscClassId     id;
3128:       PetscDualSpace   Q = NULL;
3129:       PetscTabulation  T = NULL;
3130:       PetscQuadrature  f;
3131:       const PetscReal *qpoints, *qweights;
3132:       PetscInt         Nc, qNc, Np, fpdim, off, i, d;

3134:       PetscCall(PetscDSGetFieldOffset(prob, field, &off));
3135:       PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3136:       PetscCall(PetscObjectGetClassId(obj, &id));
3137:       if (id == PETSCFE_CLASSID) {
3138:         PetscFE fe = (PetscFE)obj;

3140:         PetscCall(PetscFEGetDualSpace(fe, &Q));
3141:         PetscCall(PetscFEGetNumComponents(fe, &Nc));
3142:         if (s) PetscCall(PetscFECreateTabulation(fe, 1, 1, x, 0, &T));
3143:       } else if (id == PETSCFV_CLASSID) {
3144:         PetscFV fv = (PetscFV)obj;

3146:         PetscCall(PetscFVGetDualSpace(fv, &Q));
3147:         Nc = 1;
3148:       } else SETERRQ(PetscObjectComm((PetscObject)dmc), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, field);
3149:       PetscCall(PetscDualSpaceGetDimension(Q, &fpdim));
3150:       /* For each fine grid cell */
3151:       for (cell = cStart; cell < cEnd; ++cell) {
3152:         PetscInt *findices, *cindices;
3153:         PetscInt  numFIndices, numCIndices;

3155:         PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3156:         PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3157:         PetscCheck(numFIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fine indices %" PetscInt_FMT " != %" PetscInt_FMT " dual basis vecs", numFIndices, totDim);
3158:         for (i = 0; i < fpdim; ++i) {
3159:           Vec                pointVec;
3160:           PetscScalar       *pV;
3161:           PetscSF            coarseCellSF = NULL;
3162:           const PetscSFNode *coarseCells;
3163:           PetscInt           numCoarseCells, cpdim, row = findices[i + off], q, c, j;

3165:           /* Get points from the dual basis functional quadrature */
3166:           PetscCall(PetscDualSpaceGetFunctional(Q, i, &f));
3167:           PetscCall(PetscQuadratureGetData(f, NULL, &qNc, &Np, &qpoints, &qweights));
3168:           PetscCheck(qNc == Nc, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, qNc, Nc);
3169:           PetscCall(VecCreateSeq(PETSC_COMM_SELF, Np * dim, &pointVec));
3170:           PetscCall(VecSetBlockSize(pointVec, dim));
3171:           PetscCall(VecGetArray(pointVec, &pV));
3172:           for (q = 0; q < Np; ++q) {
3173:             const PetscReal xi0[3] = {-1., -1., -1.};

3175:             /* Transform point to real space */
3176:             CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3177:             for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3178:           }
3179:           PetscCall(VecRestoreArray(pointVec, &pV));
3180:           /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3181:           /* OPT: Read this out from preallocation information */
3182:           PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3183:           /* Update preallocation info */
3184:           PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3185:           PetscCheck(numCoarseCells == Np, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3186:           PetscCall(VecGetArray(pointVec, &pV));
3187:           for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3188:             PetscReal       pVReal[3];
3189:             const PetscReal xi0[3] = {-1., -1., -1.};

3191:             PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3192:             if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetDimension((PetscFE)obj, &cpdim));
3193:             else cpdim = 1;

3195:             if (s) {
3196:               /* Transform points from real space to coarse reference space */
3197:               PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3198:               for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3199:               CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);

3201:               if (id == PETSCFE_CLASSID) {
3202:                 /* Evaluate coarse basis on contained point */
3203:                 PetscCall(PetscFEComputeTabulation((PetscFE)obj, 1, x, 0, T));
3204:                 PetscCall(PetscArrayzero(elemMat, cpdim));
3205:                 /* Get elemMat entries by multiplying by weight */
3206:                 for (j = 0; j < cpdim; ++j) {
3207:                   for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * qweights[ccell * qNc + c];
3208:                 }
3209:               } else {
3210:                 for (j = 0; j < cpdim; ++j) {
3211:                   for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * qweights[ccell * qNc + c];
3212:                 }
3213:               }
3214:               if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3215:             }
3216:             /* Update interpolator */
3217:             PetscCheck(numCIndices == totDim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, totDim);
3218:             PetscCall(MatSetValues(interp, 1, &row, cpdim, &cindices[off], elemMat, INSERT_VALUES));
3219:             PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3220:           }
3221:           PetscCall(VecRestoreArray(pointVec, &pV));
3222:           PetscCall(PetscSFDestroy(&coarseCellSF));
3223:           PetscCall(VecDestroy(&pointVec));
3224:         }
3225:         PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3226:       }
3227:       if (s && id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3228:     }
3229:     if (!s) {
3230:       PetscCall(MatAssemblyBegin(interp, MAT_FINAL_ASSEMBLY));
3231:       PetscCall(MatAssemblyEnd(interp, MAT_FINAL_ASSEMBLY));
3232:       PetscCall(MatPreallocatorPreallocate(interp, PETSC_TRUE, In));
3233:       PetscCall(MatDestroy(&interp));
3234:       interp = In;
3235:     }
3236:   }
3237:   PetscCall(PetscFree3(v0, J, invJ));
3238:   PetscCall(PetscFree3(v0c, Jc, invJc));
3239:   PetscCall(PetscFree(elemMat));
3240:   PetscCall(MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY));
3241:   PetscCall(MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY));
3242:   PetscCall(PetscLogEventEnd(DMPLEX_InterpolatorFEM, dmc, dmf, 0, 0));
3243:   PetscFunctionReturn(PETSC_SUCCESS);
3244: }

3246: /*@
3247:   DMPlexComputeMassMatrixGeneral - Form the local portion of the mass matrix from the coarse `DM` to a non-nested fine `DM`.

3249:   Input Parameters:
3250: + dmf  - The fine mesh
3251: . dmc  - The coarse mesh
3252: - user - The user context

3254:   Output Parameter:
3255: . mass - The mass matrix

3257:   Level: developer

3259: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeMassMatrixNested()`, `DMPlexComputeInterpolatorNested()`, `DMPlexComputeInterpolatorGeneral()`
3260: @*/
3261: PetscErrorCode DMPlexComputeMassMatrixGeneral(DM dmc, DM dmf, Mat mass, void *user)
3262: {
3263:   DM_Plex     *mesh = (DM_Plex *)dmf->data;
3264:   const char  *name = "Mass Matrix";
3265:   PetscDS      prob;
3266:   PetscSection fsection, csection, globalFSection, globalCSection;
3267:   PetscHSetIJ  ht;
3268:   PetscLayout  rLayout;
3269:   PetscInt    *dnz, *onz;
3270:   PetscInt     locRows, rStart, rEnd;
3271:   PetscReal   *x, *v0, *J, *invJ, detJ;
3272:   PetscReal   *v0c, *Jc, *invJc, detJc;
3273:   PetscScalar *elemMat;
3274:   PetscInt     dim, Nf, field, totDim, cStart, cEnd, cell, ccell;

3276:   PetscFunctionBegin;
3277:   PetscCall(DMGetCoordinateDim(dmc, &dim));
3278:   PetscCall(DMGetDS(dmc, &prob));
3279:   PetscCall(PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL));
3280:   PetscCall(PetscDSGetNumFields(prob, &Nf));
3281:   PetscCall(PetscMalloc3(dim, &v0, dim * dim, &J, dim * dim, &invJ));
3282:   PetscCall(PetscMalloc3(dim, &v0c, dim * dim, &Jc, dim * dim, &invJc));
3283:   PetscCall(DMGetLocalSection(dmf, &fsection));
3284:   PetscCall(DMGetGlobalSection(dmf, &globalFSection));
3285:   PetscCall(DMGetLocalSection(dmc, &csection));
3286:   PetscCall(DMGetGlobalSection(dmc, &globalCSection));
3287:   PetscCall(DMPlexGetHeightStratum(dmf, 0, &cStart, &cEnd));
3288:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3289:   PetscCall(PetscMalloc1(totDim, &elemMat));

3291:   PetscCall(MatGetLocalSize(mass, &locRows, NULL));
3292:   PetscCall(PetscLayoutCreate(PetscObjectComm((PetscObject)mass), &rLayout));
3293:   PetscCall(PetscLayoutSetLocalSize(rLayout, locRows));
3294:   PetscCall(PetscLayoutSetBlockSize(rLayout, 1));
3295:   PetscCall(PetscLayoutSetUp(rLayout));
3296:   PetscCall(PetscLayoutGetRange(rLayout, &rStart, &rEnd));
3297:   PetscCall(PetscLayoutDestroy(&rLayout));
3298:   PetscCall(PetscCalloc2(locRows, &dnz, locRows, &onz));
3299:   PetscCall(PetscHSetIJCreate(&ht));
3300:   for (field = 0; field < Nf; ++field) {
3301:     PetscObject      obj;
3302:     PetscClassId     id;
3303:     PetscQuadrature  quad;
3304:     const PetscReal *qpoints;
3305:     PetscInt         Nq, Nc, i, d;

3307:     PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3308:     PetscCall(PetscObjectGetClassId(obj, &id));
3309:     if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3310:     else PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3311:     PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, NULL));
3312:     /* For each fine grid cell */
3313:     for (cell = cStart; cell < cEnd; ++cell) {
3314:       Vec                pointVec;
3315:       PetscScalar       *pV;
3316:       PetscSF            coarseCellSF = NULL;
3317:       const PetscSFNode *coarseCells;
3318:       PetscInt           numCoarseCells, q, c;
3319:       PetscInt          *findices, *cindices;
3320:       PetscInt           numFIndices, numCIndices;

3322:       PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3323:       PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3324:       /* Get points from the quadrature */
3325:       PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3326:       PetscCall(VecSetBlockSize(pointVec, dim));
3327:       PetscCall(VecGetArray(pointVec, &pV));
3328:       for (q = 0; q < Nq; ++q) {
3329:         const PetscReal xi0[3] = {-1., -1., -1.};

3331:         /* Transform point to real space */
3332:         CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3333:         for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3334:       }
3335:       PetscCall(VecRestoreArray(pointVec, &pV));
3336:       /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3337:       PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3338:       PetscCall(PetscSFViewFromOptions(coarseCellSF, NULL, "-interp_sf_view"));
3339:       /* Update preallocation info */
3340:       PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3341:       PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3342:       {
3343:         PetscHashIJKey key;
3344:         PetscBool      missing;

3346:         for (i = 0; i < numFIndices; ++i) {
3347:           key.i = findices[i];
3348:           if (key.i >= 0) {
3349:             /* Get indices for coarse elements */
3350:             for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3351:               PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3352:               for (c = 0; c < numCIndices; ++c) {
3353:                 key.j = cindices[c];
3354:                 if (key.j < 0) continue;
3355:                 PetscCall(PetscHSetIJQueryAdd(ht, key, &missing));
3356:                 if (missing) {
3357:                   if ((key.j >= rStart) && (key.j < rEnd)) ++dnz[key.i - rStart];
3358:                   else ++onz[key.i - rStart];
3359:                 }
3360:               }
3361:               PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3362:             }
3363:           }
3364:         }
3365:       }
3366:       PetscCall(PetscSFDestroy(&coarseCellSF));
3367:       PetscCall(VecDestroy(&pointVec));
3368:       PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3369:     }
3370:   }
3371:   PetscCall(PetscHSetIJDestroy(&ht));
3372:   PetscCall(MatXAIJSetPreallocation(mass, 1, dnz, onz, NULL, NULL));
3373:   PetscCall(MatSetOption(mass, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_TRUE));
3374:   PetscCall(PetscFree2(dnz, onz));
3375:   for (field = 0; field < Nf; ++field) {
3376:     PetscObject      obj;
3377:     PetscClassId     id;
3378:     PetscTabulation  T, Tfine;
3379:     PetscQuadrature  quad;
3380:     const PetscReal *qpoints, *qweights;
3381:     PetscInt         Nq, Nc, i, d;

3383:     PetscCall(PetscDSGetDiscretization(prob, field, &obj));
3384:     PetscCall(PetscObjectGetClassId(obj, &id));
3385:     if (id == PETSCFE_CLASSID) {
3386:       PetscCall(PetscFEGetQuadrature((PetscFE)obj, &quad));
3387:       PetscCall(PetscFEGetCellTabulation((PetscFE)obj, 1, &Tfine));
3388:       PetscCall(PetscFECreateTabulation((PetscFE)obj, 1, 1, x, 0, &T));
3389:     } else {
3390:       PetscCall(PetscFVGetQuadrature((PetscFV)obj, &quad));
3391:     }
3392:     PetscCall(PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, &qweights));
3393:     /* For each fine grid cell */
3394:     for (cell = cStart; cell < cEnd; ++cell) {
3395:       Vec                pointVec;
3396:       PetscScalar       *pV;
3397:       PetscSF            coarseCellSF = NULL;
3398:       const PetscSFNode *coarseCells;
3399:       PetscInt           numCoarseCells, cpdim, q, c, j;
3400:       PetscInt          *findices, *cindices;
3401:       PetscInt           numFIndices, numCIndices;

3403:       PetscCall(DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3404:       PetscCall(DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ));
3405:       /* Get points from the quadrature */
3406:       PetscCall(VecCreateSeq(PETSC_COMM_SELF, Nq * dim, &pointVec));
3407:       PetscCall(VecSetBlockSize(pointVec, dim));
3408:       PetscCall(VecGetArray(pointVec, &pV));
3409:       for (q = 0; q < Nq; ++q) {
3410:         const PetscReal xi0[3] = {-1., -1., -1.};

3412:         /* Transform point to real space */
3413:         CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q * dim], x);
3414:         for (d = 0; d < dim; ++d) pV[q * dim + d] = x[d];
3415:       }
3416:       PetscCall(VecRestoreArray(pointVec, &pV));
3417:       /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
3418:       PetscCall(DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF));
3419:       /* Update matrix */
3420:       PetscCall(PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells));
3421:       PetscCheck(numCoarseCells == Nq, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Not all closure points located");
3422:       PetscCall(VecGetArray(pointVec, &pV));
3423:       for (ccell = 0; ccell < numCoarseCells; ++ccell) {
3424:         PetscReal       pVReal[3];
3425:         const PetscReal xi0[3] = {-1., -1., -1.};

3427:         PetscCall(DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3428:         /* Transform points from real space to coarse reference space */
3429:         PetscCall(DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc));
3430:         for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell * dim + d]);
3431:         CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);

3433:         if (id == PETSCFE_CLASSID) {
3434:           PetscFE fe = (PetscFE)obj;

3436:           /* Evaluate coarse basis on contained point */
3437:           PetscCall(PetscFEGetDimension(fe, &cpdim));
3438:           PetscCall(PetscFEComputeTabulation(fe, 1, x, 0, T));
3439:           /* Get elemMat entries by multiplying by weight */
3440:           for (i = 0; i < numFIndices; ++i) {
3441:             PetscCall(PetscArrayzero(elemMat, cpdim));
3442:             for (j = 0; j < cpdim; ++j) {
3443:               for (c = 0; c < Nc; ++c) elemMat[j] += T->T[0][j * Nc + c] * Tfine->T[0][(ccell * numFIndices + i) * Nc + c] * qweights[ccell * Nc + c] * detJ;
3444:             }
3445:             /* Update interpolator */
3446:             if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3447:             PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3448:             PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3449:           }
3450:         } else {
3451:           cpdim = 1;
3452:           for (i = 0; i < numFIndices; ++i) {
3453:             PetscCall(PetscArrayzero(elemMat, cpdim));
3454:             for (j = 0; j < cpdim; ++j) {
3455:               for (c = 0; c < Nc; ++c) elemMat[j] += 1.0 * 1.0 * qweights[ccell * Nc + c] * detJ;
3456:             }
3457:             /* Update interpolator */
3458:             if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat));
3459:             PetscCall(PetscPrintf(PETSC_COMM_SELF, "Nq: %" PetscInt_FMT " %" PetscInt_FMT " Nf: %" PetscInt_FMT " %" PetscInt_FMT " Nc: %" PetscInt_FMT " %" PetscInt_FMT "\n", ccell, Nq, i, numFIndices, j, numCIndices));
3460:             PetscCheck(numCIndices == cpdim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %" PetscInt_FMT " != %" PetscInt_FMT, numCIndices, cpdim);
3461:             PetscCall(MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES));
3462:           }
3463:         }
3464:         PetscCall(DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, PETSC_FALSE, &numCIndices, &cindices, NULL, NULL));
3465:       }
3466:       PetscCall(VecRestoreArray(pointVec, &pV));
3467:       PetscCall(PetscSFDestroy(&coarseCellSF));
3468:       PetscCall(VecDestroy(&pointVec));
3469:       PetscCall(DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, PETSC_FALSE, &numFIndices, &findices, NULL, NULL));
3470:     }
3471:     if (id == PETSCFE_CLASSID) PetscCall(PetscTabulationDestroy(&T));
3472:   }
3473:   PetscCall(PetscFree3(v0, J, invJ));
3474:   PetscCall(PetscFree3(v0c, Jc, invJc));
3475:   PetscCall(PetscFree(elemMat));
3476:   PetscCall(MatAssemblyBegin(mass, MAT_FINAL_ASSEMBLY));
3477:   PetscCall(MatAssemblyEnd(mass, MAT_FINAL_ASSEMBLY));
3478:   PetscFunctionReturn(PETSC_SUCCESS);
3479: }

3481: /*@
3482:   DMPlexComputeInjectorFEM - Compute a mapping from coarse unknowns to fine unknowns

3484:   Input Parameters:
3485: + dmc  - The coarse mesh
3486: . dmf  - The fine mesh
3487: - user - The user context

3489:   Output Parameter:
3490: . sc - The mapping

3492:   Level: developer

3494: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexComputeInterpolatorNested()`
3495: @*/
3496: PetscErrorCode DMPlexComputeInjectorFEM(DM dmc, DM dmf, VecScatter *sc, void *user)
3497: {
3498:   PetscDS      prob;
3499:   PetscFE     *feRef;
3500:   PetscFV     *fvRef;
3501:   Vec          fv, cv;
3502:   IS           fis, cis;
3503:   PetscSection fsection, fglobalSection, csection, cglobalSection;
3504:   PetscInt    *cmap, *cellCIndices, *cellFIndices, *cindices, *findices;
3505:   PetscInt     cTotDim, fTotDim = 0, Nf, f, field, cStart, cEnd, c, dim, d, startC, endC, offsetC, offsetF, m;
3506:   PetscBool   *needAvg;

3508:   PetscFunctionBegin;
3509:   PetscCall(PetscLogEventBegin(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3510:   PetscCall(DMGetDimension(dmf, &dim));
3511:   PetscCall(DMGetLocalSection(dmf, &fsection));
3512:   PetscCall(DMGetGlobalSection(dmf, &fglobalSection));
3513:   PetscCall(DMGetLocalSection(dmc, &csection));
3514:   PetscCall(DMGetGlobalSection(dmc, &cglobalSection));
3515:   PetscCall(PetscSectionGetNumFields(fsection, &Nf));
3516:   PetscCall(DMPlexGetSimplexOrBoxCells(dmc, 0, &cStart, &cEnd));
3517:   PetscCall(DMGetDS(dmc, &prob));
3518:   PetscCall(PetscCalloc3(Nf, &feRef, Nf, &fvRef, Nf, &needAvg));
3519:   for (f = 0; f < Nf; ++f) {
3520:     PetscObject  obj;
3521:     PetscClassId id;
3522:     PetscInt     fNb = 0, Nc = 0;

3524:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
3525:     PetscCall(PetscObjectGetClassId(obj, &id));
3526:     if (id == PETSCFE_CLASSID) {
3527:       PetscFE    fe = (PetscFE)obj;
3528:       PetscSpace sp;
3529:       PetscInt   maxDegree;

3531:       PetscCall(PetscFERefine(fe, &feRef[f]));
3532:       PetscCall(PetscFEGetDimension(feRef[f], &fNb));
3533:       PetscCall(PetscFEGetNumComponents(fe, &Nc));
3534:       PetscCall(PetscFEGetBasisSpace(fe, &sp));
3535:       PetscCall(PetscSpaceGetDegree(sp, NULL, &maxDegree));
3536:       if (!maxDegree) needAvg[f] = PETSC_TRUE;
3537:     } else if (id == PETSCFV_CLASSID) {
3538:       PetscFV        fv = (PetscFV)obj;
3539:       PetscDualSpace Q;

3541:       PetscCall(PetscFVRefine(fv, &fvRef[f]));
3542:       PetscCall(PetscFVGetDualSpace(fvRef[f], &Q));
3543:       PetscCall(PetscDualSpaceGetDimension(Q, &fNb));
3544:       PetscCall(PetscFVGetNumComponents(fv, &Nc));
3545:       needAvg[f] = PETSC_TRUE;
3546:     }
3547:     fTotDim += fNb;
3548:   }
3549:   PetscCall(PetscDSGetTotalDimension(prob, &cTotDim));
3550:   PetscCall(PetscMalloc1(cTotDim, &cmap));
3551:   for (field = 0, offsetC = 0, offsetF = 0; field < Nf; ++field) {
3552:     PetscFE        feC;
3553:     PetscFV        fvC;
3554:     PetscDualSpace QF, QC;
3555:     PetscInt       order = -1, NcF, NcC, fpdim, cpdim;

3557:     if (feRef[field]) {
3558:       PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&feC));
3559:       PetscCall(PetscFEGetNumComponents(feC, &NcC));
3560:       PetscCall(PetscFEGetNumComponents(feRef[field], &NcF));
3561:       PetscCall(PetscFEGetDualSpace(feRef[field], &QF));
3562:       PetscCall(PetscDualSpaceGetOrder(QF, &order));
3563:       PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3564:       PetscCall(PetscFEGetDualSpace(feC, &QC));
3565:       PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3566:     } else {
3567:       PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fvC));
3568:       PetscCall(PetscFVGetNumComponents(fvC, &NcC));
3569:       PetscCall(PetscFVGetNumComponents(fvRef[field], &NcF));
3570:       PetscCall(PetscFVGetDualSpace(fvRef[field], &QF));
3571:       PetscCall(PetscDualSpaceGetDimension(QF, &fpdim));
3572:       PetscCall(PetscFVGetDualSpace(fvC, &QC));
3573:       PetscCall(PetscDualSpaceGetDimension(QC, &cpdim));
3574:     }
3575:     PetscCheck(NcF == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %" PetscInt_FMT " does not match coarse field %" PetscInt_FMT, NcF, NcC);
3576:     for (c = 0; c < cpdim; ++c) {
3577:       PetscQuadrature  cfunc;
3578:       const PetscReal *cqpoints, *cqweights;
3579:       PetscInt         NqcC, NpC;
3580:       PetscBool        found = PETSC_FALSE;

3582:       PetscCall(PetscDualSpaceGetFunctional(QC, c, &cfunc));
3583:       PetscCall(PetscQuadratureGetData(cfunc, NULL, &NqcC, &NpC, &cqpoints, &cqweights));
3584:       PetscCheck(NqcC == NcC, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcC, NcC);
3585:       PetscCheck(NpC == 1 || !feRef[field], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Do not know how to do injection for moments");
3586:       for (f = 0; f < fpdim; ++f) {
3587:         PetscQuadrature  ffunc;
3588:         const PetscReal *fqpoints, *fqweights;
3589:         PetscReal        sum = 0.0;
3590:         PetscInt         NqcF, NpF;

3592:         PetscCall(PetscDualSpaceGetFunctional(QF, f, &ffunc));
3593:         PetscCall(PetscQuadratureGetData(ffunc, NULL, &NqcF, &NpF, &fqpoints, &fqweights));
3594:         PetscCheck(NqcF == NcF, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %" PetscInt_FMT " must match number of field components %" PetscInt_FMT, NqcF, NcF);
3595:         if (NpC != NpF) continue;
3596:         for (d = 0; d < dim; ++d) sum += PetscAbsReal(cqpoints[d] - fqpoints[d]);
3597:         if (sum > 1.0e-9) continue;
3598:         for (d = 0; d < NcC; ++d) sum += PetscAbsReal(cqweights[d] * fqweights[d]);
3599:         if (sum < 1.0e-9) continue;
3600:         cmap[offsetC + c] = offsetF + f;
3601:         found             = PETSC_TRUE;
3602:         break;
3603:       }
3604:       if (!found) {
3605:         /* TODO We really want the average here, but some asshole put VecScatter in the interface */
3606:         if (fvRef[field] || (feRef[field] && order == 0)) {
3607:           cmap[offsetC + c] = offsetF + 0;
3608:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not locate matching functional for injection");
3609:       }
3610:     }
3611:     offsetC += cpdim;
3612:     offsetF += fpdim;
3613:   }
3614:   for (f = 0; f < Nf; ++f) {
3615:     PetscCall(PetscFEDestroy(&feRef[f]));
3616:     PetscCall(PetscFVDestroy(&fvRef[f]));
3617:   }
3618:   PetscCall(PetscFree3(feRef, fvRef, needAvg));

3620:   PetscCall(DMGetGlobalVector(dmf, &fv));
3621:   PetscCall(DMGetGlobalVector(dmc, &cv));
3622:   PetscCall(VecGetOwnershipRange(cv, &startC, &endC));
3623:   PetscCall(PetscSectionGetConstrainedStorageSize(cglobalSection, &m));
3624:   PetscCall(PetscMalloc2(cTotDim, &cellCIndices, fTotDim, &cellFIndices));
3625:   PetscCall(PetscMalloc1(m, &cindices));
3626:   PetscCall(PetscMalloc1(m, &findices));
3627:   for (d = 0; d < m; ++d) cindices[d] = findices[d] = -1;
3628:   for (c = cStart; c < cEnd; ++c) {
3629:     PetscCall(DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, c, cellCIndices, cellFIndices));
3630:     for (d = 0; d < cTotDim; ++d) {
3631:       if ((cellCIndices[d] < startC) || (cellCIndices[d] >= endC)) continue;
3632:       PetscCheck(!(findices[cellCIndices[d] - startC] >= 0) || !(findices[cellCIndices[d] - startC] != cellFIndices[cmap[d]]), PETSC_COMM_SELF, PETSC_ERR_PLIB, "Cell %" PetscInt_FMT " Coarse dof %" PetscInt_FMT " maps to both %" PetscInt_FMT " and %" PetscInt_FMT, c, cindices[cellCIndices[d] - startC], findices[cellCIndices[d] - startC], cellFIndices[cmap[d]]);
3633:       cindices[cellCIndices[d] - startC] = cellCIndices[d];
3634:       findices[cellCIndices[d] - startC] = cellFIndices[cmap[d]];
3635:     }
3636:   }
3637:   PetscCall(PetscFree(cmap));
3638:   PetscCall(PetscFree2(cellCIndices, cellFIndices));

3640:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, cindices, PETSC_OWN_POINTER, &cis));
3641:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, m, findices, PETSC_OWN_POINTER, &fis));
3642:   PetscCall(VecScatterCreate(cv, cis, fv, fis, sc));
3643:   PetscCall(ISDestroy(&cis));
3644:   PetscCall(ISDestroy(&fis));
3645:   PetscCall(DMRestoreGlobalVector(dmf, &fv));
3646:   PetscCall(DMRestoreGlobalVector(dmc, &cv));
3647:   PetscCall(PetscLogEventEnd(DMPLEX_InjectorFEM, dmc, dmf, 0, 0));
3648:   PetscFunctionReturn(PETSC_SUCCESS);
3649: }

3651: /*@C
3652:   DMPlexGetCellFields - Retrieve the field values values for a chunk of cells

3654:   Input Parameters:
3655: + dm     - The `DM`
3656: . cellIS - The cells to include
3657: . locX   - A local vector with the solution fields
3658: . locX_t - A local vector with solution field time derivatives, or NULL
3659: - locA   - A local vector with auxiliary fields, or NULL

3661:   Output Parameters:
3662: + u   - The field coefficients
3663: . u_t - The fields derivative coefficients
3664: - a   - The auxiliary field coefficients

3666:   Level: developer

3668: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3669: @*/
3670: PetscErrorCode DMPlexGetCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3671: {
3672:   DM              plex, plexA = NULL;
3673:   DMEnclosureType encAux;
3674:   PetscSection    section, sectionAux;
3675:   PetscDS         prob;
3676:   const PetscInt *cells;
3677:   PetscInt        cStart, cEnd, numCells, totDim, totDimAux, c;

3679:   PetscFunctionBegin;
3684:   PetscAssertPointer(u, 6);
3685:   PetscAssertPointer(u_t, 7);
3686:   PetscAssertPointer(a, 8);
3687:   PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3688:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3689:   PetscCall(DMGetLocalSection(dm, &section));
3690:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
3691:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
3692:   if (locA) {
3693:     DM      dmAux;
3694:     PetscDS probAux;

3696:     PetscCall(VecGetDM(locA, &dmAux));
3697:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3698:     PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3699:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
3700:     PetscCall(DMGetDS(dmAux, &probAux));
3701:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3702:   }
3703:   numCells = cEnd - cStart;
3704:   PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3705:   if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3706:   else *u_t = NULL;
3707:   if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3708:   else *a = NULL;
3709:   for (c = cStart; c < cEnd; ++c) {
3710:     const PetscInt cell = cells ? cells[c] : c;
3711:     const PetscInt cind = c - cStart;
3712:     PetscScalar   *x = NULL, *x_t = NULL, *ul = *u, *ul_t = *u_t, *al = *a;
3713:     PetscInt       i;

3715:     PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, NULL, &x));
3716:     for (i = 0; i < totDim; ++i) ul[cind * totDim + i] = x[i];
3717:     PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, NULL, &x));
3718:     if (locX_t) {
3719:       PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &x_t));
3720:       for (i = 0; i < totDim; ++i) ul_t[cind * totDim + i] = x_t[i];
3721:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &x_t));
3722:     }
3723:     if (locA) {
3724:       PetscInt subcell;
3725:       PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3726:       PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3727:       for (i = 0; i < totDimAux; ++i) al[cind * totDimAux + i] = x[i];
3728:       PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, NULL, &x));
3729:     }
3730:   }
3731:   PetscCall(DMDestroy(&plex));
3732:   if (locA) PetscCall(DMDestroy(&plexA));
3733:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3734:   PetscFunctionReturn(PETSC_SUCCESS);
3735: }

3737: /*@C
3738:   DMPlexRestoreCellFields - Restore the field values values for a chunk of cells

3740:   Input Parameters:
3741: + dm     - The `DM`
3742: . cellIS - The cells to include
3743: . locX   - A local vector with the solution fields
3744: . locX_t - A local vector with solution field time derivatives, or NULL
3745: - locA   - A local vector with auxiliary fields, or NULL

3747:   Output Parameters:
3748: + u   - The field coefficients
3749: . u_t - The fields derivative coefficients
3750: - a   - The auxiliary field coefficients

3752:   Level: developer

3754: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
3755: @*/
3756: PetscErrorCode DMPlexRestoreCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3757: {
3758:   PetscFunctionBegin;
3759:   PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u));
3760:   if (locX_t) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u_t));
3761:   if (locA) PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, a));
3762:   PetscFunctionReturn(PETSC_SUCCESS);
3763: }

3765: static PetscErrorCode DMPlexGetHybridCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3766: {
3767:   DM              plex, plexA = NULL;
3768:   DMEnclosureType encAux;
3769:   PetscSection    section, sectionAux;
3770:   PetscDS         ds, dsIn;
3771:   const PetscInt *cells;
3772:   PetscInt        cStart, cEnd, numCells, c, totDim, totDimAux, Nf, f;

3774:   PetscFunctionBegin;
3780:   PetscAssertPointer(u, 6);
3781:   PetscAssertPointer(u_t, 7);
3782:   PetscAssertPointer(a, 8);
3783:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3784:   numCells = cEnd - cStart;
3785:   PetscCall(DMPlexConvertPlex(dm, &plex, PETSC_FALSE));
3786:   PetscCall(DMGetLocalSection(dm, &section));
3787:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
3788:   PetscCall(PetscDSGetNumFields(dsIn, &Nf));
3789:   PetscCall(PetscDSGetTotalDimension(dsIn, &totDim));
3790:   if (locA) {
3791:     DM      dmAux;
3792:     PetscDS probAux;

3794:     PetscCall(VecGetDM(locA, &dmAux));
3795:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
3796:     PetscCall(DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE));
3797:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
3798:     PetscCall(DMGetDS(dmAux, &probAux));
3799:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
3800:   }
3801:   PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u));
3802:   if (locX_t) PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, u_t));
3803:   else {
3804:     *u_t = NULL;
3805:   }
3806:   if (locA) PetscCall(DMGetWorkArray(dm, numCells * totDimAux, MPIU_SCALAR, a));
3807:   else {
3808:     *a = NULL;
3809:   }
3810:   // Loop over cohesive cells
3811:   for (c = cStart; c < cEnd; ++c) {
3812:     const PetscInt  cell = cells ? cells[c] : c;
3813:     const PetscInt  cind = c - cStart;
3814:     PetscScalar    *xf = NULL, *xc = NULL, *x = NULL, *xf_t = NULL, *xc_t = NULL;
3815:     PetscScalar    *ul = &(*u)[cind * totDim], *ul_t = PetscSafePointerPlusOffset(*u_t, cind * totDim);
3816:     const PetscInt *cone, *ornt;
3817:     PetscInt        Nx = 0, Nxf, s;

3819:     PetscCall(DMPlexGetCone(dm, cell, &cone));
3820:     PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
3821:     // Put in cohesive unknowns
3822:     PetscCall(DMPlexVecGetClosure(plex, section, locX, cell, &Nxf, &xf));
3823:     if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &xf_t));
3824:     for (f = 0; f < Nf; ++f) {
3825:       PetscInt  fdofIn, foff, foffIn;
3826:       PetscBool cohesive;

3828:       PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3829:       if (!cohesive) continue;
3830:       PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3831:       PetscCall(PetscDSGetFieldOffsetCohesive(ds, f, &foff));
3832:       PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3833:       for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + i] = xf[foff + i];
3834:       if (locX_t)
3835:         for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + i] = xf_t[foff + i];
3836:       Nx += fdofIn;
3837:     }
3838:     PetscCall(DMPlexVecRestoreClosure(plex, section, locX, cell, &Nxf, &xf));
3839:     if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &xf_t));
3840:     // Loop over sides of surface
3841:     for (s = 0; s < 2; ++s) {
3842:       const PetscInt *support;
3843:       const PetscInt  face = cone[s];
3844:       PetscInt        ssize, ncell, Nxc;

3846:       // I don't think I need the face to have 0 orientation in the hybrid cell
3847:       //PetscCheck(!ornt[s], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", face, cell, ornt[s]);
3848:       PetscCall(DMPlexGetSupport(dm, face, &support));
3849:       PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
3850:       if (support[0] == cell) ncell = support[1];
3851:       else if (support[1] == cell) ncell = support[0];
3852:       else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
3853:       // Get closure of both face and cell, stick in cell for normal fields and face for cohesive fields
3854:       PetscCall(DMPlexVecGetClosure(plex, section, locX, ncell, &Nxc, &xc));
3855:       if (locX_t) PetscCall(DMPlexVecGetClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3856:       for (f = 0; f < Nf; ++f) {
3857:         PetscInt  fdofIn, foffIn;
3858:         PetscBool cohesive;

3860:         PetscCall(PetscDSGetCohesive(dsIn, f, &cohesive));
3861:         if (cohesive) continue;
3862:         PetscCall(PetscDSGetFieldSize(dsIn, f, &fdofIn));
3863:         PetscCall(PetscDSGetFieldOffsetCohesive(dsIn, f, &foffIn));
3864:         for (PetscInt i = 0; i < fdofIn; ++i) ul[foffIn + s * fdofIn + i] = xc[foffIn + i];
3865:         if (locX_t)
3866:           for (PetscInt i = 0; i < fdofIn; ++i) ul_t[foffIn + s * fdofIn + i] = xc_t[foffIn + i];
3867:         Nx += fdofIn;
3868:       }
3869:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX, ncell, &Nxc, &xc));
3870:       if (locX_t) PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, ncell, NULL, &xc_t));
3871:     }
3872:     PetscCheck(Nx == totDim, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for cell %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, cell, totDim);

3874:     if (locA) {
3875:       PetscScalar *al = &(*a)[cind * totDimAux];
3876:       PetscInt     subcell;

3878:       PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, cell, &subcell));
3879:       PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3880:       PetscCheck(Nx == totDimAux, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subcell %" PetscInt_FMT "does not match DS size %" PetscInt_FMT, Nx, subcell, totDimAux);
3881:       for (PetscInt i = 0; i < totDimAux; ++i) al[i] = x[i];
3882:       PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, &Nx, &x));
3883:     }
3884:   }
3885:   PetscCall(DMDestroy(&plex));
3886:   PetscCall(DMDestroy(&plexA));
3887:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3888:   PetscFunctionReturn(PETSC_SUCCESS);
3889: }

3891: /*
3892:   DMPlexGetHybridFields - Get the field values for the negative side (s = 0) and positive side (s = 1) of the interface

3894:   Input Parameters:
3895: + dm      - The full domain DM
3896: . dmX     - An array of DM for the field, say an auxiliary DM, indexed by s
3897: . dsX     - An array of PetscDS for the field, indexed by s
3898: . cellIS  - The interface cells for which we want values
3899: . locX    - An array of local vectors with the field values, indexed by s
3900: - useCell - Flag to have values come from neighboring cell rather than endcap face

3902:   Output Parameter:
3903: . x       - An array of field values, indexed by s

3905:   Note:
3906:   The arrays in `x` will be allocated using `DMGetWorkArray()`, and must be returned using `DMPlexRestoreHybridFields()`.

3908:   Level: advanced

3910: .seealso: `DMPlexRestoreHybridFields()`, `DMGetWorkArray()`
3911: */
3912: static PetscErrorCode DMPlexGetHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
3913: {
3914:   DM              plexX[2];
3915:   DMEnclosureType encX[2];
3916:   PetscSection    sectionX[2];
3917:   const PetscInt *cells;
3918:   PetscInt        cStart, cEnd, numCells, c, s, totDimX[2];

3920:   PetscFunctionBegin;
3921:   PetscAssertPointer(locX, 5);
3922:   if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
3923:   PetscAssertPointer(dmX, 2);
3924:   PetscAssertPointer(dsX, 3);
3926:   PetscAssertPointer(x, 7);
3927:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
3928:   numCells = cEnd - cStart;
3929:   for (s = 0; s < 2; ++s) {
3933:     PetscCall(DMPlexConvertPlex(dmX[s], &plexX[s], PETSC_FALSE));
3934:     PetscCall(DMGetEnclosureRelation(dmX[s], dm, &encX[s]));
3935:     PetscCall(DMGetLocalSection(dmX[s], &sectionX[s]));
3936:     PetscCall(PetscDSGetTotalDimension(dsX[s], &totDimX[s]));
3937:     PetscCall(DMGetWorkArray(dmX[s], numCells * totDimX[s], MPIU_SCALAR, &x[s]));
3938:   }
3939:   for (c = cStart; c < cEnd; ++c) {
3940:     const PetscInt  cell = cells ? cells[c] : c;
3941:     const PetscInt  cind = c - cStart;
3942:     const PetscInt *cone, *ornt;

3944:     PetscCall(DMPlexGetCone(dm, cell, &cone));
3945:     PetscCall(DMPlexGetConeOrientation(dm, cell, &ornt));
3946:     //PetscCheck(!ornt[0], PETSC_COMM_SELF, PETSC_ERR_SUP, "Face %" PetscInt_FMT " in hybrid cell %" PetscInt_FMT " has orientation %" PetscInt_FMT " != 0", cone[0], cell, ornt[0]);
3947:     for (s = 0; s < 2; ++s) {
3948:       const PetscInt tdX     = totDimX[s];
3949:       PetscScalar   *closure = NULL, *xl = &x[s][cind * tdX];
3950:       PetscInt       face = cone[s], point = face, subpoint, Nx, i;

3952:       if (useCell) {
3953:         const PetscInt *support;
3954:         PetscInt        ssize;

3956:         PetscCall(DMPlexGetSupport(dm, face, &support));
3957:         PetscCall(DMPlexGetSupportSize(dm, face, &ssize));
3958:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", face, cell, ssize);
3959:         if (support[0] == cell) point = support[1];
3960:         else if (support[1] == cell) point = support[0];
3961:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", face, cell);
3962:       }
3963:       PetscCall(DMGetEnclosurePoint(plexX[s], dm, encX[s], point, &subpoint));
3964:       PetscCall(DMPlexVecGetOrientedClosure_Internal(plexX[s], sectionX[s], PETSC_FALSE, locX[s], subpoint, ornt[s], &Nx, &closure));
3965:       PetscCheck(Nx == tdX, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Closure size %" PetscInt_FMT " for subpoint %" PetscInt_FMT " does not match DS size %" PetscInt_FMT, Nx, subpoint, tdX);
3966:       for (i = 0; i < Nx; ++i) xl[i] = closure[i];
3967:       PetscCall(DMPlexVecRestoreClosure(plexX[s], sectionX[s], locX[s], subpoint, &Nx, &closure));
3968:     }
3969:   }
3970:   for (s = 0; s < 2; ++s) PetscCall(DMDestroy(&plexX[s]));
3971:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
3972:   PetscFunctionReturn(PETSC_SUCCESS);
3973: }

3975: static PetscErrorCode DMPlexRestoreHybridFields(DM dm, DM dmX[], PetscDS dsX[], IS cellIS, Vec locX[], PetscBool useCell, PetscScalar *x[])
3976: {
3977:   PetscFunctionBegin;
3978:   if (!locX[0] || !locX[1]) PetscFunctionReturn(PETSC_SUCCESS);
3979:   PetscCall(DMRestoreWorkArray(dmX[0], 0, MPIU_SCALAR, &x[0]));
3980:   PetscCall(DMRestoreWorkArray(dmX[1], 0, MPIU_SCALAR, &x[1]));
3981:   PetscFunctionReturn(PETSC_SUCCESS);
3982: }

3984: /*@C
3985:   DMPlexGetFaceFields - Retrieve the field values values for a chunk of faces

3987:   Input Parameters:
3988: + dm           - The `DM`
3989: . fStart       - The first face to include
3990: . fEnd         - The first face to exclude
3991: . locX         - A local vector with the solution fields
3992: . locX_t       - A local vector with solution field time derivatives, or NULL
3993: . faceGeometry - A local vector with face geometry
3994: . cellGeometry - A local vector with cell geometry
3995: - locGrad      - A local vector with field gradients, or NULL

3997:   Output Parameters:
3998: + Nface - The number of faces with field values
3999: . uL    - The field values at the left side of the face
4000: - uR    - The field values at the right side of the face

4002:   Level: developer

4004: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
4005: @*/
4006: PetscErrorCode DMPlexGetFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
4007: {
4008:   DM                 dmFace, dmCell, dmGrad = NULL;
4009:   PetscSection       section;
4010:   PetscDS            prob;
4011:   DMLabel            ghostLabel;
4012:   const PetscScalar *facegeom, *cellgeom, *x, *lgrad;
4013:   PetscBool         *isFE;
4014:   PetscInt           dim, Nf, f, Nc, numFaces = fEnd - fStart, iface, face;

4016:   PetscFunctionBegin;
4023:   PetscAssertPointer(uL, 10);
4024:   PetscAssertPointer(uR, 11);
4025:   PetscCall(DMGetDimension(dm, &dim));
4026:   PetscCall(DMGetDS(dm, &prob));
4027:   PetscCall(DMGetLocalSection(dm, &section));
4028:   PetscCall(PetscDSGetNumFields(prob, &Nf));
4029:   PetscCall(PetscDSGetTotalComponents(prob, &Nc));
4030:   PetscCall(PetscMalloc1(Nf, &isFE));
4031:   for (f = 0; f < Nf; ++f) {
4032:     PetscObject  obj;
4033:     PetscClassId id;

4035:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4036:     PetscCall(PetscObjectGetClassId(obj, &id));
4037:     if (id == PETSCFE_CLASSID) {
4038:       isFE[f] = PETSC_TRUE;
4039:     } else if (id == PETSCFV_CLASSID) {
4040:       isFE[f] = PETSC_FALSE;
4041:     } else {
4042:       isFE[f] = PETSC_FALSE;
4043:     }
4044:   }
4045:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4046:   PetscCall(VecGetArrayRead(locX, &x));
4047:   PetscCall(VecGetDM(faceGeometry, &dmFace));
4048:   PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
4049:   PetscCall(VecGetDM(cellGeometry, &dmCell));
4050:   PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
4051:   if (locGrad) {
4052:     PetscCall(VecGetDM(locGrad, &dmGrad));
4053:     PetscCall(VecGetArrayRead(locGrad, &lgrad));
4054:   }
4055:   PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uL));
4056:   PetscCall(DMGetWorkArray(dm, numFaces * Nc, MPIU_SCALAR, uR));
4057:   /* Right now just eat the extra work for FE (could make a cell loop) */
4058:   for (face = fStart, iface = 0; face < fEnd; ++face) {
4059:     const PetscInt  *cells;
4060:     PetscFVFaceGeom *fg;
4061:     PetscFVCellGeom *cgL, *cgR;
4062:     PetscScalar     *xL, *xR, *gL, *gR;
4063:     PetscScalar     *uLl = *uL, *uRl = *uR;
4064:     PetscInt         ghost, nsupp, nchild;

4066:     PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
4067:     PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
4068:     PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
4069:     if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
4070:     PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
4071:     PetscCall(DMPlexGetSupport(dm, face, &cells));
4072:     PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
4073:     PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
4074:     for (f = 0; f < Nf; ++f) {
4075:       PetscInt off;

4077:       PetscCall(PetscDSGetComponentOffset(prob, f, &off));
4078:       if (isFE[f]) {
4079:         const PetscInt *cone;
4080:         PetscInt        comp, coneSizeL, coneSizeR, faceLocL, faceLocR, ldof, rdof, d;

4082:         xL = xR = NULL;
4083:         PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
4084:         PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[0], &ldof, (PetscScalar **)&xL));
4085:         PetscCall(DMPlexVecGetClosure(dm, section, locX, cells[1], &rdof, (PetscScalar **)&xR));
4086:         PetscCall(DMPlexGetCone(dm, cells[0], &cone));
4087:         PetscCall(DMPlexGetConeSize(dm, cells[0], &coneSizeL));
4088:         for (faceLocL = 0; faceLocL < coneSizeL; ++faceLocL)
4089:           if (cone[faceLocL] == face) break;
4090:         PetscCall(DMPlexGetCone(dm, cells[1], &cone));
4091:         PetscCall(DMPlexGetConeSize(dm, cells[1], &coneSizeR));
4092:         for (faceLocR = 0; faceLocR < coneSizeR; ++faceLocR)
4093:           if (cone[faceLocR] == face) break;
4094:         PetscCheck(faceLocL != coneSizeL || faceLocR != coneSizeR, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not find face %" PetscInt_FMT " in cone of cell %" PetscInt_FMT " or cell %" PetscInt_FMT, face, cells[0], cells[1]);
4095:         /* Check that FEM field has values in the right cell (sometimes its an FV ghost cell) */
4096:         /* TODO: this is a hack that might not be right for nonconforming */
4097:         if (faceLocL < coneSizeL) {
4098:           PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocL, xL, &uLl[iface * Nc + off]));
4099:           if (rdof == ldof && faceLocR < coneSizeR) PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
4100:           else {
4101:             for (d = 0; d < comp; ++d) uRl[iface * Nc + off + d] = uLl[iface * Nc + off + d];
4102:           }
4103:         } else {
4104:           PetscCall(PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface * Nc + off]));
4105:           PetscCall(PetscSectionGetFieldComponents(section, f, &comp));
4106:           for (d = 0; d < comp; ++d) uLl[iface * Nc + off + d] = uRl[iface * Nc + off + d];
4107:         }
4108:         PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[0], &ldof, (PetscScalar **)&xL));
4109:         PetscCall(DMPlexVecRestoreClosure(dm, section, locX, cells[1], &rdof, (PetscScalar **)&xR));
4110:       } else {
4111:         PetscFV  fv;
4112:         PetscInt numComp, c;

4114:         PetscCall(PetscDSGetDiscretization(prob, f, (PetscObject *)&fv));
4115:         PetscCall(PetscFVGetNumComponents(fv, &numComp));
4116:         PetscCall(DMPlexPointLocalFieldRead(dm, cells[0], f, x, &xL));
4117:         PetscCall(DMPlexPointLocalFieldRead(dm, cells[1], f, x, &xR));
4118:         if (dmGrad) {
4119:           PetscReal dxL[3], dxR[3];

4121:           PetscCall(DMPlexPointLocalRead(dmGrad, cells[0], lgrad, &gL));
4122:           PetscCall(DMPlexPointLocalRead(dmGrad, cells[1], lgrad, &gR));
4123:           DMPlex_WaxpyD_Internal(dim, -1, cgL->centroid, fg->centroid, dxL);
4124:           DMPlex_WaxpyD_Internal(dim, -1, cgR->centroid, fg->centroid, dxR);
4125:           for (c = 0; c < numComp; ++c) {
4126:             uLl[iface * Nc + off + c] = xL[c] + DMPlex_DotD_Internal(dim, &gL[c * dim], dxL);
4127:             uRl[iface * Nc + off + c] = xR[c] + DMPlex_DotD_Internal(dim, &gR[c * dim], dxR);
4128:           }
4129:         } else {
4130:           for (c = 0; c < numComp; ++c) {
4131:             uLl[iface * Nc + off + c] = xL[c];
4132:             uRl[iface * Nc + off + c] = xR[c];
4133:           }
4134:         }
4135:       }
4136:     }
4137:     ++iface;
4138:   }
4139:   *Nface = iface;
4140:   PetscCall(VecRestoreArrayRead(locX, &x));
4141:   PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
4142:   PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
4143:   if (locGrad) PetscCall(VecRestoreArrayRead(locGrad, &lgrad));
4144:   PetscCall(PetscFree(isFE));
4145:   PetscFunctionReturn(PETSC_SUCCESS);
4146: }

4148: /*@C
4149:   DMPlexRestoreFaceFields - Restore the field values values for a chunk of faces

4151:   Input Parameters:
4152: + dm           - The `DM`
4153: . fStart       - The first face to include
4154: . fEnd         - The first face to exclude
4155: . locX         - A local vector with the solution fields
4156: . locX_t       - A local vector with solution field time derivatives, or NULL
4157: . faceGeometry - A local vector with face geometry
4158: . cellGeometry - A local vector with cell geometry
4159: - locGrad      - A local vector with field gradients, or NULL

4161:   Output Parameters:
4162: + Nface - The number of faces with field values
4163: . uL    - The field values at the left side of the face
4164: - uR    - The field values at the right side of the face

4166:   Level: developer

4168: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4169: @*/
4170: PetscErrorCode DMPlexRestoreFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
4171: {
4172:   PetscFunctionBegin;
4173:   PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uL));
4174:   PetscCall(DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uR));
4175:   PetscFunctionReturn(PETSC_SUCCESS);
4176: }

4178: /*@C
4179:   DMPlexGetFaceGeometry - Retrieve the geometric values for a chunk of faces

4181:   Input Parameters:
4182: + dm           - The `DM`
4183: . fStart       - The first face to include
4184: . fEnd         - The first face to exclude
4185: . faceGeometry - A local vector with face geometry
4186: - cellGeometry - A local vector with cell geometry

4188:   Output Parameters:
4189: + Nface - The number of faces with field values
4190: . fgeom - The extract the face centroid and normal
4191: - vol   - The cell volume

4193:   Level: developer

4195: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetCellFields()`
4196: @*/
4197: PetscErrorCode DMPlexGetFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
4198: {
4199:   DM                 dmFace, dmCell;
4200:   DMLabel            ghostLabel;
4201:   const PetscScalar *facegeom, *cellgeom;
4202:   PetscInt           dim, numFaces = fEnd - fStart, iface, face;

4204:   PetscFunctionBegin;
4208:   PetscAssertPointer(fgeom, 7);
4209:   PetscAssertPointer(vol, 8);
4210:   PetscCall(DMGetDimension(dm, &dim));
4211:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4212:   PetscCall(VecGetDM(faceGeometry, &dmFace));
4213:   PetscCall(VecGetArrayRead(faceGeometry, &facegeom));
4214:   PetscCall(VecGetDM(cellGeometry, &dmCell));
4215:   PetscCall(VecGetArrayRead(cellGeometry, &cellgeom));
4216:   PetscCall(PetscMalloc1(numFaces, fgeom));
4217:   PetscCall(DMGetWorkArray(dm, numFaces * 2, MPIU_SCALAR, vol));
4218:   for (face = fStart, iface = 0; face < fEnd; ++face) {
4219:     const PetscInt  *cells;
4220:     PetscFVFaceGeom *fg;
4221:     PetscFVCellGeom *cgL, *cgR;
4222:     PetscFVFaceGeom *fgeoml = *fgeom;
4223:     PetscReal       *voll   = *vol;
4224:     PetscInt         ghost, d, nchild, nsupp;

4226:     PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
4227:     PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
4228:     PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
4229:     if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
4230:     PetscCall(DMPlexPointLocalRead(dmFace, face, facegeom, &fg));
4231:     PetscCall(DMPlexGetSupport(dm, face, &cells));
4232:     PetscCall(DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL));
4233:     PetscCall(DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR));
4234:     for (d = 0; d < dim; ++d) {
4235:       fgeoml[iface].centroid[d] = fg->centroid[d];
4236:       fgeoml[iface].normal[d]   = fg->normal[d];
4237:     }
4238:     voll[iface * 2 + 0] = cgL->volume;
4239:     voll[iface * 2 + 1] = cgR->volume;
4240:     ++iface;
4241:   }
4242:   *Nface = iface;
4243:   PetscCall(VecRestoreArrayRead(faceGeometry, &facegeom));
4244:   PetscCall(VecRestoreArrayRead(cellGeometry, &cellgeom));
4245:   PetscFunctionReturn(PETSC_SUCCESS);
4246: }

4248: /*@C
4249:   DMPlexRestoreFaceGeometry - Restore the field values values for a chunk of faces

4251:   Input Parameters:
4252: + dm           - The `DM`
4253: . fStart       - The first face to include
4254: . fEnd         - The first face to exclude
4255: . faceGeometry - A local vector with face geometry
4256: - cellGeometry - A local vector with cell geometry

4258:   Output Parameters:
4259: + Nface - The number of faces with field values
4260: . fgeom - The extract the face centroid and normal
4261: - vol   - The cell volume

4263:   Level: developer

4265: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetFaceFields()`
4266: @*/
4267: PetscErrorCode DMPlexRestoreFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
4268: {
4269:   PetscFunctionBegin;
4270:   PetscCall(PetscFree(*fgeom));
4271:   PetscCall(DMRestoreWorkArray(dm, 0, MPIU_REAL, vol));
4272:   PetscFunctionReturn(PETSC_SUCCESS);
4273: }

4275: PetscErrorCode DMSNESGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
4276: {
4277:   char           composeStr[33] = {0};
4278:   PetscObjectId  id;
4279:   PetscContainer container;

4281:   PetscFunctionBegin;
4282:   PetscCall(PetscObjectGetId((PetscObject)quad, &id));
4283:   PetscCall(PetscSNPrintf(composeStr, 32, "DMSNESGetFEGeom_%" PetscInt64_FMT "\n", id));
4284:   PetscCall(PetscObjectQuery((PetscObject)pointIS, composeStr, (PetscObject *)&container));
4285:   if (container) {
4286:     PetscCall(PetscContainerGetPointer(container, (void **)geom));
4287:   } else {
4288:     PetscCall(DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom));
4289:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
4290:     PetscCall(PetscContainerSetPointer(container, (void *)*geom));
4291:     PetscCall(PetscContainerSetUserDestroy(container, PetscContainerUserDestroy_PetscFEGeom));
4292:     PetscCall(PetscObjectCompose((PetscObject)pointIS, composeStr, (PetscObject)container));
4293:     PetscCall(PetscContainerDestroy(&container));
4294:   }
4295:   PetscFunctionReturn(PETSC_SUCCESS);
4296: }

4298: PetscErrorCode DMSNESRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
4299: {
4300:   PetscFunctionBegin;
4301:   *geom = NULL;
4302:   PetscFunctionReturn(PETSC_SUCCESS);
4303: }

4305: PetscErrorCode DMPlexComputeResidual_Patch_Internal(DM dm, PetscSection section, IS cellIS, PetscReal t, Vec locX, Vec locX_t, Vec locF, void *user)
4306: {
4307:   DM_Plex        *mesh       = (DM_Plex *)dm->data;
4308:   const char     *name       = "Residual";
4309:   DM              dmAux      = NULL;
4310:   DMLabel         ghostLabel = NULL;
4311:   PetscDS         prob       = NULL;
4312:   PetscDS         probAux    = NULL;
4313:   PetscBool       useFEM     = PETSC_FALSE;
4314:   PetscBool       isImplicit = (locX_t || t == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
4315:   DMField         coordField = NULL;
4316:   Vec             locA;
4317:   PetscScalar    *u = NULL, *u_t, *a, *uL = NULL, *uR = NULL;
4318:   IS              chunkIS;
4319:   const PetscInt *cells;
4320:   PetscInt        cStart, cEnd, numCells;
4321:   PetscInt        Nf, f, totDim, totDimAux, numChunks, cellChunkSize, chunk, fStart, fEnd;
4322:   PetscInt        maxDegree = PETSC_INT_MAX;
4323:   PetscFormKey    key;
4324:   PetscQuadrature affineQuad = NULL, *quads = NULL;
4325:   PetscFEGeom    *affineGeom = NULL, **geoms = NULL;

4327:   PetscFunctionBegin;
4328:   PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4329:   /* FEM+FVM */
4330:   /* 1: Get sizes from dm and dmAux */
4331:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
4332:   PetscCall(DMGetDS(dm, &prob));
4333:   PetscCall(PetscDSGetNumFields(prob, &Nf));
4334:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4335:   PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &locA));
4336:   if (locA) {
4337:     PetscCall(VecGetDM(locA, &dmAux));
4338:     PetscCall(DMGetDS(dmAux, &probAux));
4339:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4340:   }
4341:   /* 2: Get geometric data */
4342:   for (f = 0; f < Nf; ++f) {
4343:     PetscObject  obj;
4344:     PetscClassId id;
4345:     PetscBool    fimp;

4347:     PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4348:     if (isImplicit != fimp) continue;
4349:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4350:     PetscCall(PetscObjectGetClassId(obj, &id));
4351:     if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
4352:     PetscCheck(id != PETSCFV_CLASSID, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Use of FVM with PCPATCH not yet implemented");
4353:   }
4354:   if (useFEM) {
4355:     PetscCall(DMGetCoordinateField(dm, &coordField));
4356:     PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4357:     if (maxDegree <= 1) {
4358:       PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
4359:       if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4360:     } else {
4361:       PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
4362:       for (f = 0; f < Nf; ++f) {
4363:         PetscObject  obj;
4364:         PetscClassId id;
4365:         PetscBool    fimp;

4367:         PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4368:         if (isImplicit != fimp) continue;
4369:         PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4370:         PetscCall(PetscObjectGetClassId(obj, &id));
4371:         if (id == PETSCFE_CLASSID) {
4372:           PetscFE fe = (PetscFE)obj;

4374:           PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
4375:           PetscCall(PetscObjectReference((PetscObject)quads[f]));
4376:           PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4377:         }
4378:       }
4379:     }
4380:   }
4381:   /* Loop over chunks */
4382:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4383:   PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
4384:   if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
4385:   numCells      = cEnd - cStart;
4386:   numChunks     = 1;
4387:   cellChunkSize = numCells / numChunks;
4388:   numChunks     = PetscMin(1, numCells);
4389:   key.label     = NULL;
4390:   key.value     = 0;
4391:   key.part      = 0;
4392:   for (chunk = 0; chunk < numChunks; ++chunk) {
4393:     PetscScalar     *elemVec, *fluxL = NULL, *fluxR = NULL;
4394:     PetscReal       *vol   = NULL;
4395:     PetscFVFaceGeom *fgeom = NULL;
4396:     PetscInt         cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
4397:     PetscInt         numFaces = 0;

4399:     /* Extract field coefficients */
4400:     if (useFEM) {
4401:       PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
4402:       PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4403:       PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4404:       PetscCall(PetscArrayzero(elemVec, numCells * totDim));
4405:     }
4406:     /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
4407:     /* Loop over fields */
4408:     for (f = 0; f < Nf; ++f) {
4409:       PetscObject  obj;
4410:       PetscClassId id;
4411:       PetscBool    fimp;
4412:       PetscInt     numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;

4414:       key.field = f;
4415:       PetscCall(PetscDSGetImplicit(prob, f, &fimp));
4416:       if (isImplicit != fimp) continue;
4417:       PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4418:       PetscCall(PetscObjectGetClassId(obj, &id));
4419:       if (id == PETSCFE_CLASSID) {
4420:         PetscFE         fe        = (PetscFE)obj;
4421:         PetscFEGeom    *geom      = affineGeom ? affineGeom : geoms[f];
4422:         PetscFEGeom    *chunkGeom = NULL;
4423:         PetscQuadrature quad      = affineQuad ? affineQuad : quads[f];
4424:         PetscInt        Nq, Nb;

4426:         PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4427:         PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
4428:         PetscCall(PetscFEGetDimension(fe, &Nb));
4429:         blockSize = Nb;
4430:         batchSize = numBlocks * blockSize;
4431:         PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4432:         numChunks = numCells / (numBatches * batchSize);
4433:         Ne        = numChunks * numBatches * batchSize;
4434:         Nr        = numCells % (numBatches * batchSize);
4435:         offset    = numCells - Nr;
4436:         /* Integrate FE residual to get elemVec (need fields at quadrature points) */
4437:         /*   For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
4438:         PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
4439:         PetscCall(PetscFEIntegrateResidual(prob, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4440:         PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
4441:         PetscCall(PetscFEIntegrateResidual(prob, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, &elemVec[offset * totDim]));
4442:         PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
4443:       } else if (id == PETSCFV_CLASSID) {
4444:         PetscFV fv = (PetscFV)obj;

4446:         Ne = numFaces;
4447:         /* Riemann solve over faces (need fields at face centroids) */
4448:         /*   We need to evaluate FE fields at those coordinates */
4449:         PetscCall(PetscFVIntegrateRHSFunction(fv, prob, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
4450:       } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
4451:     }
4452:     /* Loop over domain */
4453:     if (useFEM) {
4454:       /* Add elemVec to locX */
4455:       for (c = cS; c < cE; ++c) {
4456:         const PetscInt cell = cells ? cells[c] : c;
4457:         const PetscInt cind = c - cStart;

4459:         if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
4460:         if (ghostLabel) {
4461:           PetscInt ghostVal;

4463:           PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4464:           if (ghostVal > 0) continue;
4465:         }
4466:         PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
4467:       }
4468:     }
4469:     /* Handle time derivative */
4470:     if (locX_t) {
4471:       PetscScalar *x_t, *fa;

4473:       PetscCall(VecGetArray(locF, &fa));
4474:       PetscCall(VecGetArray(locX_t, &x_t));
4475:       for (f = 0; f < Nf; ++f) {
4476:         PetscFV      fv;
4477:         PetscObject  obj;
4478:         PetscClassId id;
4479:         PetscInt     pdim, d;

4481:         PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4482:         PetscCall(PetscObjectGetClassId(obj, &id));
4483:         if (id != PETSCFV_CLASSID) continue;
4484:         fv = (PetscFV)obj;
4485:         PetscCall(PetscFVGetNumComponents(fv, &pdim));
4486:         for (c = cS; c < cE; ++c) {
4487:           const PetscInt cell = cells ? cells[c] : c;
4488:           PetscScalar   *u_t, *r;

4490:           if (ghostLabel) {
4491:             PetscInt ghostVal;

4493:             PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
4494:             if (ghostVal > 0) continue;
4495:           }
4496:           PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
4497:           PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
4498:           for (d = 0; d < pdim; ++d) r[d] += u_t[d];
4499:         }
4500:       }
4501:       PetscCall(VecRestoreArray(locX_t, &x_t));
4502:       PetscCall(VecRestoreArray(locF, &fa));
4503:     }
4504:     if (useFEM) {
4505:       PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
4506:       PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
4507:     }
4508:   }
4509:   if (useFEM) PetscCall(ISDestroy(&chunkIS));
4510:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
4511:   /* TODO Could include boundary residual here (see DMPlexComputeResidual_Internal) */
4512:   if (useFEM) {
4513:     if (maxDegree <= 1) {
4514:       PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
4515:       PetscCall(PetscQuadratureDestroy(&affineQuad));
4516:     } else {
4517:       for (f = 0; f < Nf; ++f) {
4518:         PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
4519:         PetscCall(PetscQuadratureDestroy(&quads[f]));
4520:       }
4521:       PetscCall(PetscFree2(quads, geoms));
4522:     }
4523:   }
4524:   PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
4525:   PetscFunctionReturn(PETSC_SUCCESS);
4526: }

4528: /*
4529:   We always assemble JacP, and if the matrix is different from Jac and two different sets of point functions are provided, we also assemble Jac

4531:   X   - The local solution vector
4532:   X_t - The local solution time derivative vector, or NULL
4533: */
4534: PetscErrorCode DMPlexComputeJacobian_Patch_Internal(DM dm, PetscSection section, PetscSection globalSection, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *ctx)
4535: {
4536:   DM_Plex        *mesh = (DM_Plex *)dm->data;
4537:   const char     *name = "Jacobian", *nameP = "JacobianPre";
4538:   DM              dmAux = NULL;
4539:   PetscDS         prob, probAux = NULL;
4540:   PetscSection    sectionAux = NULL;
4541:   Vec             A;
4542:   DMField         coordField;
4543:   PetscFEGeom    *cgeomFEM;
4544:   PetscQuadrature qGeom = NULL;
4545:   Mat             J = Jac, JP = JacP;
4546:   PetscScalar    *work, *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL, *elemMatD = NULL;
4547:   PetscBool       hasJac, hasPrec, hasDyn, assembleJac, *isFE, hasFV = PETSC_FALSE;
4548:   const PetscInt *cells;
4549:   PetscFormKey    key;
4550:   PetscInt        Nf, fieldI, fieldJ, maxDegree, numCells, cStart, cEnd, numChunks, chunkSize, chunk, totDim, totDimAux = 0, sz, wsz, off = 0, offCell = 0;

4552:   PetscFunctionBegin;
4553:   PetscCall(ISGetLocalSize(cellIS, &numCells));
4554:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
4555:   PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4556:   PetscCall(DMGetDS(dm, &prob));
4557:   PetscCall(DMGetAuxiliaryVec(dm, NULL, 0, 0, &A));
4558:   if (A) {
4559:     PetscCall(VecGetDM(A, &dmAux));
4560:     PetscCall(DMGetLocalSection(dmAux, &sectionAux));
4561:     PetscCall(DMGetDS(dmAux, &probAux));
4562:   }
4563:   /* Get flags */
4564:   PetscCall(PetscDSGetNumFields(prob, &Nf));
4565:   PetscCall(DMGetWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4566:   for (fieldI = 0; fieldI < Nf; ++fieldI) {
4567:     PetscObject  disc;
4568:     PetscClassId id;
4569:     PetscCall(PetscDSGetDiscretization(prob, fieldI, &disc));
4570:     PetscCall(PetscObjectGetClassId(disc, &id));
4571:     if (id == PETSCFE_CLASSID) {
4572:       isFE[fieldI] = PETSC_TRUE;
4573:     } else if (id == PETSCFV_CLASSID) {
4574:       hasFV        = PETSC_TRUE;
4575:       isFE[fieldI] = PETSC_FALSE;
4576:     }
4577:   }
4578:   PetscCall(PetscDSHasJacobian(prob, &hasJac));
4579:   PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
4580:   PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
4581:   assembleJac = hasJac && hasPrec && (Jac != JacP) ? PETSC_TRUE : PETSC_FALSE;
4582:   hasDyn      = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
4583:   if (hasFV) PetscCall(MatSetOption(JP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE)); /* No allocated space for FV stuff, so ignore the zero entries */
4584:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4585:   if (probAux) PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4586:   /* Compute batch sizes */
4587:   if (isFE[0]) {
4588:     PetscFE         fe;
4589:     PetscQuadrature q;
4590:     PetscInt        numQuadPoints, numBatches, batchSize, numBlocks, blockSize, Nb;

4592:     PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4593:     PetscCall(PetscFEGetQuadrature(fe, &q));
4594:     PetscCall(PetscQuadratureGetData(q, NULL, NULL, &numQuadPoints, NULL, NULL));
4595:     PetscCall(PetscFEGetDimension(fe, &Nb));
4596:     PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4597:     blockSize = Nb * numQuadPoints;
4598:     batchSize = numBlocks * blockSize;
4599:     chunkSize = numBatches * batchSize;
4600:     numChunks = numCells / chunkSize + numCells % chunkSize;
4601:     PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4602:   } else {
4603:     chunkSize = numCells;
4604:     numChunks = 1;
4605:   }
4606:   /* Get work space */
4607:   wsz = (((X ? 1 : 0) + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize;
4608:   PetscCall(DMGetWorkArray(dm, wsz, MPIU_SCALAR, &work));
4609:   PetscCall(PetscArrayzero(work, wsz));
4610:   off      = 0;
4611:   u        = X ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4612:   u_t      = X_t ? (sz = chunkSize * totDim, off += sz, work + off - sz) : NULL;
4613:   a        = dmAux ? (sz = chunkSize * totDimAux, off += sz, work + off - sz) : NULL;
4614:   elemMat  = hasJac ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4615:   elemMatP = hasPrec ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4616:   elemMatD = hasDyn ? (sz = chunkSize * totDim * totDim, off += sz, work + off - sz) : NULL;
4617:   PetscCheck(off == wsz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Error is workspace size %" PetscInt_FMT " should be %" PetscInt_FMT, off, wsz);
4618:   /* Setup geometry */
4619:   PetscCall(DMGetCoordinateField(dm, &coordField));
4620:   PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
4621:   if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
4622:   if (!qGeom) {
4623:     PetscFE fe;

4625:     PetscCall(PetscDSGetDiscretization(prob, 0, (PetscObject *)&fe));
4626:     PetscCall(PetscFEGetQuadrature(fe, &qGeom));
4627:     PetscCall(PetscObjectReference((PetscObject)qGeom));
4628:   }
4629:   PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
4630:   /* Compute volume integrals */
4631:   if (assembleJac) PetscCall(MatZeroEntries(J));
4632:   PetscCall(MatZeroEntries(JP));
4633:   key.label = NULL;
4634:   key.value = 0;
4635:   key.part  = 0;
4636:   for (chunk = 0; chunk < numChunks; ++chunk, offCell += chunkSize) {
4637:     const PetscInt Ncell = PetscMin(chunkSize, numCells - offCell);
4638:     PetscInt       c;

4640:     /* Extract values */
4641:     for (c = 0; c < Ncell; ++c) {
4642:       const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4643:       PetscScalar   *x = NULL, *x_t = NULL;
4644:       PetscInt       i;

4646:       if (X) {
4647:         PetscCall(DMPlexVecGetClosure(dm, section, X, cell, NULL, &x));
4648:         for (i = 0; i < totDim; ++i) u[c * totDim + i] = x[i];
4649:         PetscCall(DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x));
4650:       }
4651:       if (X_t) {
4652:         PetscCall(DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t));
4653:         for (i = 0; i < totDim; ++i) u_t[c * totDim + i] = x_t[i];
4654:         PetscCall(DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t));
4655:       }
4656:       if (dmAux) {
4657:         PetscCall(DMPlexVecGetClosure(dmAux, sectionAux, A, cell, NULL, &x));
4658:         for (i = 0; i < totDimAux; ++i) a[c * totDimAux + i] = x[i];
4659:         PetscCall(DMPlexVecRestoreClosure(dmAux, sectionAux, A, cell, NULL, &x));
4660:       }
4661:     }
4662:     for (fieldI = 0; fieldI < Nf; ++fieldI) {
4663:       PetscFE fe;
4664:       PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
4665:       for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
4666:         key.field = fieldI * Nf + fieldJ;
4667:         if (hasJac) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMat));
4668:         if (hasPrec) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatP));
4669:         if (hasDyn) PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatD));
4670:       }
4671:       /* For finite volume, add the identity */
4672:       if (!isFE[fieldI]) {
4673:         PetscFV  fv;
4674:         PetscInt eOffset = 0, Nc, fc, foff;

4676:         PetscCall(PetscDSGetFieldOffset(prob, fieldI, &foff));
4677:         PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
4678:         PetscCall(PetscFVGetNumComponents(fv, &Nc));
4679:         for (c = 0; c < chunkSize; ++c, eOffset += totDim * totDim) {
4680:           for (fc = 0; fc < Nc; ++fc) {
4681:             const PetscInt i = foff + fc;
4682:             if (hasJac) elemMat[eOffset + i * totDim + i] = 1.0;
4683:             if (hasPrec) elemMatP[eOffset + i * totDim + i] = 1.0;
4684:           }
4685:         }
4686:       }
4687:     }
4688:     /*   Add contribution from X_t */
4689:     if (hasDyn) {
4690:       for (c = 0; c < chunkSize * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
4691:     }
4692:     /* Insert values into matrix */
4693:     for (c = 0; c < Ncell; ++c) {
4694:       const PetscInt cell = cells ? cells[c + offCell] : c + offCell;
4695:       if (mesh->printFEM > 1) {
4696:         if (hasJac) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[(c - cStart) * totDim * totDim]));
4697:         if (hasPrec) PetscCall(DMPrintCellMatrix(cell, nameP, totDim, totDim, &elemMatP[(c - cStart) * totDim * totDim]));
4698:       }
4699:       if (assembleJac) PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4700:       PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JP, cell, &elemMat[(c - cStart) * totDim * totDim], ADD_VALUES));
4701:     }
4702:   }
4703:   /* Cleanup */
4704:   PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
4705:   PetscCall(PetscQuadratureDestroy(&qGeom));
4706:   if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
4707:   PetscCall(DMRestoreWorkArray(dm, Nf, MPIU_BOOL, &isFE));
4708:   PetscCall(DMRestoreWorkArray(dm, ((1 + (X_t ? 1 : 0) + (dmAux ? 1 : 0)) * totDim + ((hasJac ? 1 : 0) + (hasPrec ? 1 : 0) + (hasDyn ? 1 : 0)) * totDim * totDim) * chunkSize, MPIU_SCALAR, &work));
4709:   /* Compute boundary integrals */
4710:   /* PetscCall(DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, ctx)); */
4711:   /* Assemble matrix */
4712:   if (assembleJac) {
4713:     PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
4714:     PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
4715:   }
4716:   PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
4717:   PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
4718:   PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
4719:   PetscFunctionReturn(PETSC_SUCCESS);
4720: }

4722: /* FEM Assembly Function */

4724: static PetscErrorCode DMConvertPlex_Internal(DM dm, DM *plex, PetscBool copy)
4725: {
4726:   PetscBool isPlex;

4728:   PetscFunctionBegin;
4729:   PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &isPlex));
4730:   if (isPlex) {
4731:     *plex = dm;
4732:     PetscCall(PetscObjectReference((PetscObject)dm));
4733:   } else {
4734:     PetscCall(PetscObjectQuery((PetscObject)dm, "dm_plex", (PetscObject *)plex));
4735:     if (!*plex) {
4736:       PetscCall(DMConvert(dm, DMPLEX, plex));
4737:       PetscCall(PetscObjectCompose((PetscObject)dm, "dm_plex", (PetscObject)*plex));
4738:     } else {
4739:       PetscCall(PetscObjectReference((PetscObject)*plex));
4740:     }
4741:     if (copy) PetscCall(DMCopyAuxiliaryVec(dm, *plex));
4742:   }
4743:   PetscFunctionReturn(PETSC_SUCCESS);
4744: }

4746: /*@
4747:   DMPlexGetGeometryFVM - Return precomputed geometric data

4749:   Collective

4751:   Input Parameter:
4752: . dm - The `DM`

4754:   Output Parameters:
4755: + facegeom  - The values precomputed from face geometry
4756: . cellgeom  - The values precomputed from cell geometry
4757: - minRadius - The minimum radius over the mesh of an inscribed sphere in a cell

4759:   Level: developer

4761: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMTSSetRHSFunctionLocal()`
4762: @*/
4763: PetscErrorCode DMPlexGetGeometryFVM(DM dm, Vec *facegeom, Vec *cellgeom, PetscReal *minRadius)
4764: {
4765:   DM plex;

4767:   PetscFunctionBegin;
4769:   PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4770:   PetscCall(DMPlexGetDataFVM(plex, NULL, cellgeom, facegeom, NULL));
4771:   if (minRadius) PetscCall(DMPlexGetMinRadius(plex, minRadius));
4772:   PetscCall(DMDestroy(&plex));
4773:   PetscFunctionReturn(PETSC_SUCCESS);
4774: }

4776: /*@
4777:   DMPlexGetGradientDM - Return gradient data layout

4779:   Collective

4781:   Input Parameters:
4782: + dm - The `DM`
4783: - fv - The `PetscFV`

4785:   Output Parameter:
4786: . dmGrad - The layout for gradient values

4788:   Level: developer

4790: .seealso: [](ch_unstructured), `DM`, `DMPLEX`, `DMPlexGetGeometryFVM()`
4791: @*/
4792: PetscErrorCode DMPlexGetGradientDM(DM dm, PetscFV fv, DM *dmGrad)
4793: {
4794:   DM        plex;
4795:   PetscBool computeGradients;

4797:   PetscFunctionBegin;
4800:   PetscAssertPointer(dmGrad, 3);
4801:   PetscCall(PetscFVGetComputeGradients(fv, &computeGradients));
4802:   if (!computeGradients) {
4803:     *dmGrad = NULL;
4804:     PetscFunctionReturn(PETSC_SUCCESS);
4805:   }
4806:   PetscCall(DMConvertPlex_Internal(dm, &plex, PETSC_TRUE));
4807:   PetscCall(DMPlexGetDataFVM(plex, fv, NULL, NULL, dmGrad));
4808:   PetscCall(DMDestroy(&plex));
4809:   PetscFunctionReturn(PETSC_SUCCESS);
4810: }

4812: static PetscErrorCode DMPlexComputeBdResidual_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF, DMField coordField, IS facetIS)
4813: {
4814:   DM_Plex        *mesh = (DM_Plex *)dm->data;
4815:   DM              plex = NULL, plexA = NULL;
4816:   const char     *name = "BdResidual";
4817:   DMEnclosureType encAux;
4818:   PetscDS         prob, probAux       = NULL;
4819:   PetscSection    section, sectionAux = NULL;
4820:   Vec             locA = NULL;
4821:   PetscScalar    *u = NULL, *u_t = NULL, *a = NULL, *elemVec = NULL;
4822:   PetscInt        totDim, totDimAux = 0;

4824:   PetscFunctionBegin;
4825:   PetscCall(DMConvert(dm, DMPLEX, &plex));
4826:   PetscCall(DMGetLocalSection(dm, &section));
4827:   PetscCall(DMGetDS(dm, &prob));
4828:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
4829:   PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
4830:   if (locA) {
4831:     DM dmAux;

4833:     PetscCall(VecGetDM(locA, &dmAux));
4834:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
4835:     PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
4836:     PetscCall(DMGetDS(plexA, &probAux));
4837:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
4838:     PetscCall(DMGetLocalSection(plexA, &sectionAux));
4839:   }
4840:   {
4841:     PetscFEGeom    *fgeom;
4842:     PetscInt        maxDegree;
4843:     PetscQuadrature qGeom = NULL;
4844:     IS              pointIS;
4845:     const PetscInt *points;
4846:     PetscInt        numFaces, face, Nq;

4848:     PetscCall(DMLabelGetStratumIS(key.label, key.value, &pointIS));
4849:     if (!pointIS) goto end; /* No points with that id on this process */
4850:     {
4851:       IS isectIS;

4853:       /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
4854:       PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
4855:       PetscCall(ISDestroy(&pointIS));
4856:       pointIS = isectIS;
4857:     }
4858:     PetscCall(ISGetLocalSize(pointIS, &numFaces));
4859:     PetscCall(ISGetIndices(pointIS, &points));
4860:     PetscCall(PetscMalloc4(numFaces * totDim, &u, (locX_t ? (size_t)numFaces * totDim : 0), &u_t, numFaces * totDim, &elemVec, (locA ? (size_t)numFaces * totDimAux : 0), &a));
4861:     PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
4862:     if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
4863:     if (!qGeom) {
4864:       PetscFE fe;

4866:       PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4867:       PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
4868:       PetscCall(PetscObjectReference((PetscObject)qGeom));
4869:     }
4870:     PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
4871:     PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
4872:     for (face = 0; face < numFaces; ++face) {
4873:       const PetscInt point = points[face], *support;
4874:       PetscScalar   *x     = NULL;
4875:       PetscInt       i;

4877:       PetscCall(DMPlexGetSupport(dm, point, &support));
4878:       PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
4879:       for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
4880:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
4881:       if (locX_t) {
4882:         PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
4883:         for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
4884:         PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
4885:       }
4886:       if (locA) {
4887:         PetscInt subp;

4889:         PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
4890:         PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
4891:         for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
4892:         PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
4893:       }
4894:     }
4895:     PetscCall(PetscArrayzero(elemVec, numFaces * totDim));
4896:     {
4897:       PetscFE      fe;
4898:       PetscInt     Nb;
4899:       PetscFEGeom *chunkGeom = NULL;
4900:       /* Conforming batches */
4901:       PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
4902:       /* Remainder */
4903:       PetscInt Nr, offset;

4905:       PetscCall(PetscDSGetDiscretization(prob, key.field, (PetscObject *)&fe));
4906:       PetscCall(PetscFEGetDimension(fe, &Nb));
4907:       PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
4908:       /* TODO: documentation is unclear about what is going on with these numbers: how should Nb / Nq factor in ? */
4909:       blockSize = Nb;
4910:       batchSize = numBlocks * blockSize;
4911:       PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
4912:       numChunks = numFaces / (numBatches * batchSize);
4913:       Ne        = numChunks * numBatches * batchSize;
4914:       Nr        = numFaces % (numBatches * batchSize);
4915:       offset    = numFaces - Nr;
4916:       PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
4917:       PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec));
4918:       PetscCall(PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom));
4919:       PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
4920:       PetscCall(PetscFEIntegrateBdResidual(prob, wf, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
4921:       PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
4922:     }
4923:     for (face = 0; face < numFaces; ++face) {
4924:       const PetscInt point = points[face], *support;

4926:       if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(point, name, totDim, &elemVec[face * totDim]));
4927:       PetscCall(DMPlexGetSupport(plex, point, &support));
4928:       PetscCall(DMPlexVecSetClosure(plex, NULL, locF, support[0], &elemVec[face * totDim], ADD_ALL_VALUES));
4929:     }
4930:     PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
4931:     PetscCall(PetscQuadratureDestroy(&qGeom));
4932:     PetscCall(ISRestoreIndices(pointIS, &points));
4933:     PetscCall(ISDestroy(&pointIS));
4934:     PetscCall(PetscFree4(u, u_t, elemVec, a));
4935:   }
4936: end:
4937:   if (mesh->printFEM) {
4938:     PetscSection s;
4939:     Vec          locFbc;
4940:     PetscInt     pStart, pEnd, maxDof;
4941:     PetscScalar *zeroes;

4943:     PetscCall(DMGetLocalSection(dm, &s));
4944:     PetscCall(VecDuplicate(locF, &locFbc));
4945:     PetscCall(VecCopy(locF, locFbc));
4946:     PetscCall(PetscSectionGetChart(s, &pStart, &pEnd));
4947:     PetscCall(PetscSectionGetMaxDof(s, &maxDof));
4948:     PetscCall(PetscCalloc1(maxDof, &zeroes));
4949:     for (PetscInt p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, s, p, zeroes, INSERT_BC_VALUES));
4950:     PetscCall(PetscFree(zeroes));
4951:     PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
4952:     PetscCall(VecDestroy(&locFbc));
4953:   }
4954:   PetscCall(DMDestroy(&plex));
4955:   PetscCall(DMDestroy(&plexA));
4956:   PetscFunctionReturn(PETSC_SUCCESS);
4957: }

4959: PetscErrorCode DMPlexComputeBdResidualSingle(DM dm, PetscReal t, PetscWeakForm wf, PetscFormKey key, Vec locX, Vec locX_t, Vec locF)
4960: {
4961:   DMField  coordField;
4962:   DMLabel  depthLabel;
4963:   IS       facetIS;
4964:   PetscInt dim;

4966:   PetscFunctionBegin;
4967:   PetscCall(DMGetDimension(dm, &dim));
4968:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
4969:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
4970:   PetscCall(DMGetCoordinateField(dm, &coordField));
4971:   PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
4972:   PetscCall(ISDestroy(&facetIS));
4973:   PetscFunctionReturn(PETSC_SUCCESS);
4974: }

4976: static PetscErrorCode DMPlexComputeBdResidual_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
4977: {
4978:   PetscDS  prob;
4979:   PetscInt numBd, bd;
4980:   DMField  coordField = NULL;
4981:   IS       facetIS    = NULL;
4982:   DMLabel  depthLabel;
4983:   PetscInt dim;

4985:   PetscFunctionBegin;
4986:   PetscCall(DMGetDS(dm, &prob));
4987:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
4988:   PetscCall(DMGetDimension(dm, &dim));
4989:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
4990:   PetscCall(PetscDSGetNumBoundary(prob, &numBd));
4991:   for (bd = 0; bd < numBd; ++bd) {
4992:     PetscWeakForm           wf;
4993:     DMBoundaryConditionType type;
4994:     DMLabel                 label;
4995:     const PetscInt         *values;
4996:     PetscInt                field, numValues, v;
4997:     PetscObject             obj;
4998:     PetscClassId            id;
4999:     PetscFormKey            key;

5001:     PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &field, NULL, NULL, NULL, NULL, NULL));
5002:     if (type & DM_BC_ESSENTIAL) continue;
5003:     PetscCall(PetscDSGetDiscretization(prob, field, &obj));
5004:     PetscCall(PetscObjectGetClassId(obj, &id));
5005:     if (id != PETSCFE_CLASSID) continue;
5006:     if (!facetIS) {
5007:       DMLabel  depthLabel;
5008:       PetscInt dim;

5010:       PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5011:       PetscCall(DMGetDimension(dm, &dim));
5012:       PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5013:     }
5014:     PetscCall(DMGetCoordinateField(dm, &coordField));
5015:     for (v = 0; v < numValues; ++v) {
5016:       key.label = label;
5017:       key.value = values[v];
5018:       key.field = field;
5019:       key.part  = 0;
5020:       PetscCall(DMPlexComputeBdResidual_Single_Internal(dm, t, wf, key, locX, locX_t, locF, coordField, facetIS));
5021:     }
5022:   }
5023:   PetscCall(ISDestroy(&facetIS));
5024:   PetscFunctionReturn(PETSC_SUCCESS);
5025: }

5027: PetscErrorCode DMPlexComputeResidual_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5028: {
5029:   DM_Plex        *mesh       = (DM_Plex *)dm->data;
5030:   const char     *name       = "Residual";
5031:   DM              dmAux      = NULL;
5032:   DM              dmGrad     = NULL;
5033:   DMLabel         ghostLabel = NULL;
5034:   PetscDS         ds         = NULL;
5035:   PetscDS         dsAux      = NULL;
5036:   PetscSection    section    = NULL;
5037:   PetscBool       useFEM     = PETSC_FALSE;
5038:   PetscBool       useFVM     = PETSC_FALSE;
5039:   PetscBool       isImplicit = (locX_t || time == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
5040:   PetscFV         fvm        = NULL;
5041:   DMField         coordField = NULL;
5042:   Vec             locA, cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
5043:   PetscScalar    *u = NULL, *u_t, *a, *uL, *uR;
5044:   IS              chunkIS;
5045:   const PetscInt *cells;
5046:   PetscInt        cStart, cEnd, numCells;
5047:   PetscInt        Nf, f, totDim, totDimAux, numChunks, cellChunkSize, faceChunkSize, chunk, fStart, fEnd;
5048:   PetscInt        maxDegree  = PETSC_INT_MAX;
5049:   PetscQuadrature affineQuad = NULL, *quads = NULL;
5050:   PetscFEGeom    *affineGeom = NULL, **geoms = NULL;

5052:   PetscFunctionBegin;
5053:   PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5054:   if (!cellIS) goto end;
5055:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5056:   if (cStart >= cEnd) goto end;
5057:   /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
5058:   /* TODO The FVM geometry is over-manipulated. Make the precalc functions return exactly what we need */
5059:   /* FEM+FVM */
5060:   PetscCall(DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd));
5061:   /* 1: Get sizes from dm and dmAux */
5062:   PetscCall(DMGetLocalSection(dm, &section));
5063:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
5064:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, NULL));
5065:   PetscCall(PetscDSGetNumFields(ds, &Nf));
5066:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5067:   PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &locA));
5068:   if (locA) {
5069:     PetscInt subcell;
5070:     PetscCall(VecGetDM(locA, &dmAux));
5071:     PetscCall(DMGetEnclosurePoint(dmAux, dm, DM_ENC_UNKNOWN, cells ? cells[cStart] : cStart, &subcell));
5072:     PetscCall(DMGetCellDS(dmAux, subcell, &dsAux, NULL));
5073:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
5074:   }
5075:   /* 2: Get geometric data */
5076:   for (f = 0; f < Nf; ++f) {
5077:     PetscObject  obj;
5078:     PetscClassId id;
5079:     PetscBool    fimp;

5081:     PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5082:     if (isImplicit != fimp) continue;
5083:     PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5084:     PetscCall(PetscObjectGetClassId(obj, &id));
5085:     if (id == PETSCFE_CLASSID) useFEM = PETSC_TRUE;
5086:     if (id == PETSCFV_CLASSID) {
5087:       useFVM = PETSC_TRUE;
5088:       fvm    = (PetscFV)obj;
5089:     }
5090:   }
5091:   if (useFEM) {
5092:     PetscCall(DMGetCoordinateField(dm, &coordField));
5093:     PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5094:     if (maxDegree <= 1) {
5095:       PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &affineQuad));
5096:       if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5097:     } else {
5098:       PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
5099:       for (f = 0; f < Nf; ++f) {
5100:         PetscObject  obj;
5101:         PetscClassId id;
5102:         PetscBool    fimp;

5104:         PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5105:         if (isImplicit != fimp) continue;
5106:         PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5107:         PetscCall(PetscObjectGetClassId(obj, &id));
5108:         if (id == PETSCFE_CLASSID) {
5109:           PetscFE fe = (PetscFE)obj;

5111:           PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
5112:           PetscCall(PetscObjectReference((PetscObject)quads[f]));
5113:           PetscCall(DMSNESGetFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5114:         }
5115:       }
5116:     }
5117:   }
5118:   // Handle non-essential (e.g. outflow) boundary values
5119:   if (useFVM) {
5120:     PetscCall(DMPlexInsertBoundaryValuesFVM(dm, fvm, locX, time, &locGrad));
5121:     PetscCall(DMPlexGetGeometryFVM(dm, &faceGeometryFVM, &cellGeometryFVM, NULL));
5122:     PetscCall(DMPlexGetGradientDM(dm, fvm, &dmGrad));
5123:   }
5124:   /* Loop over chunks */
5125:   if (useFEM) PetscCall(ISCreate(PETSC_COMM_SELF, &chunkIS));
5126:   numCells      = cEnd - cStart;
5127:   numChunks     = 1;
5128:   cellChunkSize = numCells / numChunks;
5129:   faceChunkSize = (fEnd - fStart) / numChunks;
5130:   numChunks     = PetscMin(1, numCells);
5131:   for (chunk = 0; chunk < numChunks; ++chunk) {
5132:     PetscScalar     *elemVec, *fluxL, *fluxR;
5133:     PetscReal       *vol;
5134:     PetscFVFaceGeom *fgeom;
5135:     PetscInt         cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;
5136:     PetscInt         fS = fStart + chunk * faceChunkSize, fE = PetscMin(fS + faceChunkSize, fEnd), numFaces = 0, face;

5138:     /* Extract field coefficients */
5139:     if (useFEM) {
5140:       PetscCall(ISGetPointSubrange(chunkIS, cS, cE, cells));
5141:       PetscCall(DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
5142:       PetscCall(DMGetWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
5143:       PetscCall(PetscArrayzero(elemVec, numCells * totDim));
5144:     }
5145:     if (useFVM) {
5146:       PetscCall(DMPlexGetFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5147:       PetscCall(DMPlexGetFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5148:       PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5149:       PetscCall(DMGetWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5150:       PetscCall(PetscArrayzero(fluxL, numFaces * totDim));
5151:       PetscCall(PetscArrayzero(fluxR, numFaces * totDim));
5152:     }
5153:     /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
5154:     /* Loop over fields */
5155:     for (f = 0; f < Nf; ++f) {
5156:       PetscObject  obj;
5157:       PetscClassId id;
5158:       PetscBool    fimp;
5159:       PetscInt     numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;

5161:       key.field = f;
5162:       PetscCall(PetscDSGetImplicit(ds, f, &fimp));
5163:       if (isImplicit != fimp) continue;
5164:       PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5165:       PetscCall(PetscObjectGetClassId(obj, &id));
5166:       if (id == PETSCFE_CLASSID) {
5167:         PetscFE         fe        = (PetscFE)obj;
5168:         PetscFEGeom    *geom      = affineGeom ? affineGeom : geoms[f];
5169:         PetscFEGeom    *chunkGeom = NULL;
5170:         PetscQuadrature quad      = affineQuad ? affineQuad : quads[f];
5171:         PetscInt        Nq, Nb;

5173:         PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5174:         PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
5175:         PetscCall(PetscFEGetDimension(fe, &Nb));
5176:         blockSize = Nb;
5177:         batchSize = numBlocks * blockSize;
5178:         PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5179:         numChunks = numCells / (numBatches * batchSize);
5180:         Ne        = numChunks * numBatches * batchSize;
5181:         Nr        = numCells % (numBatches * batchSize);
5182:         offset    = numCells - Nr;
5183:         /* Integrate FE residual to get elemVec (need fields at quadrature points) */
5184:         /*   For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
5185:         PetscCall(PetscFEGeomGetChunk(geom, 0, offset, &chunkGeom));
5186:         PetscCall(PetscFEIntegrateResidual(ds, key, Ne, chunkGeom, u, u_t, dsAux, a, t, elemVec));
5187:         PetscCall(PetscFEGeomGetChunk(geom, offset, numCells, &chunkGeom));
5188:         PetscCall(PetscFEIntegrateResidual(ds, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, &elemVec[offset * totDim]));
5189:         PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &chunkGeom));
5190:       } else if (id == PETSCFV_CLASSID) {
5191:         PetscFV fv = (PetscFV)obj;

5193:         Ne = numFaces;
5194:         /* Riemann solve over faces (need fields at face centroids) */
5195:         /*   We need to evaluate FE fields at those coordinates */
5196:         PetscCall(PetscFVIntegrateRHSFunction(fv, ds, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR));
5197:       } else SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
5198:     }
5199:     /* Loop over domain */
5200:     if (useFEM) {
5201:       /* Add elemVec to locX */
5202:       for (c = cS; c < cE; ++c) {
5203:         const PetscInt cell = cells ? cells[c] : c;
5204:         const PetscInt cind = c - cStart;

5206:         if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVec[cind * totDim]));
5207:         if (ghostLabel) {
5208:           PetscInt ghostVal;

5210:           PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5211:           if (ghostVal > 0) continue;
5212:         }
5213:         PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind * totDim], ADD_ALL_VALUES));
5214:       }
5215:     }
5216:     if (useFVM) {
5217:       PetscScalar *fa;
5218:       PetscInt     iface;

5220:       PetscCall(VecGetArray(locF, &fa));
5221:       for (f = 0; f < Nf; ++f) {
5222:         PetscFV      fv;
5223:         PetscObject  obj;
5224:         PetscClassId id;
5225:         PetscInt     cdim, foff, pdim;

5227:         PetscCall(DMGetCoordinateDim(dm, &cdim));
5228:         PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5229:         PetscCall(PetscDSGetFieldOffset(ds, f, &foff));
5230:         PetscCall(PetscObjectGetClassId(obj, &id));
5231:         if (id != PETSCFV_CLASSID) continue;
5232:         fv = (PetscFV)obj;
5233:         PetscCall(PetscFVGetNumComponents(fv, &pdim));
5234:         /* Accumulate fluxes to cells */
5235:         for (face = fS, iface = 0; face < fE; ++face) {
5236:           const PetscInt *scells;
5237:           PetscScalar    *fL = NULL, *fR = NULL;
5238:           PetscInt        ghost, d, nsupp, nchild;

5240:           PetscCall(DMLabelGetValue(ghostLabel, face, &ghost));
5241:           PetscCall(DMPlexGetSupportSize(dm, face, &nsupp));
5242:           PetscCall(DMPlexGetTreeChildren(dm, face, &nchild, NULL));
5243:           if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
5244:           PetscCall(DMPlexGetSupport(dm, face, &scells));
5245:           PetscCall(DMLabelGetValue(ghostLabel, scells[0], &ghost));
5246:           if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[0], f, fa, &fL));
5247:           PetscCall(DMLabelGetValue(ghostLabel, scells[1], &ghost));
5248:           if (ghost <= 0) PetscCall(DMPlexPointLocalFieldRef(dm, scells[1], f, fa, &fR));
5249:           if (mesh->printFVM > 1) {
5250:             PetscCall(DMPrintCellVectorReal(face, "Residual: normal", cdim, fgeom[iface].normal));
5251:             PetscCall(DMPrintCellVector(face, "Residual: left state", pdim, &uL[iface * totDim + foff]));
5252:             PetscCall(DMPrintCellVector(face, "Residual: right state", pdim, &uR[iface * totDim + foff]));
5253:             PetscCall(DMPrintCellVector(face, "Residual: left flux", pdim, &fluxL[iface * totDim + foff]));
5254:             PetscCall(DMPrintCellVector(face, "Residual: right flux", pdim, &fluxR[iface * totDim + foff]));
5255:           }
5256:           for (d = 0; d < pdim; ++d) {
5257:             if (fL) fL[d] -= fluxL[iface * totDim + foff + d];
5258:             if (fR) fR[d] += fluxR[iface * totDim + foff + d];
5259:           }
5260:           ++iface;
5261:         }
5262:       }
5263:       PetscCall(VecRestoreArray(locF, &fa));
5264:     }
5265:     /* Handle time derivative */
5266:     if (locX_t) {
5267:       PetscScalar *x_t, *fa;

5269:       PetscCall(VecGetArray(locF, &fa));
5270:       PetscCall(VecGetArray(locX_t, &x_t));
5271:       for (f = 0; f < Nf; ++f) {
5272:         PetscFV      fv;
5273:         PetscObject  obj;
5274:         PetscClassId id;
5275:         PetscInt     pdim, d;

5277:         PetscCall(PetscDSGetDiscretization(ds, f, &obj));
5278:         PetscCall(PetscObjectGetClassId(obj, &id));
5279:         if (id != PETSCFV_CLASSID) continue;
5280:         fv = (PetscFV)obj;
5281:         PetscCall(PetscFVGetNumComponents(fv, &pdim));
5282:         for (c = cS; c < cE; ++c) {
5283:           const PetscInt cell = cells ? cells[c] : c;
5284:           PetscScalar   *u_t, *r;

5286:           if (ghostLabel) {
5287:             PetscInt ghostVal;

5289:             PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5290:             if (ghostVal > 0) continue;
5291:           }
5292:           PetscCall(DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t));
5293:           PetscCall(DMPlexPointLocalFieldRef(dm, cell, f, fa, &r));
5294:           for (d = 0; d < pdim; ++d) r[d] += u_t[d];
5295:         }
5296:       }
5297:       PetscCall(VecRestoreArray(locX_t, &x_t));
5298:       PetscCall(VecRestoreArray(locF, &fa));
5299:     }
5300:     if (useFEM) {
5301:       PetscCall(DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a));
5302:       PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVec));
5303:     }
5304:     if (useFVM) {
5305:       PetscCall(DMPlexRestoreFaceFields(dm, fS, fE, locX, locX_t, faceGeometryFVM, cellGeometryFVM, locGrad, &numFaces, &uL, &uR));
5306:       PetscCall(DMPlexRestoreFaceGeometry(dm, fS, fE, faceGeometryFVM, cellGeometryFVM, &numFaces, &fgeom, &vol));
5307:       PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxL));
5308:       PetscCall(DMRestoreWorkArray(dm, numFaces * totDim, MPIU_SCALAR, &fluxR));
5309:       if (dmGrad) PetscCall(DMRestoreLocalVector(dmGrad, &locGrad));
5310:     }
5311:   }
5312:   if (useFEM) PetscCall(ISDestroy(&chunkIS));
5313:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));

5315:   if (useFEM) {
5316:     PetscCall(DMPlexComputeBdResidual_Internal(dm, locX, locX_t, t, locF, user));

5318:     if (maxDegree <= 1) {
5319:       PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5320:       PetscCall(PetscQuadratureDestroy(&affineQuad));
5321:     } else {
5322:       for (f = 0; f < Nf; ++f) {
5323:         PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5324:         PetscCall(PetscQuadratureDestroy(&quads[f]));
5325:       }
5326:       PetscCall(PetscFree2(quads, geoms));
5327:     }
5328:   }

5330:   /* FEM */
5331:   /* 1: Get sizes from dm and dmAux */
5332:   /* 2: Get geometric data */
5333:   /* 3: Handle boundary values */
5334:   /* 4: Loop over domain */
5335:   /*   Extract coefficients */
5336:   /* Loop over fields */
5337:   /*   Set tiling for FE*/
5338:   /*   Integrate FE residual to get elemVec */
5339:   /*     Loop over subdomain */
5340:   /*       Loop over quad points */
5341:   /*         Transform coords to real space */
5342:   /*         Evaluate field and aux fields at point */
5343:   /*         Evaluate residual at point */
5344:   /*         Transform residual to real space */
5345:   /*       Add residual to elemVec */
5346:   /* Loop over domain */
5347:   /*   Add elemVec to locX */

5349:   /* FVM */
5350:   /* Get geometric data */
5351:   /* If using gradients */
5352:   /*   Compute gradient data */
5353:   /*   Loop over domain faces */
5354:   /*     Count computational faces */
5355:   /*     Reconstruct cell gradient */
5356:   /*   Loop over domain cells */
5357:   /*     Limit cell gradients */
5358:   /* Handle boundary values */
5359:   /* Loop over domain faces */
5360:   /*   Read out field, centroid, normal, volume for each side of face */
5361:   /* Riemann solve over faces */
5362:   /* Loop over domain faces */
5363:   /*   Accumulate fluxes to cells */
5364:   /* TODO Change printFEM to printDisc here */
5365:   if (mesh->printFEM) {
5366:     Vec          locFbc;
5367:     PetscInt     pStart, pEnd, p, maxDof;
5368:     PetscScalar *zeroes;

5370:     PetscCall(VecDuplicate(locF, &locFbc));
5371:     PetscCall(VecCopy(locF, locFbc));
5372:     PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5373:     PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5374:     PetscCall(PetscCalloc1(maxDof, &zeroes));
5375:     for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5376:     PetscCall(PetscFree(zeroes));
5377:     PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5378:     PetscCall(VecDestroy(&locFbc));
5379:   }
5380: end:
5381:   PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5382:   PetscFunctionReturn(PETSC_SUCCESS);
5383: }

5385: /*
5386:   1) Allow multiple kernels for BdResidual for hybrid DS

5388:   DONE 2) Get out dsAux for either side at the same time as cohesive cell dsAux

5390:   DONE 3) Change DMGetCellFields() to get different aux data a[] for each side
5391:      - I think I just need to replace a[] with the closure from each face

5393:   4) Run both kernels for each non-hybrid field with correct dsAux, and then hybrid field as before
5394: */
5395: PetscErrorCode DMPlexComputeResidual_Hybrid_Internal(DM dm, PetscFormKey key[], IS cellIS, PetscReal time, Vec locX, Vec locX_t, PetscReal t, Vec locF, void *user)
5396: {
5397:   DM_Plex        *mesh       = (DM_Plex *)dm->data;
5398:   const char     *name       = "Hybrid Residual";
5399:   DM              dmAux[3]   = {NULL, NULL, NULL};
5400:   DMLabel         ghostLabel = NULL;
5401:   PetscDS         ds         = NULL;
5402:   PetscDS         dsIn       = NULL;
5403:   PetscDS         dsAux[3]   = {NULL, NULL, NULL};
5404:   Vec             locA[3]    = {NULL, NULL, NULL};
5405:   DM              dmScale[3] = {NULL, NULL, NULL};
5406:   PetscDS         dsScale[3] = {NULL, NULL, NULL};
5407:   Vec             locS[3]    = {NULL, NULL, NULL};
5408:   PetscSection    section    = NULL;
5409:   DMField         coordField = NULL;
5410:   PetscScalar    *a[3]       = {NULL, NULL, NULL};
5411:   PetscScalar    *s[3]       = {NULL, NULL, NULL};
5412:   PetscScalar    *u          = NULL, *u_t;
5413:   PetscScalar    *elemVecNeg, *elemVecPos, *elemVecCoh;
5414:   IS              chunkIS;
5415:   const PetscInt *cells;
5416:   PetscInt       *faces;
5417:   PetscInt        cStart, cEnd, numCells;
5418:   PetscInt        Nf, f, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
5419:   PetscInt        maxDegree  = PETSC_INT_MAX;
5420:   PetscQuadrature affineQuad = NULL, *quads = NULL;
5421:   PetscFEGeom    *affineGeom = NULL, **geoms = NULL;

5423:   PetscFunctionBegin;
5424:   PetscCall(PetscLogEventBegin(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5425:   if (!cellIS) goto end;
5426:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5427:   PetscCall(ISGetLocalSize(cellIS, &numCells));
5428:   if (cStart >= cEnd) goto end;
5429:   if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
5430:     const char *name;
5431:     PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
5432:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
5433:   }
5434:   /* TODO The places where we have to use isFE are probably the member functions for the PetscDisc class */
5435:   /* FEM */
5436:   /* 1: Get sizes from dm and dmAux */
5437:   PetscCall(DMGetSection(dm, &section));
5438:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
5439:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
5440:   PetscCall(PetscDSGetNumFields(ds, &Nf));
5441:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5442:   PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
5443:   PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
5444:   if (locA[2]) {
5445:     const PetscInt cellStart = cells ? cells[cStart] : cStart;

5447:     PetscCall(VecGetDM(locA[2], &dmAux[2]));
5448:     PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
5449:     PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
5450:     {
5451:       const PetscInt *cone;
5452:       PetscInt        c;

5454:       PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5455:       for (c = 0; c < 2; ++c) {
5456:         const PetscInt *support;
5457:         PetscInt        ssize, s;

5459:         PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5460:         PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5461:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5462:         if (support[0] == cellStart) s = 1;
5463:         else if (support[1] == cellStart) s = 0;
5464:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5465:         PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
5466:         PetscCheck(locA[c], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Must have auxiliary vector for (%p, %" PetscInt_FMT ", %" PetscInt_FMT ")", (void *)key[c].label, key[c].value, key[c].part);
5467:         if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
5468:         else dmAux[c] = dmAux[2];
5469:         PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
5470:         PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
5471:       }
5472:     }
5473:   }
5474:   /* Handle mass matrix scaling
5475:        The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
5476:   PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
5477:   if (locS[2]) {
5478:     const PetscInt cellStart = cells ? cells[cStart] : cStart;
5479:     PetscInt       Nb, Nbs;

5481:     PetscCall(VecGetDM(locS[2], &dmScale[2]));
5482:     PetscCall(DMGetCellDS(dmScale[2], cellStart, &dsScale[2], NULL));
5483:     PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
5484:     // BRAD: This is not set correctly
5485:     key[2].field = 2;
5486:     PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
5487:     PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
5488:     PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
5489:     {
5490:       const PetscInt *cone;
5491:       PetscInt        c;

5493:       locS[1] = locS[0] = locS[2];
5494:       dmScale[1] = dmScale[0] = dmScale[2];
5495:       PetscCall(DMPlexGetCone(dm, cellStart, &cone));
5496:       for (c = 0; c < 2; ++c) {
5497:         const PetscInt *support;
5498:         PetscInt        ssize, s;

5500:         PetscCall(DMPlexGetSupport(dm, cone[c], &support));
5501:         PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
5502:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
5503:         if (support[0] == cellStart) s = 1;
5504:         else if (support[1] == cellStart) s = 0;
5505:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
5506:         PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
5507:         PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
5508:       }
5509:     }
5510:   }
5511:   /* 2: Setup geometric data */
5512:   PetscCall(DMGetCoordinateField(dm, &coordField));
5513:   PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5514:   if (maxDegree > 1) {
5515:     PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
5516:     for (f = 0; f < Nf; ++f) {
5517:       PetscFE fe;

5519:       PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5520:       if (fe) {
5521:         PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
5522:         PetscCall(PetscObjectReference((PetscObject)quads[f]));
5523:       }
5524:     }
5525:   }
5526:   /* Loop over chunks */
5527:   cellChunkSize = numCells;
5528:   numChunks     = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
5529:   PetscCall(PetscCalloc1(2 * cellChunkSize, &faces));
5530:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 2 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkIS));
5531:   /* Extract field coefficients */
5532:   /* NOTE This needs the end cap faces to have identical orientations */
5533:   PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5534:   PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5535:   PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5536:   PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecNeg));
5537:   PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecPos));
5538:   PetscCall(DMGetWorkArray(dm, cellChunkSize * totDim, MPIU_SCALAR, &elemVecCoh));
5539:   for (chunk = 0; chunk < numChunks; ++chunk) {
5540:     PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;

5542:     PetscCall(PetscArrayzero(elemVecNeg, cellChunkSize * totDim));
5543:     PetscCall(PetscArrayzero(elemVecPos, cellChunkSize * totDim));
5544:     PetscCall(PetscArrayzero(elemVecCoh, cellChunkSize * totDim));
5545:     /* Get faces */
5546:     for (c = cS; c < cE; ++c) {
5547:       const PetscInt  cell = cells ? cells[c] : c;
5548:       const PetscInt *cone;
5549:       PetscCall(DMPlexGetCone(dm, cell, &cone));
5550:       faces[(c - cS) * 2 + 0] = cone[0];
5551:       faces[(c - cS) * 2 + 1] = cone[1];
5552:     }
5553:     PetscCall(ISGeneralSetIndices(chunkIS, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
5554:     /* Get geometric data */
5555:     if (maxDegree <= 1) {
5556:       if (!affineQuad) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkIS, &affineQuad));
5557:       if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, affineQuad, PETSC_TRUE, &affineGeom));
5558:     } else {
5559:       for (f = 0; f < Nf; ++f) {
5560:         if (quads[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, quads[f], PETSC_TRUE, &geoms[f]));
5561:       }
5562:     }
5563:     /* Loop over fields */
5564:     for (f = 0; f < Nf; ++f) {
5565:       PetscFE         fe;
5566:       PetscFEGeom    *geom      = affineGeom ? affineGeom : geoms[f];
5567:       PetscFEGeom    *chunkGeom = NULL, *remGeom = NULL;
5568:       PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
5569:       PetscInt        numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
5570:       PetscBool       isCohesiveField;

5572:       PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
5573:       if (!fe) continue;
5574:       PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5575:       PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
5576:       PetscCall(PetscFEGetDimension(fe, &Nb));
5577:       blockSize = Nb;
5578:       batchSize = numBlocks * blockSize;
5579:       PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5580:       numChunks = numCells / (numBatches * batchSize);
5581:       Ne        = numChunks * numBatches * batchSize;
5582:       Nr        = numCells % (numBatches * batchSize);
5583:       offset    = numCells - Nr;
5584:       PetscCall(PetscFEGeomGetChunk(geom, 0, offset * 2, &chunkGeom));
5585:       PetscCall(PetscFEGeomGetChunk(geom, offset * 2, numCells * 2, &remGeom));
5586:       PetscCall(PetscDSGetCohesive(ds, f, &isCohesiveField));
5587:       chunkGeom->isCohesive = remGeom->isCohesive = PETSC_TRUE;
5588:       key[0].field                                = f;
5589:       key[1].field                                = f;
5590:       key[2].field                                = f;
5591:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, elemVecNeg));
5592:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, &elemVecNeg[offset * totDim]));
5593:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, elemVecPos));
5594:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, &elemVecPos[offset * totDim]));
5595:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, elemVecCoh));
5596:       PetscCall(PetscFEIntegrateHybridResidual(ds, dsIn, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, &elemVecCoh[offset * totDim]));
5597:       PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &remGeom));
5598:       PetscCall(PetscFEGeomRestoreChunk(geom, 0, offset, &chunkGeom));
5599:     }
5600:     /* Add elemVec to locX */
5601:     for (c = cS; c < cE; ++c) {
5602:       const PetscInt cell = cells ? cells[c] : c;
5603:       const PetscInt cind = c - cStart;
5604:       PetscInt       i;

5606:       /* Scale element values */
5607:       if (locS[0]) {
5608:         PetscInt  Nb, off = cind * totDim, soff = cind * totDimScale[0];
5609:         PetscBool cohesive;

5611:         for (f = 0; f < Nf; ++f) {
5612:           PetscCall(PetscDSGetFieldSize(ds, f, &Nb));
5613:           PetscCall(PetscDSGetCohesive(ds, f, &cohesive));
5614:           if (f == key[2].field) {
5615:             PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
5616:             // No cohesive scaling field is currently input
5617:             for (i = 0; i < Nb; ++i) elemVecCoh[off + i] += s[0][soff + i] * elemVecNeg[off + i] + s[1][soff + i] * elemVecPos[off + i];
5618:             off += Nb;
5619:           } else {
5620:             const PetscInt N = cohesive ? Nb : Nb * 2;

5622:             for (i = 0; i < N; ++i) elemVecCoh[off + i] += elemVecNeg[off + i] + elemVecPos[off + i];
5623:             off += N;
5624:           }
5625:         }
5626:       } else {
5627:         for (i = cind * totDim; i < (cind + 1) * totDim; ++i) elemVecCoh[i] += elemVecNeg[i] + elemVecPos[i];
5628:       }
5629:       if (mesh->printFEM > 1) PetscCall(DMPrintCellVector(cell, name, totDim, &elemVecCoh[cind * totDim]));
5630:       if (ghostLabel) {
5631:         PetscInt ghostVal;

5633:         PetscCall(DMLabelGetValue(ghostLabel, cell, &ghostVal));
5634:         if (ghostVal > 0) continue;
5635:       }
5636:       PetscCall(DMPlexVecSetClosure(dm, section, locF, cell, &elemVecCoh[cind * totDim], ADD_ALL_VALUES));
5637:     }
5638:   }
5639:   PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
5640:   PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
5641:   PetscCall(DMPlexRestoreHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
5642:   PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecNeg));
5643:   PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecPos));
5644:   PetscCall(DMRestoreWorkArray(dm, numCells * totDim, MPIU_SCALAR, &elemVecCoh));
5645:   PetscCall(PetscFree(faces));
5646:   PetscCall(ISDestroy(&chunkIS));
5647:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
5648:   if (maxDegree <= 1) {
5649:     PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
5650:     PetscCall(PetscQuadratureDestroy(&affineQuad));
5651:   } else {
5652:     for (f = 0; f < Nf; ++f) {
5653:       if (geoms) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
5654:       if (quads) PetscCall(PetscQuadratureDestroy(&quads[f]));
5655:     }
5656:     PetscCall(PetscFree2(quads, geoms));
5657:   }
5658:   if (mesh->printFEM) {
5659:     Vec          locFbc;
5660:     PetscInt     pStart, pEnd, p, maxDof;
5661:     PetscScalar *zeroes;

5663:     PetscCall(VecDuplicate(locF, &locFbc));
5664:     PetscCall(VecCopy(locF, locFbc));
5665:     PetscCall(PetscSectionGetChart(section, &pStart, &pEnd));
5666:     PetscCall(PetscSectionGetMaxDof(section, &maxDof));
5667:     PetscCall(PetscCalloc1(maxDof, &zeroes));
5668:     for (p = pStart; p < pEnd; p++) PetscCall(VecSetValuesSection(locFbc, section, p, zeroes, INSERT_BC_VALUES));
5669:     PetscCall(PetscFree(zeroes));
5670:     PetscCall(DMPrintLocalVec(dm, name, mesh->printTol, locFbc));
5671:     PetscCall(VecDestroy(&locFbc));
5672:   }
5673: end:
5674:   PetscCall(PetscLogEventEnd(DMPLEX_ResidualFEM, dm, 0, 0, 0));
5675:   PetscFunctionReturn(PETSC_SUCCESS);
5676: }

5678: static PetscErrorCode DMPlexComputeBdJacobian_Single_Internal(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt fieldI, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP, DMField coordField, IS facetIS)
5679: {
5680:   DM_Plex        *mesh = (DM_Plex *)dm->data;
5681:   DM              plex = NULL, plexA = NULL, tdm;
5682:   DMEnclosureType encAux;
5683:   PetscDS         ds, dsAux           = NULL;
5684:   PetscSection    section, sectionAux = NULL;
5685:   PetscSection    globalSection;
5686:   Vec             locA = NULL, tv;
5687:   PetscScalar    *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL;
5688:   PetscInt        v;
5689:   PetscInt        Nf, totDim, totDimAux = 0;
5690:   PetscBool       hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, transform;

5692:   PetscFunctionBegin;
5693:   PetscCall(DMHasBasisTransform(dm, &transform));
5694:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
5695:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
5696:   PetscCall(DMGetLocalSection(dm, &section));
5697:   PetscCall(DMGetDS(dm, &ds));
5698:   PetscCall(PetscDSGetNumFields(ds, &Nf));
5699:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
5700:   PetscCall(PetscWeakFormHasBdJacobian(wf, &hasJac));
5701:   PetscCall(PetscWeakFormHasBdJacobianPreconditioner(wf, &hasPrec));
5702:   if (!hasJac && !hasPrec) PetscFunctionReturn(PETSC_SUCCESS);
5703:   PetscCall(DMConvert(dm, DMPLEX, &plex));
5704:   PetscCall(DMGetAuxiliaryVec(dm, label, values[0], 0, &locA));
5705:   if (locA) {
5706:     DM dmAux;

5708:     PetscCall(VecGetDM(locA, &dmAux));
5709:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
5710:     PetscCall(DMConvert(dmAux, DMPLEX, &plexA));
5711:     PetscCall(DMGetDS(plexA, &dsAux));
5712:     PetscCall(PetscDSGetTotalDimension(dsAux, &totDimAux));
5713:     PetscCall(DMGetLocalSection(plexA, &sectionAux));
5714:   }

5716:   PetscCall(DMGetGlobalSection(dm, &globalSection));
5717:   for (v = 0; v < numValues; ++v) {
5718:     PetscFEGeom    *fgeom;
5719:     PetscInt        maxDegree;
5720:     PetscQuadrature qGeom = NULL;
5721:     IS              pointIS;
5722:     const PetscInt *points;
5723:     PetscFormKey    key;
5724:     PetscInt        numFaces, face, Nq;

5726:     key.label = label;
5727:     key.value = values[v];
5728:     key.part  = 0;
5729:     PetscCall(DMLabelGetStratumIS(label, values[v], &pointIS));
5730:     if (!pointIS) continue; /* No points with that id on this process */
5731:     {
5732:       IS isectIS;

5734:       /* TODO: Special cases of ISIntersect where it is quick to check a prior if one is a superset of the other */
5735:       PetscCall(ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS));
5736:       PetscCall(ISDestroy(&pointIS));
5737:       pointIS = isectIS;
5738:     }
5739:     PetscCall(ISGetLocalSize(pointIS, &numFaces));
5740:     PetscCall(ISGetIndices(pointIS, &points));
5741:     PetscCall(PetscMalloc5(numFaces * totDim, &u, (locX_t ? (size_t)numFaces * totDim : 0), &u_t, (hasJac ? (size_t)numFaces * totDim * totDim : 0), &elemMat, (hasPrec ? (size_t)numFaces * totDim * totDim : 0), &elemMatP, (locA ? (size_t)numFaces * totDimAux : 0), &a));
5742:     PetscCall(DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree));
5743:     if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom));
5744:     if (!qGeom) {
5745:       PetscFE fe;

5747:       PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5748:       PetscCall(PetscFEGetFaceQuadrature(fe, &qGeom));
5749:       PetscCall(PetscObjectReference((PetscObject)qGeom));
5750:     }
5751:     PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
5752:     PetscCall(DMSNESGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5753:     for (face = 0; face < numFaces; ++face) {
5754:       const PetscInt point = points[face], *support;
5755:       PetscScalar   *x     = NULL;
5756:       PetscInt       i;

5758:       PetscCall(DMPlexGetSupport(dm, point, &support));
5759:       PetscCall(DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x));
5760:       for (i = 0; i < totDim; ++i) u[face * totDim + i] = x[i];
5761:       PetscCall(DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x));
5762:       if (locX_t) {
5763:         PetscCall(DMPlexVecGetClosure(plex, section, locX_t, support[0], NULL, &x));
5764:         for (i = 0; i < totDim; ++i) u_t[face * totDim + i] = x[i];
5765:         PetscCall(DMPlexVecRestoreClosure(plex, section, locX_t, support[0], NULL, &x));
5766:       }
5767:       if (locA) {
5768:         PetscInt subp;
5769:         PetscCall(DMGetEnclosurePoint(plexA, dm, encAux, support[0], &subp));
5770:         PetscCall(DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x));
5771:         for (i = 0; i < totDimAux; ++i) a[face * totDimAux + i] = x[i];
5772:         PetscCall(DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x));
5773:       }
5774:     }
5775:     if (elemMat) PetscCall(PetscArrayzero(elemMat, numFaces * totDim * totDim));
5776:     if (elemMatP) PetscCall(PetscArrayzero(elemMatP, numFaces * totDim * totDim));
5777:     {
5778:       PetscFE  fe;
5779:       PetscInt Nb;
5780:       /* Conforming batches */
5781:       PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
5782:       /* Remainder */
5783:       PetscFEGeom *chunkGeom = NULL;
5784:       PetscInt     fieldJ, Nr, offset;

5786:       PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&fe));
5787:       PetscCall(PetscFEGetDimension(fe, &Nb));
5788:       PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5789:       blockSize = Nb;
5790:       batchSize = numBlocks * blockSize;
5791:       PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
5792:       numChunks = numFaces / (numBatches * batchSize);
5793:       Ne        = numChunks * numBatches * batchSize;
5794:       Nr        = numFaces % (numBatches * batchSize);
5795:       offset    = numFaces - Nr;
5796:       PetscCall(PetscFEGeomGetChunk(fgeom, 0, offset, &chunkGeom));
5797:       for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5798:         key.field = fieldI * Nf + fieldJ;
5799:         if (hasJac) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMat));
5800:         if (hasPrec) PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, dsAux, a, t, X_tShift, elemMatP));
5801:       }
5802:       PetscCall(PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom));
5803:       for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
5804:         key.field = fieldI * Nf + fieldJ;
5805:         if (hasJac)
5806:           PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
5807:         if (hasPrec)
5808:           PetscCall(PetscFEIntegrateBdJacobian(ds, wf, PETSCFE_JACOBIAN_PRE, key, Nr, chunkGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), dsAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
5809:       }
5810:       PetscCall(PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom));
5811:     }
5812:     for (face = 0; face < numFaces; ++face) {
5813:       const PetscInt point = points[face], *support;

5815:       /* Transform to global basis before insertion in Jacobian */
5816:       PetscCall(DMPlexGetSupport(plex, point, &support));
5817:       if (hasJac && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMat[face * totDim * totDim]));
5818:       if (hasPrec && transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, support[0], PETSC_TRUE, totDim, &elemMatP[face * totDim * totDim]));
5819:       if (hasPrec) {
5820:         if (hasJac) {
5821:           if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5822:           PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5823:         }
5824:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMatP[face * totDim * totDim]));
5825:         PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, support[0], &elemMatP[face * totDim * totDim], ADD_VALUES));
5826:       } else {
5827:         if (hasJac) {
5828:           if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(point, "BdJacobian", totDim, totDim, &elemMat[face * totDim * totDim]));
5829:           PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, support[0], &elemMat[face * totDim * totDim], ADD_VALUES));
5830:         }
5831:       }
5832:     }
5833:     PetscCall(DMSNESRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom));
5834:     PetscCall(PetscQuadratureDestroy(&qGeom));
5835:     PetscCall(ISRestoreIndices(pointIS, &points));
5836:     PetscCall(ISDestroy(&pointIS));
5837:     PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, a));
5838:   }
5839:   if (plex) PetscCall(DMDestroy(&plex));
5840:   if (plexA) PetscCall(DMDestroy(&plexA));
5841:   PetscFunctionReturn(PETSC_SUCCESS);
5842: }

5844: PetscErrorCode DMPlexComputeBdJacobianSingle(DM dm, PetscReal t, PetscWeakForm wf, DMLabel label, PetscInt numValues, const PetscInt values[], PetscInt field, Vec locX, Vec locX_t, PetscReal X_tShift, Mat Jac, Mat JacP)
5845: {
5846:   DMField  coordField;
5847:   DMLabel  depthLabel;
5848:   IS       facetIS;
5849:   PetscInt dim;

5851:   PetscFunctionBegin;
5852:   PetscCall(DMGetDimension(dm, &dim));
5853:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5854:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5855:   PetscCall(DMGetCoordinateField(dm, &coordField));
5856:   PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, field, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
5857:   PetscCall(ISDestroy(&facetIS));
5858:   PetscFunctionReturn(PETSC_SUCCESS);
5859: }

5861: static PetscErrorCode DMPlexComputeBdJacobian_Internal(DM dm, Vec locX, Vec locX_t, PetscReal t, PetscReal X_tShift, Mat Jac, Mat JacP, void *user)
5862: {
5863:   PetscDS  prob;
5864:   PetscInt dim, numBd, bd;
5865:   DMLabel  depthLabel;
5866:   DMField  coordField = NULL;
5867:   IS       facetIS;

5869:   PetscFunctionBegin;
5870:   PetscCall(DMGetDS(dm, &prob));
5871:   PetscCall(DMPlexGetDepthLabel(dm, &depthLabel));
5872:   PetscCall(DMGetDimension(dm, &dim));
5873:   PetscCall(DMLabelGetStratumIS(depthLabel, dim - 1, &facetIS));
5874:   PetscCall(PetscDSGetNumBoundary(prob, &numBd));
5875:   PetscCall(DMGetCoordinateField(dm, &coordField));
5876:   for (bd = 0; bd < numBd; ++bd) {
5877:     PetscWeakForm           wf;
5878:     DMBoundaryConditionType type;
5879:     DMLabel                 label;
5880:     const PetscInt         *values;
5881:     PetscInt                fieldI, numValues;
5882:     PetscObject             obj;
5883:     PetscClassId            id;

5885:     PetscCall(PetscDSGetBoundary(prob, bd, &wf, &type, NULL, &label, &numValues, &values, &fieldI, NULL, NULL, NULL, NULL, NULL));
5886:     if (type & DM_BC_ESSENTIAL) continue;
5887:     PetscCall(PetscDSGetDiscretization(prob, fieldI, &obj));
5888:     PetscCall(PetscObjectGetClassId(obj, &id));
5889:     if (id != PETSCFE_CLASSID) continue;
5890:     PetscCall(DMPlexComputeBdJacobian_Single_Internal(dm, t, wf, label, numValues, values, fieldI, locX, locX_t, X_tShift, Jac, JacP, coordField, facetIS));
5891:   }
5892:   PetscCall(ISDestroy(&facetIS));
5893:   PetscFunctionReturn(PETSC_SUCCESS);
5894: }

5896: PetscErrorCode DMPlexComputeJacobian_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *user)
5897: {
5898:   DM_Plex        *mesh  = (DM_Plex *)dm->data;
5899:   const char     *name  = "Jacobian";
5900:   DM              dmAux = NULL, plex, tdm;
5901:   DMEnclosureType encAux;
5902:   Vec             A, tv;
5903:   DMField         coordField;
5904:   PetscDS         prob, probAux = NULL;
5905:   PetscSection    section, globalSection, sectionAux;
5906:   PetscScalar    *elemMat, *elemMatP, *elemMatD, *u, *u_t, *a = NULL;
5907:   const PetscInt *cells;
5908:   PetscInt        Nf, fieldI, fieldJ;
5909:   PetscInt        totDim, totDimAux = 0, cStart, cEnd, numCells, c;
5910:   PetscBool       hasJac = PETSC_FALSE, hasPrec = PETSC_FALSE, hasDyn, hasFV = PETSC_FALSE, transform;

5912:   PetscFunctionBegin;
5913:   PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
5914:   PetscCall(DMGetLocalSection(dm, &section));
5915:   PetscCall(DMGetGlobalSection(dm, &globalSection));
5916:   PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
5917:   if (A) {
5918:     PetscCall(VecGetDM(A, &dmAux));
5919:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
5920:     PetscCall(DMConvert(dmAux, DMPLEX, &plex));
5921:     PetscCall(DMGetLocalSection(plex, &sectionAux));
5922:     PetscCall(DMGetDS(dmAux, &probAux));
5923:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
5924:   }
5925:   PetscCall(DMGetCoordinateField(dm, &coordField));
5926:   if (!cellIS) goto end;
5927:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
5928:   PetscCall(ISGetLocalSize(cellIS, &numCells));
5929:   if (cStart >= cEnd) goto end;
5930:   PetscCall(DMHasBasisTransform(dm, &transform));
5931:   PetscCall(DMGetBasisTransformDM_Internal(dm, &tdm));
5932:   PetscCall(DMGetBasisTransformVec_Internal(dm, &tv));
5933:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
5934:   PetscCall(PetscDSGetNumFields(prob, &Nf));
5935:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
5936:   PetscCall(PetscDSHasJacobian(prob, &hasJac));
5937:   PetscCall(PetscDSHasJacobianPreconditioner(prob, &hasPrec));
5938:   /* user passed in the same matrix, avoid double contributions and
5939:      only assemble the Jacobian */
5940:   if (hasJac && Jac == JacP) hasPrec = PETSC_FALSE;
5941:   PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
5942:   hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
5943:   PetscCall(PetscMalloc5(numCells * totDim, &u, (X_t ? (size_t)numCells * totDim : 0), &u_t, (hasJac ? (size_t)numCells * totDim * totDim : 0), &elemMat, (hasPrec ? (size_t)numCells * totDim * totDim : 0), &elemMatP, (hasDyn ? (size_t)numCells * totDim * totDim : 0), &elemMatD));
5944:   if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
5945:   for (c = cStart; c < cEnd; ++c) {
5946:     const PetscInt cell = cells ? cells[c] : c;
5947:     const PetscInt cind = c - cStart;
5948:     PetscScalar   *x = NULL, *x_t = NULL;
5949:     PetscInt       i;

5951:     PetscCall(DMPlexVecGetClosure(dm, section, X, cell, NULL, &x));
5952:     for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
5953:     PetscCall(DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x));
5954:     if (X_t) {
5955:       PetscCall(DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t));
5956:       for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
5957:       PetscCall(DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t));
5958:     }
5959:     if (dmAux) {
5960:       PetscInt subcell;
5961:       PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
5962:       PetscCall(DMPlexVecGetClosure(plex, sectionAux, A, subcell, NULL, &x));
5963:       for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
5964:       PetscCall(DMPlexVecRestoreClosure(plex, sectionAux, A, subcell, NULL, &x));
5965:     }
5966:   }
5967:   if (hasJac) PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
5968:   if (hasPrec) PetscCall(PetscArrayzero(elemMatP, numCells * totDim * totDim));
5969:   if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
5970:   for (fieldI = 0; fieldI < Nf; ++fieldI) {
5971:     PetscClassId    id;
5972:     PetscFE         fe;
5973:     PetscQuadrature qGeom = NULL;
5974:     PetscInt        Nb;
5975:     /* Conforming batches */
5976:     PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
5977:     /* Remainder */
5978:     PetscInt     Nr, offset, Nq;
5979:     PetscInt     maxDegree;
5980:     PetscFEGeom *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;

5982:     PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
5983:     PetscCall(PetscObjectGetClassId((PetscObject)fe, &id));
5984:     if (id == PETSCFV_CLASSID) {
5985:       hasFV = PETSC_TRUE;
5986:       continue;
5987:     }
5988:     PetscCall(PetscFEGetDimension(fe, &Nb));
5989:     PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
5990:     PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
5991:     if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
5992:     if (!qGeom) {
5993:       PetscCall(PetscFEGetQuadrature(fe, &qGeom));
5994:       PetscCall(PetscObjectReference((PetscObject)qGeom));
5995:     }
5996:     PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
5997:     PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
5998:     blockSize = Nb;
5999:     batchSize = numBlocks * blockSize;
6000:     PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
6001:     numChunks = numCells / (numBatches * batchSize);
6002:     Ne        = numChunks * numBatches * batchSize;
6003:     Nr        = numCells % (numBatches * batchSize);
6004:     offset    = numCells - Nr;
6005:     PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
6006:     PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
6007:     for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6008:       key.field = fieldI * Nf + fieldJ;
6009:       if (hasJac) {
6010:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
6011:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
6012:       }
6013:       if (hasPrec) {
6014:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatP));
6015:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatP[offset * totDim * totDim]));
6016:       }
6017:       if (hasDyn) {
6018:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
6019:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMatD[offset * totDim * totDim]));
6020:       }
6021:     }
6022:     PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
6023:     PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
6024:     PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6025:     PetscCall(PetscQuadratureDestroy(&qGeom));
6026:   }
6027:   /*   Add contribution from X_t */
6028:   if (hasDyn) {
6029:     for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
6030:   }
6031:   if (hasFV) {
6032:     PetscClassId id;
6033:     PetscFV      fv;
6034:     PetscInt     offsetI, NcI, NbI = 1, fc, f;

6036:     for (fieldI = 0; fieldI < Nf; ++fieldI) {
6037:       PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fv));
6038:       PetscCall(PetscDSGetFieldOffset(prob, fieldI, &offsetI));
6039:       PetscCall(PetscObjectGetClassId((PetscObject)fv, &id));
6040:       if (id != PETSCFV_CLASSID) continue;
6041:       /* Put in the weighted identity */
6042:       PetscCall(PetscFVGetNumComponents(fv, &NcI));
6043:       for (c = cStart; c < cEnd; ++c) {
6044:         const PetscInt cind    = c - cStart;
6045:         const PetscInt eOffset = cind * totDim * totDim;
6046:         PetscReal      vol;

6048:         PetscCall(DMPlexComputeCellGeometryFVM(dm, c, &vol, NULL, NULL));
6049:         for (fc = 0; fc < NcI; ++fc) {
6050:           for (f = 0; f < NbI; ++f) {
6051:             const PetscInt i = offsetI + f * NcI + fc;
6052:             if (hasPrec) {
6053:               if (hasJac) elemMat[eOffset + i * totDim + i] = vol;
6054:               elemMatP[eOffset + i * totDim + i] = vol;
6055:             } else {
6056:               elemMat[eOffset + i * totDim + i] = vol;
6057:             }
6058:           }
6059:         }
6060:       }
6061:     }
6062:     /* No allocated space for FV stuff, so ignore the zero entries */
6063:     PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
6064:   }
6065:   /* Insert values into matrix */
6066:   for (c = cStart; c < cEnd; ++c) {
6067:     const PetscInt cell = cells ? cells[c] : c;
6068:     const PetscInt cind = c - cStart;

6070:     /* Transform to global basis before insertion in Jacobian */
6071:     if (transform) PetscCall(DMPlexBasisTransformPointTensor_Internal(dm, tdm, tv, cell, PETSC_TRUE, totDim, &elemMat[cind * totDim * totDim]));
6072:     if (hasPrec) {
6073:       if (hasJac) {
6074:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6075:         PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
6076:       }
6077:       if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatP[cind * totDim * totDim]));
6078:       PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatP[cind * totDim * totDim], ADD_VALUES));
6079:     } else {
6080:       if (hasJac) {
6081:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6082:         PetscCall(DMPlexMatSetClosure_Internal(dm, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMat[cind * totDim * totDim], ADD_VALUES));
6083:       }
6084:     }
6085:   }
6086:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6087:   if (hasFV) PetscCall(MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE));
6088:   PetscCall(PetscFree5(u, u_t, elemMat, elemMatP, elemMatD));
6089:   if (dmAux) {
6090:     PetscCall(PetscFree(a));
6091:     PetscCall(DMDestroy(&plex));
6092:   }
6093:   /* Compute boundary integrals */
6094:   PetscCall(DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, user));
6095:   /* Assemble matrix */
6096: end: {
6097:   PetscBool assOp = hasJac && hasPrec ? PETSC_TRUE : PETSC_FALSE, gassOp;

6099:   PetscCallMPI(MPIU_Allreduce(&assOp, &gassOp, 1, MPIU_BOOL, MPI_LOR, PetscObjectComm((PetscObject)dm)));
6100:   if (hasJac && hasPrec) {
6101:     PetscCall(MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY));
6102:     PetscCall(MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY));
6103:   }
6104: }
6105:   PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
6106:   PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
6107:   PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6108:   PetscFunctionReturn(PETSC_SUCCESS);
6109: }

6111: PetscErrorCode DMPlexComputeJacobian_Hybrid_Internal(DM dm, PetscFormKey key[], IS cellIS, PetscReal t, PetscReal X_tShift, Vec locX, Vec locX_t, Mat Jac, Mat JacP, void *user)
6112: {
6113:   DM_Plex        *mesh          = (DM_Plex *)dm->data;
6114:   const char     *name          = "Hybrid Jacobian";
6115:   DM              dmAux[3]      = {NULL, NULL, NULL};
6116:   DMLabel         ghostLabel    = NULL;
6117:   DM              plex          = NULL;
6118:   DM              plexA         = NULL;
6119:   PetscDS         ds            = NULL;
6120:   PetscDS         dsIn          = NULL;
6121:   PetscDS         dsAux[3]      = {NULL, NULL, NULL};
6122:   Vec             locA[3]       = {NULL, NULL, NULL};
6123:   DM              dmScale[3]    = {NULL, NULL, NULL};
6124:   PetscDS         dsScale[3]    = {NULL, NULL, NULL};
6125:   Vec             locS[3]       = {NULL, NULL, NULL};
6126:   PetscSection    section       = NULL;
6127:   PetscSection    sectionAux[3] = {NULL, NULL, NULL};
6128:   DMField         coordField    = NULL;
6129:   PetscScalar    *a[3]          = {NULL, NULL, NULL};
6130:   PetscScalar    *s[3]          = {NULL, NULL, NULL};
6131:   PetscScalar    *u             = NULL, *u_t;
6132:   PetscScalar    *elemMatNeg, *elemMatPos, *elemMatCoh;
6133:   PetscScalar    *elemMatNegP, *elemMatPosP, *elemMatCohP;
6134:   PetscSection    globalSection;
6135:   IS              chunkIS;
6136:   const PetscInt *cells;
6137:   PetscInt       *faces;
6138:   PetscInt        cStart, cEnd, numCells;
6139:   PetscInt        Nf, fieldI, fieldJ, totDim, totDimIn, totDimAux[3], totDimScale[3], numChunks, cellChunkSize, chunk;
6140:   PetscInt        maxDegree  = PETSC_INT_MAX;
6141:   PetscQuadrature affineQuad = NULL, *quads = NULL;
6142:   PetscFEGeom    *affineGeom = NULL, **geoms = NULL;
6143:   PetscBool       hasBdJac, hasBdPrec;

6145:   PetscFunctionBegin;
6146:   PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6147:   if (!cellIS) goto end;
6148:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6149:   PetscCall(ISGetLocalSize(cellIS, &numCells));
6150:   if (cStart >= cEnd) goto end;
6151:   if ((key[0].label == key[1].label) && (key[0].value == key[1].value) && (key[0].part == key[1].part)) {
6152:     const char *name;
6153:     PetscCall(PetscObjectGetName((PetscObject)key[0].label, &name));
6154:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Form keys for each side of a cohesive surface must be different (%s, %" PetscInt_FMT ", %" PetscInt_FMT ")", name, key[0].value, key[0].part);
6155:   }
6156:   PetscCall(DMConvert(dm, DMPLEX, &plex));
6157:   PetscCall(DMGetSection(dm, &section));
6158:   PetscCall(DMGetGlobalSection(dm, &globalSection));
6159:   PetscCall(DMGetLabel(dm, "ghost", &ghostLabel));
6160:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &ds, &dsIn));
6161:   PetscCall(PetscDSGetNumFields(ds, &Nf));
6162:   PetscCall(PetscDSGetTotalDimension(ds, &totDim));
6163:   PetscCall(PetscDSGetTotalDimension(dsIn, &totDimIn));
6164:   PetscCall(PetscDSHasBdJacobian(ds, &hasBdJac));
6165:   PetscCall(PetscDSHasBdJacobianPreconditioner(ds, &hasBdPrec));
6166:   PetscCall(DMGetAuxiliaryVec(dm, key[2].label, key[2].value, key[2].part, &locA[2]));
6167:   if (locA[2]) {
6168:     const PetscInt cellStart = cells ? cells[cStart] : cStart;

6170:     PetscCall(VecGetDM(locA[2], &dmAux[2]));
6171:     PetscCall(DMConvert(dmAux[2], DMPLEX, &plexA));
6172:     PetscCall(DMGetSection(dmAux[2], &sectionAux[2]));
6173:     PetscCall(DMGetCellDS(dmAux[2], cellStart, &dsAux[2], NULL));
6174:     PetscCall(PetscDSGetTotalDimension(dsAux[2], &totDimAux[2]));
6175:     {
6176:       const PetscInt *cone;
6177:       PetscInt        c;

6179:       PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6180:       for (c = 0; c < 2; ++c) {
6181:         const PetscInt *support;
6182:         PetscInt        ssize, s;

6184:         PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6185:         PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6186:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6187:         if (support[0] == cellStart) s = 1;
6188:         else if (support[1] == cellStart) s = 0;
6189:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6190:         PetscCall(DMGetAuxiliaryVec(dm, key[c].label, key[c].value, key[c].part, &locA[c]));
6191:         if (locA[c]) PetscCall(VecGetDM(locA[c], &dmAux[c]));
6192:         else dmAux[c] = dmAux[2];
6193:         PetscCall(DMGetCellDS(dmAux[c], support[s], &dsAux[c], NULL));
6194:         PetscCall(PetscDSGetTotalDimension(dsAux[c], &totDimAux[c]));
6195:       }
6196:     }
6197:   }
6198:   /* Handle mass matrix scaling
6199:        The field in key[2] is the field to be scaled, and the scaling field is the first in the dsScale */
6200:   PetscCall(DMGetAuxiliaryVec(dm, key[2].label, -key[2].value, key[2].part, &locS[2]));
6201:   if (locS[2]) {
6202:     const PetscInt cellStart = cells ? cells[cStart] : cStart;
6203:     PetscInt       Nb, Nbs;

6205:     PetscCall(VecGetDM(locS[2], &dmScale[2]));
6206:     PetscCall(DMGetCellDS(dmScale[2], cells ? cells[cStart] : cStart, &dsScale[2], NULL));
6207:     PetscCall(PetscDSGetTotalDimension(dsScale[2], &totDimScale[2]));
6208:     // BRAD: This is not set correctly
6209:     key[2].field = 2;
6210:     PetscCall(PetscDSGetFieldSize(ds, key[2].field, &Nb));
6211:     PetscCall(PetscDSGetFieldSize(dsScale[2], 0, &Nbs));
6212:     PetscCheck(Nb == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " of size %" PetscInt_FMT " cannot be scaled by field of size %" PetscInt_FMT, key[2].field, Nb, Nbs);
6213:     {
6214:       const PetscInt *cone;
6215:       PetscInt        c;

6217:       locS[1] = locS[0] = locS[2];
6218:       dmScale[1] = dmScale[0] = dmScale[2];
6219:       PetscCall(DMPlexGetCone(dm, cellStart, &cone));
6220:       for (c = 0; c < 2; ++c) {
6221:         const PetscInt *support;
6222:         PetscInt        ssize, s;

6224:         PetscCall(DMPlexGetSupport(dm, cone[c], &support));
6225:         PetscCall(DMPlexGetSupportSize(dm, cone[c], &ssize));
6226:         PetscCheck(ssize == 2, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " from cell %" PetscInt_FMT " has support size %" PetscInt_FMT " != 2", cone[c], cellStart, ssize);
6227:         if (support[0] == cellStart) s = 1;
6228:         else if (support[1] == cellStart) s = 0;
6229:         else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %" PetscInt_FMT " does not have cell %" PetscInt_FMT " in its support", cone[c], cellStart);
6230:         PetscCall(DMGetCellDS(dmScale[c], support[s], &dsScale[c], NULL));
6231:         PetscCall(PetscDSGetTotalDimension(dsScale[c], &totDimScale[c]));
6232:       }
6233:     }
6234:   }
6235:   /* 2: Setup geometric data */
6236:   PetscCall(DMGetCoordinateField(dm, &coordField));
6237:   PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6238:   if (maxDegree > 1) {
6239:     PetscInt f;
6240:     PetscCall(PetscCalloc2(Nf, &quads, Nf, &geoms));
6241:     for (f = 0; f < Nf; ++f) {
6242:       PetscFE fe;

6244:       PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
6245:       if (fe) {
6246:         PetscCall(PetscFEGetQuadrature(fe, &quads[f]));
6247:         PetscCall(PetscObjectReference((PetscObject)quads[f]));
6248:       }
6249:     }
6250:   }
6251:   /* Loop over chunks */
6252:   cellChunkSize = numCells;
6253:   numChunks     = !numCells ? 0 : PetscCeilReal(((PetscReal)numCells) / cellChunkSize);
6254:   PetscCall(PetscCalloc1(2 * cellChunkSize, &faces));
6255:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, 1 * cellChunkSize, faces, PETSC_USE_POINTER, &chunkIS));
6256:   /* Extract field coefficients */
6257:   /* NOTE This needs the end cap faces to have identical orientations */
6258:   PetscCall(DMPlexGetHybridCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6259:   PetscCall(DMPlexGetHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6260:   PetscCall(DMPlexGetHybridFields(dm, dmScale, dsScale, cellIS, locS, PETSC_TRUE, s));
6261:   PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6262:   PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6263:   PetscCall(DMGetWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6264:   PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6265:   PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6266:   PetscCall(DMGetWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6267:   for (chunk = 0; chunk < numChunks; ++chunk) {
6268:     PetscInt cS = cStart + chunk * cellChunkSize, cE = PetscMin(cS + cellChunkSize, cEnd), numCells = cE - cS, c;

6270:     if (hasBdJac) {
6271:       PetscCall(PetscArrayzero(elemMatNeg, cellChunkSize * totDim * totDim));
6272:       PetscCall(PetscArrayzero(elemMatPos, cellChunkSize * totDim * totDim));
6273:       PetscCall(PetscArrayzero(elemMatCoh, cellChunkSize * totDim * totDim));
6274:     }
6275:     if (hasBdPrec) {
6276:       PetscCall(PetscArrayzero(elemMatNegP, cellChunkSize * totDim * totDim));
6277:       PetscCall(PetscArrayzero(elemMatPosP, cellChunkSize * totDim * totDim));
6278:       PetscCall(PetscArrayzero(elemMatCohP, cellChunkSize * totDim * totDim));
6279:     }
6280:     /* Get faces */
6281:     for (c = cS; c < cE; ++c) {
6282:       const PetscInt  cell = cells ? cells[c] : c;
6283:       const PetscInt *cone;
6284:       PetscCall(DMPlexGetCone(plex, cell, &cone));
6285:       faces[(c - cS) * 2 + 0] = cone[0];
6286:       faces[(c - cS) * 2 + 1] = cone[1];
6287:     }
6288:     PetscCall(ISGeneralSetIndices(chunkIS, 2 * cellChunkSize, faces, PETSC_USE_POINTER));
6289:     if (maxDegree <= 1) {
6290:       if (!affineQuad) PetscCall(DMFieldCreateDefaultQuadrature(coordField, chunkIS, &affineQuad));
6291:       if (affineQuad) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, affineQuad, PETSC_TRUE, &affineGeom));
6292:     } else {
6293:       PetscInt f;
6294:       for (f = 0; f < Nf; ++f) {
6295:         if (quads[f]) PetscCall(DMSNESGetFEGeom(coordField, chunkIS, quads[f], PETSC_TRUE, &geoms[f]));
6296:       }
6297:     }

6299:     for (fieldI = 0; fieldI < Nf; ++fieldI) {
6300:       PetscFE         feI;
6301:       PetscFEGeom    *geom      = affineGeom ? affineGeom : geoms[fieldI];
6302:       PetscFEGeom    *chunkGeom = NULL, *remGeom = NULL;
6303:       PetscQuadrature quad = affineQuad ? affineQuad : quads[fieldI];
6304:       PetscInt        numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset, Nq, Nb;
6305:       PetscBool       isCohesiveField;

6307:       PetscCall(PetscDSGetDiscretization(ds, fieldI, (PetscObject *)&feI));
6308:       if (!feI) continue;
6309:       PetscCall(PetscFEGetTileSizes(feI, NULL, &numBlocks, NULL, &numBatches));
6310:       PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
6311:       PetscCall(PetscFEGetDimension(feI, &Nb));
6312:       blockSize = Nb;
6313:       batchSize = numBlocks * blockSize;
6314:       PetscCall(PetscFESetTileSizes(feI, blockSize, numBlocks, batchSize, numBatches));
6315:       numChunks = numCells / (numBatches * batchSize);
6316:       Ne        = numChunks * numBatches * batchSize;
6317:       Nr        = numCells % (numBatches * batchSize);
6318:       offset    = numCells - Nr;
6319:       PetscCall(PetscFEGeomGetChunk(geom, 0, offset * 2, &chunkGeom));
6320:       PetscCall(PetscFEGeomGetChunk(geom, offset * 2, numCells * 2, &remGeom));
6321:       PetscCall(PetscDSGetCohesive(ds, fieldI, &isCohesiveField));
6322:       for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6323:         PetscFE feJ;

6325:         PetscCall(PetscDSGetDiscretization(ds, fieldJ, (PetscObject *)&feJ));
6326:         if (!feJ) continue;
6327:         key[0].field = fieldI * Nf + fieldJ;
6328:         key[1].field = fieldI * Nf + fieldJ;
6329:         key[2].field = fieldI * Nf + fieldJ;
6330:         if (hasBdJac) {
6331:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNeg));
6332:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], PetscSafePointerPlusOffset(a[0], offset * totDimAux[0]), t, X_tShift, &elemMatNeg[offset * totDim * totDim]));
6333:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPos));
6334:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], PetscSafePointerPlusOffset(a[1], offset * totDimAux[1]), t, X_tShift, &elemMatPos[offset * totDim * totDim]));
6335:         }
6336:         if (hasBdPrec) {
6337:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Ne, chunkGeom, u, u_t, dsAux[0], a[0], t, X_tShift, elemMatNegP));
6338:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[0], 0, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[0], &a[0][offset * totDimAux[0]], t, X_tShift, &elemMatNegP[offset * totDim * totDim]));
6339:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Ne, chunkGeom, u, u_t, dsAux[1], a[1], t, X_tShift, elemMatPosP));
6340:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[1], 1, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[1], &a[1][offset * totDimAux[1]], t, X_tShift, &elemMatPosP[offset * totDim * totDim]));
6341:         }
6342:         if (hasBdJac) {
6343:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCoh));
6344:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], PetscSafePointerPlusOffset(a[2], offset * totDimAux[2]), t, X_tShift, &elemMatCoh[offset * totDim * totDim]));
6345:         }
6346:         if (hasBdPrec) {
6347:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Ne, chunkGeom, u, u_t, dsAux[2], a[2], t, X_tShift, elemMatCohP));
6348:           PetscCall(PetscFEIntegrateHybridJacobian(ds, dsIn, PETSCFE_JACOBIAN_PRE, key[2], 2, Nr, remGeom, &u[offset * totDimIn], PetscSafePointerPlusOffset(u_t, offset * totDimIn), dsAux[2], &a[2][offset * totDimAux[2]], t, X_tShift, &elemMatCohP[offset * totDim * totDim]));
6349:         }
6350:       }
6351:       PetscCall(PetscFEGeomRestoreChunk(geom, offset, numCells, &remGeom));
6352:       PetscCall(PetscFEGeomRestoreChunk(geom, 0, offset, &chunkGeom));
6353:     }
6354:     /* Insert values into matrix */
6355:     for (c = cS; c < cE; ++c) {
6356:       const PetscInt cell = cells ? cells[c] : c;
6357:       const PetscInt cind = c - cS, coff = cind * totDim * totDim;
6358:       PetscInt       i, j;

6360:       /* Scale element values */
6361:       if (locS[0]) {
6362:         PetscInt  Nb, soff = cind * totDimScale[0], off = 0;
6363:         PetscBool cohesive;

6365:         for (fieldI = 0; fieldI < Nf; ++fieldI) {
6366:           PetscCall(PetscDSGetFieldSize(ds, fieldI, &Nb));
6367:           PetscCall(PetscDSGetCohesive(ds, fieldI, &cohesive));

6369:           if (fieldI == key[2].field) {
6370:             PetscCheck(cohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Scaling should not happen for face fields");
6371:             for (i = 0; i < Nb; ++i) {
6372:               for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNeg[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPos[coff + (off + i) * totDim + j];
6373:               if (hasBdPrec)
6374:                 for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += s[0][soff + i] * elemMatNegP[coff + (off + i) * totDim + j] + s[1][soff + i] * elemMatPosP[coff + (off + i) * totDim + j];
6375:             }
6376:             off += Nb;
6377:           } else {
6378:             const PetscInt N = cohesive ? Nb : Nb * 2;

6380:             for (i = 0; i < N; ++i) {
6381:               for (j = 0; j < totDim; ++j) elemMatCoh[coff + (off + i) * totDim + j] += elemMatNeg[coff + (off + i) * totDim + j] + elemMatPos[coff + (off + i) * totDim + j];
6382:               if (hasBdPrec)
6383:                 for (j = 0; j < totDim; ++j) elemMatCohP[coff + (off + i) * totDim + j] += elemMatNegP[coff + (off + i) * totDim + j] + elemMatPosP[coff + (off + i) * totDim + j];
6384:             }
6385:             off += N;
6386:           }
6387:         }
6388:       } else {
6389:         for (i = 0; i < totDim * totDim; ++i) elemMatCoh[coff + i] += elemMatNeg[coff + i] + elemMatPos[coff + i];
6390:         if (hasBdPrec)
6391:           for (i = 0; i < totDim * totDim; ++i) elemMatCohP[coff + i] += elemMatNegP[coff + i] + elemMatPosP[coff + i];
6392:       }
6393:       if (hasBdPrec) {
6394:         if (hasBdJac) {
6395:           if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6396:           PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, Jac, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6397:         }
6398:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCohP[cind * totDim * totDim]));
6399:         PetscCall(DMPlexMatSetClosure(plex, section, globalSection, JacP, cell, &elemMatCohP[cind * totDim * totDim], ADD_VALUES));
6400:       } else if (hasBdJac) {
6401:         if (mesh->printFEM > 1) PetscCall(DMPrintCellMatrix(cell, name, totDim, totDim, &elemMatCoh[cind * totDim * totDim]));
6402:         PetscCall(DMPlexMatSetClosure_Internal(plex, section, globalSection, mesh->useMatClPerm, JacP, cell, &elemMatCoh[cind * totDim * totDim], ADD_VALUES));
6403:       }
6404:     }
6405:   }
6406:   PetscCall(DMPlexRestoreCellFields(dm, cellIS, locX, locX_t, locA[2], &u, &u_t, &a[2]));
6407:   PetscCall(DMPlexRestoreHybridFields(dm, dmAux, dsAux, cellIS, locA, PETSC_TRUE, a));
6408:   PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNeg));
6409:   PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPos));
6410:   PetscCall(DMRestoreWorkArray(dm, hasBdJac ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCoh));
6411:   PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatNegP));
6412:   PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatPosP));
6413:   PetscCall(DMRestoreWorkArray(dm, hasBdPrec ? cellChunkSize * totDim * totDim : 0, MPIU_SCALAR, &elemMatCohP));
6414:   PetscCall(PetscFree(faces));
6415:   PetscCall(ISDestroy(&chunkIS));
6416:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6417:   if (maxDegree <= 1) {
6418:     PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, affineQuad, PETSC_FALSE, &affineGeom));
6419:     PetscCall(PetscQuadratureDestroy(&affineQuad));
6420:   } else {
6421:     PetscInt f;
6422:     for (f = 0; f < Nf; ++f) {
6423:       if (geoms) PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, quads[f], PETSC_FALSE, &geoms[f]));
6424:       if (quads) PetscCall(PetscQuadratureDestroy(&quads[f]));
6425:     }
6426:     PetscCall(PetscFree2(quads, geoms));
6427:   }
6428:   if (dmAux[2]) PetscCall(DMDestroy(&plexA));
6429:   PetscCall(DMDestroy(&plex));
6430: end:
6431:   PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6432:   PetscFunctionReturn(PETSC_SUCCESS);
6433: }

6435: /*
6436:   DMPlexComputeJacobian_Action_Internal - Form the local portion of the Jacobian action Z = J(X) Y at the local solution X using pointwise functions specified by the user.

6438:   Input Parameters:
6439: + dm     - The mesh
6440: . key    - The PetscWeakFormKey indicating where integration should happen
6441: . cellIS - The cells to integrate over
6442: . t      - The time
6443: . X_tShift - The multiplier for the Jacobian with respect to X_t
6444: . X      - Local solution vector
6445: . X_t    - Time-derivative of the local solution vector
6446: . Y      - Local input vector
6447: - user   - the user context

6449:   Output Parameter:
6450: . Z - Local output vector

6452:   Note:
6453:   We form the residual one batch of elements at a time. This allows us to offload work onto an accelerator,
6454:   like a GPU, or vectorize on a multicore machine.
6455: */
6456: PetscErrorCode DMPlexComputeJacobian_Action_Internal(DM dm, PetscFormKey key, IS cellIS, PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Vec Y, Vec Z, void *user)
6457: {
6458:   DM_Plex        *mesh  = (DM_Plex *)dm->data;
6459:   const char     *name  = "Jacobian";
6460:   DM              dmAux = NULL, plex, plexAux = NULL;
6461:   DMEnclosureType encAux;
6462:   Vec             A;
6463:   DMField         coordField;
6464:   PetscDS         prob, probAux = NULL;
6465:   PetscQuadrature quad;
6466:   PetscSection    section, globalSection, sectionAux;
6467:   PetscScalar    *elemMat, *elemMatD, *u, *u_t, *a = NULL, *y, *z;
6468:   const PetscInt *cells;
6469:   PetscInt        Nf, fieldI, fieldJ;
6470:   PetscInt        totDim, totDimAux = 0, cStart, cEnd, numCells, c;
6471:   PetscBool       hasDyn;

6473:   PetscFunctionBegin;
6474:   PetscCall(PetscLogEventBegin(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6475:   PetscCall(DMConvert(dm, DMPLEX, &plex));
6476:   PetscCall(ISGetLocalSize(cellIS, &numCells));
6477:   PetscCall(ISGetPointRange(cellIS, &cStart, &cEnd, &cells));
6478:   PetscCall(DMGetLocalSection(dm, &section));
6479:   PetscCall(DMGetGlobalSection(dm, &globalSection));
6480:   PetscCall(DMGetCellDS(dm, cells ? cells[cStart] : cStart, &prob, NULL));
6481:   PetscCall(PetscDSGetNumFields(prob, &Nf));
6482:   PetscCall(PetscDSGetTotalDimension(prob, &totDim));
6483:   PetscCall(PetscDSHasDynamicJacobian(prob, &hasDyn));
6484:   hasDyn = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
6485:   PetscCall(DMGetAuxiliaryVec(dm, key.label, key.value, key.part, &A));
6486:   if (A) {
6487:     PetscCall(VecGetDM(A, &dmAux));
6488:     PetscCall(DMGetEnclosureRelation(dmAux, dm, &encAux));
6489:     PetscCall(DMConvert(dmAux, DMPLEX, &plexAux));
6490:     PetscCall(DMGetLocalSection(plexAux, &sectionAux));
6491:     PetscCall(DMGetDS(dmAux, &probAux));
6492:     PetscCall(PetscDSGetTotalDimension(probAux, &totDimAux));
6493:   }
6494:   PetscCall(VecSet(Z, 0.0));
6495:   PetscCall(PetscMalloc6(numCells * totDim, &u, (X_t ? (size_t)numCells * totDim : 0), &u_t, numCells * totDim * totDim, &elemMat, (hasDyn ? (size_t)numCells * totDim * totDim : 0), &elemMatD, numCells * totDim, &y, totDim, &z));
6496:   if (dmAux) PetscCall(PetscMalloc1(numCells * totDimAux, &a));
6497:   PetscCall(DMGetCoordinateField(dm, &coordField));
6498:   for (c = cStart; c < cEnd; ++c) {
6499:     const PetscInt cell = cells ? cells[c] : c;
6500:     const PetscInt cind = c - cStart;
6501:     PetscScalar   *x = NULL, *x_t = NULL;
6502:     PetscInt       i;

6504:     PetscCall(DMPlexVecGetClosure(plex, section, X, cell, NULL, &x));
6505:     for (i = 0; i < totDim; ++i) u[cind * totDim + i] = x[i];
6506:     PetscCall(DMPlexVecRestoreClosure(plex, section, X, cell, NULL, &x));
6507:     if (X_t) {
6508:       PetscCall(DMPlexVecGetClosure(plex, section, X_t, cell, NULL, &x_t));
6509:       for (i = 0; i < totDim; ++i) u_t[cind * totDim + i] = x_t[i];
6510:       PetscCall(DMPlexVecRestoreClosure(plex, section, X_t, cell, NULL, &x_t));
6511:     }
6512:     if (dmAux) {
6513:       PetscInt subcell;
6514:       PetscCall(DMGetEnclosurePoint(dmAux, dm, encAux, cell, &subcell));
6515:       PetscCall(DMPlexVecGetClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6516:       for (i = 0; i < totDimAux; ++i) a[cind * totDimAux + i] = x[i];
6517:       PetscCall(DMPlexVecRestoreClosure(plexAux, sectionAux, A, subcell, NULL, &x));
6518:     }
6519:     PetscCall(DMPlexVecGetClosure(plex, section, Y, cell, NULL, &x));
6520:     for (i = 0; i < totDim; ++i) y[cind * totDim + i] = x[i];
6521:     PetscCall(DMPlexVecRestoreClosure(plex, section, Y, cell, NULL, &x));
6522:   }
6523:   PetscCall(PetscArrayzero(elemMat, numCells * totDim * totDim));
6524:   if (hasDyn) PetscCall(PetscArrayzero(elemMatD, numCells * totDim * totDim));
6525:   for (fieldI = 0; fieldI < Nf; ++fieldI) {
6526:     PetscFE  fe;
6527:     PetscInt Nb;
6528:     /* Conforming batches */
6529:     PetscInt numChunks, numBatches, numBlocks, Ne, blockSize, batchSize;
6530:     /* Remainder */
6531:     PetscInt        Nr, offset, Nq;
6532:     PetscQuadrature qGeom = NULL;
6533:     PetscInt        maxDegree;
6534:     PetscFEGeom    *cgeomFEM, *chunkGeom = NULL, *remGeom = NULL;

6536:     PetscCall(PetscDSGetDiscretization(prob, fieldI, (PetscObject *)&fe));
6537:     PetscCall(PetscFEGetQuadrature(fe, &quad));
6538:     PetscCall(PetscFEGetDimension(fe, &Nb));
6539:     PetscCall(PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches));
6540:     PetscCall(DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree));
6541:     if (maxDegree <= 1) PetscCall(DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom));
6542:     if (!qGeom) {
6543:       PetscCall(PetscFEGetQuadrature(fe, &qGeom));
6544:       PetscCall(PetscObjectReference((PetscObject)qGeom));
6545:     }
6546:     PetscCall(PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL));
6547:     PetscCall(DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6548:     blockSize = Nb;
6549:     batchSize = numBlocks * blockSize;
6550:     PetscCall(PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches));
6551:     numChunks = numCells / (numBatches * batchSize);
6552:     Ne        = numChunks * numBatches * batchSize;
6553:     Nr        = numCells % (numBatches * batchSize);
6554:     offset    = numCells - Nr;
6555:     PetscCall(PetscFEGeomGetChunk(cgeomFEM, 0, offset, &chunkGeom));
6556:     PetscCall(PetscFEGeomGetChunk(cgeomFEM, offset, numCells, &remGeom));
6557:     for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
6558:       key.field = fieldI * Nf + fieldJ;
6559:       PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMat));
6560:       PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, PetscSafePointerPlusOffset(a, offset * totDimAux), t, X_tShift, &elemMat[offset * totDim * totDim]));
6561:       if (hasDyn) {
6562:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Ne, chunkGeom, u, u_t, probAux, a, t, X_tShift, elemMatD));
6563:         PetscCall(PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, key, Nr, remGeom, &u[offset * totDim], PetscSafePointerPlusOffset(u_t, offset * totDim), probAux, &a[offset * totDimAux], t, X_tShift, &elemMatD[offset * totDim * totDim]));
6564:       }
6565:     }
6566:     PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, offset, numCells, &remGeom));
6567:     PetscCall(PetscFEGeomRestoreChunk(cgeomFEM, 0, offset, &chunkGeom));
6568:     PetscCall(DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM));
6569:     PetscCall(PetscQuadratureDestroy(&qGeom));
6570:   }
6571:   if (hasDyn) {
6572:     for (c = 0; c < numCells * totDim * totDim; ++c) elemMat[c] += X_tShift * elemMatD[c];
6573:   }
6574:   for (c = cStart; c < cEnd; ++c) {
6575:     const PetscInt     cell = cells ? cells[c] : c;
6576:     const PetscInt     cind = c - cStart;
6577:     const PetscBLASInt one  = 1;
6578:     PetscBLASInt       M;
6579:     const PetscScalar  a = 1.0, b = 0.0;

6581:     PetscCall(PetscBLASIntCast(totDim, &M));
6582:     PetscCallBLAS("BLASgemv", BLASgemv_("N", &M, &M, &a, &elemMat[cind * totDim * totDim], &M, &y[cind * totDim], &one, &b, z, &one));
6583:     if (mesh->printFEM > 1) {
6584:       PetscCall(DMPrintCellMatrix(c, name, totDim, totDim, &elemMat[cind * totDim * totDim]));
6585:       PetscCall(DMPrintCellVector(c, "Y", totDim, &y[cind * totDim]));
6586:       PetscCall(DMPrintCellVector(c, "Z", totDim, z));
6587:     }
6588:     PetscCall(DMPlexVecSetClosure(dm, section, Z, cell, z, ADD_VALUES));
6589:   }
6590:   PetscCall(PetscFree6(u, u_t, elemMat, elemMatD, y, z));
6591:   if (mesh->printFEM) {
6592:     PetscCall(PetscPrintf(PetscObjectComm((PetscObject)Z), "Z:\n"));
6593:     PetscCall(VecView(Z, NULL));
6594:   }
6595:   PetscCall(ISRestorePointRange(cellIS, &cStart, &cEnd, &cells));
6596:   PetscCall(PetscFree(a));
6597:   PetscCall(DMDestroy(&plexAux));
6598:   PetscCall(DMDestroy(&plex));
6599:   PetscCall(PetscLogEventEnd(DMPLEX_JacobianFEM, dm, 0, 0, 0));
6600:   PetscFunctionReturn(PETSC_SUCCESS);
6601: }