Actual source code: rvector.c
1: /*
2: Provides the interface functions for vector operations that have PetscScalar/PetscReal in the signature
3: These are the vector functions the user calls.
4: */
5: #include <petsc/private/vecimpl.h>
7: PetscInt VecGetSubVectorSavedStateId = -1;
9: #if PetscDefined(USE_DEBUG)
10: // this is a no-op '0' macro in optimized builds
11: PetscErrorCode VecValidValues_Internal(Vec vec, PetscInt argnum, PetscBool begin)
12: {
13: PetscFunctionBegin;
14: if (vec->petscnative || vec->ops->getarray) {
15: PetscInt n;
16: const PetscScalar *x;
17: PetscOffloadMask mask;
19: PetscCall(VecGetOffloadMask(vec, &mask));
20: if (!PetscOffloadHost(mask)) PetscFunctionReturn(PETSC_SUCCESS);
21: PetscCall(VecGetLocalSize(vec, &n));
22: PetscCall(VecGetArrayRead(vec, &x));
23: for (PetscInt i = 0; i < n; i++) {
24: if (begin) {
25: PetscCheck(!PetscIsInfOrNanScalar(x[i]), PETSC_COMM_SELF, PETSC_ERR_FP, "Vec entry at local location %" PetscInt_FMT " is not-a-number or infinite at beginning of function: Parameter number %" PetscInt_FMT, i, argnum);
26: } else {
27: PetscCheck(!PetscIsInfOrNanScalar(x[i]), PETSC_COMM_SELF, PETSC_ERR_FP, "Vec entry at local location %" PetscInt_FMT " is not-a-number or infinite at end of function: Parameter number %" PetscInt_FMT, i, argnum);
28: }
29: }
30: PetscCall(VecRestoreArrayRead(vec, &x));
31: }
32: PetscFunctionReturn(PETSC_SUCCESS);
33: }
34: #endif
36: /*@
37: VecMaxPointwiseDivide - Computes the maximum of the componentwise division `max = max_i abs(x[i]/y[i])`.
39: Logically Collective
41: Input Parameters:
42: + x - the numerators
43: - y - the denominators
45: Output Parameter:
46: . max - the result
48: Level: advanced
50: Notes:
51: `x` and `y` may be the same vector
53: if a particular `y[i]` is zero, it is treated as 1 in the above formula
55: .seealso: [](ch_vectors), `Vec`, `VecPointwiseDivide()`, `VecPointwiseMult()`, `VecPointwiseMax()`, `VecPointwiseMin()`, `VecPointwiseMaxAbs()`
56: @*/
57: PetscErrorCode VecMaxPointwiseDivide(Vec x, Vec y, PetscReal *max)
58: {
59: PetscFunctionBegin;
62: PetscAssertPointer(max, 3);
65: PetscCheckSameTypeAndComm(x, 1, y, 2);
66: VecCheckSameSize(x, 1, y, 2);
67: VecCheckAssembled(x);
68: VecCheckAssembled(y);
69: PetscCall(VecLockReadPush(x));
70: PetscCall(VecLockReadPush(y));
71: PetscUseTypeMethod(x, maxpointwisedivide, y, max);
72: PetscCall(VecLockReadPop(x));
73: PetscCall(VecLockReadPop(y));
74: PetscFunctionReturn(PETSC_SUCCESS);
75: }
77: /*@
78: VecDot - Computes the vector dot product.
80: Collective
82: Input Parameters:
83: + x - first vector
84: - y - second vector
86: Output Parameter:
87: . val - the dot product
89: Level: intermediate
91: Notes for Users of Complex Numbers:
92: For complex vectors, `VecDot()` computes
93: .vb
94: val = (x,y) = y^H x,
95: .ve
96: where y^H denotes the conjugate transpose of y. Note that this corresponds to the usual "mathematicians" complex
97: inner product where the SECOND argument gets the complex conjugate. Since the `BLASdot()` complex conjugates the first
98: first argument we call the `BLASdot()` with the arguments reversed.
100: Use `VecTDot()` for the indefinite form
101: .vb
102: val = (x,y) = y^T x,
103: .ve
104: where y^T denotes the transpose of y.
106: .seealso: [](ch_vectors), `Vec`, `VecMDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`, `VecDotRealPart()`
107: @*/
108: PetscErrorCode VecDot(Vec x, Vec y, PetscScalar *val)
109: {
110: PetscFunctionBegin;
113: PetscAssertPointer(val, 3);
116: PetscCheckSameTypeAndComm(x, 1, y, 2);
117: VecCheckSameSize(x, 1, y, 2);
118: VecCheckAssembled(x);
119: VecCheckAssembled(y);
121: PetscCall(VecLockReadPush(x));
122: PetscCall(VecLockReadPush(y));
123: PetscCall(PetscLogEventBegin(VEC_Dot, x, y, 0, 0));
124: PetscUseTypeMethod(x, dot, y, val);
125: PetscCall(PetscLogEventEnd(VEC_Dot, x, y, 0, 0));
126: PetscCall(VecLockReadPop(x));
127: PetscCall(VecLockReadPop(y));
128: PetscFunctionReturn(PETSC_SUCCESS);
129: }
131: /*@
132: VecDotRealPart - Computes the real part of the vector dot product.
134: Collective
136: Input Parameters:
137: + x - first vector
138: - y - second vector
140: Output Parameter:
141: . val - the real part of the dot product;
143: Level: intermediate
145: Notes for Users of Complex Numbers:
146: See `VecDot()` for more details on the definition of the dot product for complex numbers
148: For real numbers this returns the same value as `VecDot()`
150: For complex numbers in C^n (that is a vector of n components with a complex number for each component) this is equal to the usual real dot product on the
151: the space R^{2n} (that is a vector of 2n components with the real or imaginary part of the complex numbers for components)
153: Developer Notes:
154: This is not currently optimized to compute only the real part of the dot product.
156: .seealso: [](ch_vectors), `Vec`, `VecMDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`, `VecDot()`, `VecDotNorm2()`
157: @*/
158: PetscErrorCode VecDotRealPart(Vec x, Vec y, PetscReal *val)
159: {
160: PetscScalar fdot;
162: PetscFunctionBegin;
163: PetscCall(VecDot(x, y, &fdot));
164: *val = PetscRealPart(fdot);
165: PetscFunctionReturn(PETSC_SUCCESS);
166: }
168: /*@
169: VecNorm - Computes the vector norm.
171: Collective
173: Input Parameters:
174: + x - the vector
175: - type - the type of the norm requested
177: Output Parameter:
178: . val - the norm
180: Level: intermediate
182: Notes:
183: See `NormType` for descriptions of each norm.
185: For complex numbers `NORM_1` will return the traditional 1 norm of the 2 norm of the complex
186: numbers; that is the 1 norm of the absolute values of the complex entries. In PETSc 3.6 and
187: earlier releases it returned the 1 norm of the 1 norm of the complex entries (what is
188: returned by the BLAS routine `asum()`). Both are valid norms but most people expect the former.
190: This routine stashes the computed norm value, repeated calls before the vector entries are
191: changed are then rapid since the precomputed value is immediately available. Certain vector
192: operations such as `VecSet()` store the norms so the value is immediately available and does
193: not need to be explicitly computed. `VecScale()` updates any stashed norm values, thus calls
194: after `VecScale()` do not need to explicitly recompute the norm.
196: .seealso: [](ch_vectors), `Vec`, `NormType`, `VecDot()`, `VecTDot()`, `VecDotBegin()`, `VecDotEnd()`, `VecNormAvailable()`,
197: `VecNormBegin()`, `VecNormEnd()`, `NormType()`
198: @*/
199: PetscErrorCode VecNorm(Vec x, NormType type, PetscReal *val)
200: {
201: PetscBool flg = PETSC_TRUE;
203: PetscFunctionBegin;
206: VecCheckAssembled(x);
208: PetscAssertPointer(val, 3);
210: PetscCall(VecNormAvailable(x, type, &flg, val));
211: // check that all MPI processes call this routine together and have same availability
212: if (PetscDefined(USE_DEBUG)) {
213: PetscMPIInt b0 = (PetscMPIInt)flg, b1[2], b2[2];
214: b1[0] = -b0;
215: b1[1] = b0;
216: PetscCallMPI(MPIU_Allreduce(b1, b2, 2, MPI_INT, MPI_MAX, PetscObjectComm((PetscObject)x)));
217: PetscCheck(-b2[0] == b2[1], PetscObjectComm((PetscObject)x), PETSC_ERR_ARG_WRONGSTATE, "Some MPI processes have cached %s norm, others do not. This may happen when some MPI processes call VecGetArray() and some others do not.", NormTypes[type]);
218: if (flg) {
219: PetscReal b1[2], b2[2];
220: b1[0] = -(*val);
221: b1[1] = *val;
222: PetscCallMPI(MPIU_Allreduce(b1, b2, 2, MPIU_REAL, MPIU_MAX, PetscObjectComm((PetscObject)x)));
223: PetscCheck((PetscIsNanReal(b2[0]) && PetscIsNanReal(b2[1])) || (-b2[0] == b2[1]), PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Difference in cached %s norms: local %g", NormTypes[type], (double)*val);
224: }
225: }
226: if (flg) PetscFunctionReturn(PETSC_SUCCESS);
228: PetscCall(VecLockReadPush(x));
229: PetscCall(PetscLogEventBegin(VEC_Norm, x, 0, 0, 0));
230: PetscUseTypeMethod(x, norm, type, val);
231: PetscCall(PetscLogEventEnd(VEC_Norm, x, 0, 0, 0));
232: PetscCall(VecLockReadPop(x));
234: if (type != NORM_1_AND_2) PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[type], *val));
235: PetscFunctionReturn(PETSC_SUCCESS);
236: }
238: /*@
239: VecNormAvailable - Returns the vector norm if it is already known. That is, it has been previously computed and cached in the vector
241: Not Collective
243: Input Parameters:
244: + x - the vector
245: - type - one of `NORM_1` (sum_i |x[i]|), `NORM_2` sqrt(sum_i (x[i])^2), `NORM_INFINITY` max_i |x[i]|. Also available
246: `NORM_1_AND_2`, which computes both norms and stores them
247: in a two element array.
249: Output Parameters:
250: + available - `PETSC_TRUE` if the val returned is valid
251: - val - the norm
253: Level: intermediate
255: Developer Notes:
256: `PETSC_HAVE_SLOW_BLAS_NORM2` will cause a C (loop unrolled) version of the norm to be used, rather
257: than the BLAS. This should probably only be used when one is using the FORTRAN BLAS routines
258: (as opposed to vendor provided) because the FORTRAN BLAS `NRM2()` routine is very slow.
260: .seealso: [](ch_vectors), `Vec`, `VecDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`,
261: `VecNormBegin()`, `VecNormEnd()`
262: @*/
263: PetscErrorCode VecNormAvailable(Vec x, NormType type, PetscBool *available, PetscReal *val)
264: {
265: PetscFunctionBegin;
268: PetscAssertPointer(available, 3);
269: PetscAssertPointer(val, 4);
271: if (type == NORM_1_AND_2) {
272: *available = PETSC_FALSE;
273: } else {
274: PetscCall(PetscObjectComposedDataGetReal((PetscObject)x, NormIds[type], *val, *available));
275: }
276: PetscFunctionReturn(PETSC_SUCCESS);
277: }
279: /*@
280: VecNormalize - Normalizes a vector by its 2-norm.
282: Collective
284: Input Parameter:
285: . x - the vector
287: Output Parameter:
288: . val - the vector norm before normalization. May be `NULL` if the value is not needed.
290: Level: intermediate
292: .seealso: [](ch_vectors), `Vec`, `VecNorm()`, `NORM_2`, `NormType`
293: @*/
294: PetscErrorCode VecNormalize(Vec x, PetscReal *val)
295: {
296: PetscReal norm;
298: PetscFunctionBegin;
301: PetscCall(VecSetErrorIfLocked(x, 1));
302: if (val) PetscAssertPointer(val, 2);
303: PetscCall(PetscLogEventBegin(VEC_Normalize, x, 0, 0, 0));
304: PetscCall(VecNorm(x, NORM_2, &norm));
305: if (norm == 0.0) PetscCall(PetscInfo(x, "Vector of zero norm can not be normalized; Returning only the zero norm\n"));
306: else if (PetscIsInfOrNanReal(norm)) PetscCall(PetscInfo(x, "Vector with Inf or Nan norm can not be normalized; Returning only the norm\n"));
307: else {
308: PetscScalar s = 1.0 / norm;
309: PetscCall(VecScale(x, s));
310: }
311: PetscCall(PetscLogEventEnd(VEC_Normalize, x, 0, 0, 0));
312: if (val) *val = norm;
313: PetscFunctionReturn(PETSC_SUCCESS);
314: }
316: /*@
317: VecMax - Determines the vector component with maximum real part and its location.
319: Collective
321: Input Parameter:
322: . x - the vector
324: Output Parameters:
325: + p - the index of `val` (pass `NULL` if you don't want this) in the vector
326: - val - the maximum component
328: Level: intermediate
330: Notes:
331: Returns the value `PETSC_MIN_REAL` and negative `p` if the vector is of length 0.
333: Returns the smallest index with the maximum value
335: Developer Note:
336: The Nag Fortran compiler does not like the symbol name VecMax
338: .seealso: [](ch_vectors), `Vec`, `VecNorm()`, `VecMin()`
339: @*/
340: PetscErrorCode VecMax(Vec x, PetscInt *p, PetscReal *val)
341: {
342: PetscFunctionBegin;
345: VecCheckAssembled(x);
346: if (p) PetscAssertPointer(p, 2);
347: PetscAssertPointer(val, 3);
348: PetscCall(VecLockReadPush(x));
349: PetscCall(PetscLogEventBegin(VEC_Max, x, 0, 0, 0));
350: PetscUseTypeMethod(x, max, p, val);
351: PetscCall(PetscLogEventEnd(VEC_Max, x, 0, 0, 0));
352: PetscCall(VecLockReadPop(x));
353: PetscFunctionReturn(PETSC_SUCCESS);
354: }
356: /*@
357: VecMin - Determines the vector component with minimum real part and its location.
359: Collective
361: Input Parameter:
362: . x - the vector
364: Output Parameters:
365: + p - the index of `val` (pass `NULL` if you don't want this location) in the vector
366: - val - the minimum component
368: Level: intermediate
370: Notes:
371: Returns the value `PETSC_MAX_REAL` and negative `p` if the vector is of length 0.
373: This returns the smallest index with the minimum value
375: Developer Note:
376: The Nag Fortran compiler does not like the symbol name VecMin
378: .seealso: [](ch_vectors), `Vec`, `VecMax()`
379: @*/
380: PetscErrorCode VecMin(Vec x, PetscInt *p, PetscReal *val)
381: {
382: PetscFunctionBegin;
385: VecCheckAssembled(x);
386: if (p) PetscAssertPointer(p, 2);
387: PetscAssertPointer(val, 3);
388: PetscCall(VecLockReadPush(x));
389: PetscCall(PetscLogEventBegin(VEC_Min, x, 0, 0, 0));
390: PetscUseTypeMethod(x, min, p, val);
391: PetscCall(PetscLogEventEnd(VEC_Min, x, 0, 0, 0));
392: PetscCall(VecLockReadPop(x));
393: PetscFunctionReturn(PETSC_SUCCESS);
394: }
396: /*@
397: VecTDot - Computes an indefinite vector dot product. That is, this
398: routine does NOT use the complex conjugate.
400: Collective
402: Input Parameters:
403: + x - first vector
404: - y - second vector
406: Output Parameter:
407: . val - the dot product
409: Level: intermediate
411: Notes for Users of Complex Numbers:
412: For complex vectors, `VecTDot()` computes the indefinite form
413: .vb
414: val = (x,y) = y^T x,
415: .ve
416: where y^T denotes the transpose of y.
418: Use `VecDot()` for the inner product
419: .vb
420: val = (x,y) = y^H x,
421: .ve
422: where y^H denotes the conjugate transpose of y.
424: .seealso: [](ch_vectors), `Vec`, `VecDot()`, `VecMTDot()`
425: @*/
426: PetscErrorCode VecTDot(Vec x, Vec y, PetscScalar *val)
427: {
428: PetscFunctionBegin;
431: PetscAssertPointer(val, 3);
434: PetscCheckSameTypeAndComm(x, 1, y, 2);
435: VecCheckSameSize(x, 1, y, 2);
436: VecCheckAssembled(x);
437: VecCheckAssembled(y);
439: PetscCall(VecLockReadPush(x));
440: PetscCall(VecLockReadPush(y));
441: PetscCall(PetscLogEventBegin(VEC_TDot, x, y, 0, 0));
442: PetscUseTypeMethod(x, tdot, y, val);
443: PetscCall(PetscLogEventEnd(VEC_TDot, x, y, 0, 0));
444: PetscCall(VecLockReadPop(x));
445: PetscCall(VecLockReadPop(y));
446: PetscFunctionReturn(PETSC_SUCCESS);
447: }
449: PetscErrorCode VecScaleAsync_Private(Vec x, PetscScalar alpha, PetscDeviceContext dctx)
450: {
451: PetscReal norms[4];
452: PetscBool flgs[4];
453: PetscScalar one = 1.0;
455: PetscFunctionBegin;
458: VecCheckAssembled(x);
459: PetscCall(VecSetErrorIfLocked(x, 1));
461: if (alpha == one) PetscFunctionReturn(PETSC_SUCCESS);
463: /* get current stashed norms */
464: for (PetscInt i = 0; i < 4; i++) PetscCall(PetscObjectComposedDataGetReal((PetscObject)x, NormIds[i], norms[i], flgs[i]));
466: PetscCall(PetscLogEventBegin(VEC_Scale, x, 0, 0, 0));
467: VecMethodDispatch(x, dctx, VecAsyncFnName(Scale), scale, (Vec, PetscScalar, PetscDeviceContext), alpha);
468: PetscCall(PetscLogEventEnd(VEC_Scale, x, 0, 0, 0));
470: PetscCall(PetscObjectStateIncrease((PetscObject)x));
471: /* put the scaled stashed norms back into the Vec */
472: for (PetscInt i = 0; i < 4; i++) {
473: PetscReal ar = PetscAbsScalar(alpha);
474: if (flgs[i]) PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[i], ar * norms[i]));
475: }
476: PetscFunctionReturn(PETSC_SUCCESS);
477: }
479: /*@
480: VecScale - Scales a vector.
482: Logically Collective
484: Input Parameters:
485: + x - the vector
486: - alpha - the scalar
488: Level: intermediate
490: Note:
491: For a vector with n components, `VecScale()` computes x[i] = alpha * x[i], for i=1,...,n.
493: .seealso: [](ch_vectors), `Vec`, `VecSet()`
494: @*/
495: PetscErrorCode VecScale(Vec x, PetscScalar alpha)
496: {
497: PetscFunctionBegin;
498: PetscCall(VecScaleAsync_Private(x, alpha, NULL));
499: PetscFunctionReturn(PETSC_SUCCESS);
500: }
502: PetscErrorCode VecSetAsync_Private(Vec x, PetscScalar alpha, PetscDeviceContext dctx)
503: {
504: PetscFunctionBegin;
507: VecCheckAssembled(x);
509: PetscCall(VecSetErrorIfLocked(x, 1));
511: if (alpha == 0) {
512: PetscReal norm;
513: PetscBool set;
515: PetscCall(VecNormAvailable(x, NORM_2, &set, &norm));
516: if (set == PETSC_TRUE && norm == 0) PetscFunctionReturn(PETSC_SUCCESS);
517: }
518: PetscCall(PetscLogEventBegin(VEC_Set, x, 0, 0, 0));
519: VecMethodDispatch(x, dctx, VecAsyncFnName(Set), set, (Vec, PetscScalar, PetscDeviceContext), alpha);
520: PetscCall(PetscLogEventEnd(VEC_Set, x, 0, 0, 0));
521: PetscCall(PetscObjectStateIncrease((PetscObject)x));
523: /* norms can be simply set (if |alpha|*N not too large) */
524: {
525: PetscReal val = PetscAbsScalar(alpha);
526: const PetscInt N = x->map->N;
528: if (N == 0) {
529: PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_1], 0.0));
530: PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_INFINITY], 0.0));
531: PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_2], 0.0));
532: PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_FROBENIUS], 0.0));
533: } else if (val > PETSC_MAX_REAL / N) {
534: PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_INFINITY], val));
535: } else {
536: PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_1], N * val));
537: PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_INFINITY], val));
538: val *= PetscSqrtReal((PetscReal)N);
539: PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_2], val));
540: PetscCall(PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_FROBENIUS], val));
541: }
542: }
543: PetscFunctionReturn(PETSC_SUCCESS);
544: }
546: /*@
547: VecSet - Sets all components of a vector to a single scalar value.
549: Logically Collective
551: Input Parameters:
552: + x - the vector
553: - alpha - the scalar
555: Level: beginner
557: Notes:
558: For a vector of dimension n, `VecSet()` sets x[i] = alpha, for i=1,...,n,
559: so that all vector entries then equal the identical
560: scalar value, `alpha`. Use the more general routine
561: `VecSetValues()` to set different vector entries.
563: You CANNOT call this after you have called `VecSetValues()` but before you call
564: `VecAssemblyBegin()`
566: If `alpha` is zero and the norm of the vector is known to be zero then this skips the unneeded zeroing process
568: .seealso: [](ch_vectors), `Vec`, `VecSetValues()`, `VecSetValuesBlocked()`, `VecSetRandom()`
569: @*/
570: PetscErrorCode VecSet(Vec x, PetscScalar alpha)
571: {
572: PetscFunctionBegin;
573: PetscCall(VecSetAsync_Private(x, alpha, NULL));
574: PetscFunctionReturn(PETSC_SUCCESS);
575: }
577: PetscErrorCode VecAXPYAsync_Private(Vec y, PetscScalar alpha, Vec x, PetscDeviceContext dctx)
578: {
579: PetscFunctionBegin;
584: PetscCheckSameTypeAndComm(x, 3, y, 1);
585: VecCheckSameSize(x, 3, y, 1);
586: VecCheckAssembled(x);
587: VecCheckAssembled(y);
589: if (alpha == (PetscScalar)0.0) PetscFunctionReturn(PETSC_SUCCESS);
590: PetscCall(VecSetErrorIfLocked(y, 1));
591: if (x == y) {
592: PetscCall(VecScale(y, alpha + 1.0));
593: PetscFunctionReturn(PETSC_SUCCESS);
594: }
595: PetscCall(VecLockReadPush(x));
596: PetscCall(PetscLogEventBegin(VEC_AXPY, x, y, 0, 0));
597: VecMethodDispatch(y, dctx, VecAsyncFnName(AXPY), axpy, (Vec, PetscScalar, Vec, PetscDeviceContext), alpha, x);
598: PetscCall(PetscLogEventEnd(VEC_AXPY, x, y, 0, 0));
599: PetscCall(VecLockReadPop(x));
600: PetscCall(PetscObjectStateIncrease((PetscObject)y));
601: PetscFunctionReturn(PETSC_SUCCESS);
602: }
603: /*@
604: VecAXPY - Computes `y = alpha x + y`.
606: Logically Collective
608: Input Parameters:
609: + alpha - the scalar
610: . x - vector scale by `alpha`
611: - y - vector accumulated into
613: Output Parameter:
614: . y - output vector
616: Level: intermediate
618: Notes:
619: This routine is optimized for alpha of 0.0, otherwise it calls the BLAS routine
620: .vb
621: VecAXPY(y,alpha,x) y = alpha x + y
622: VecAYPX(y,beta,x) y = x + beta y
623: VecAXPBY(y,alpha,beta,x) y = alpha x + beta y
624: VecWAXPY(w,alpha,x,y) w = alpha x + y
625: VecAXPBYPCZ(z,alpha,beta,gamma,x,y) z = alpha x + beta y + gamma z
626: VecMAXPY(y,nv,alpha[],x[]) y = sum alpha[i] x[i] + y
627: .ve
629: .seealso: [](ch_vectors), `Vec`, `VecAYPX()`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
630: @*/
631: PetscErrorCode VecAXPY(Vec y, PetscScalar alpha, Vec x)
632: {
633: PetscFunctionBegin;
634: PetscCall(VecAXPYAsync_Private(y, alpha, x, NULL));
635: PetscFunctionReturn(PETSC_SUCCESS);
636: }
638: PetscErrorCode VecAYPXAsync_Private(Vec y, PetscScalar beta, Vec x, PetscDeviceContext dctx)
639: {
640: PetscFunctionBegin;
645: PetscCheckSameTypeAndComm(x, 3, y, 1);
646: VecCheckSameSize(x, 1, y, 3);
647: VecCheckAssembled(x);
648: VecCheckAssembled(y);
650: PetscCall(VecSetErrorIfLocked(y, 1));
651: if (x == y) {
652: PetscCall(VecScale(y, beta + 1.0));
653: PetscFunctionReturn(PETSC_SUCCESS);
654: }
655: PetscCall(VecLockReadPush(x));
656: if (beta == (PetscScalar)0.0) {
657: PetscCall(VecCopy(x, y));
658: } else {
659: PetscCall(PetscLogEventBegin(VEC_AYPX, x, y, 0, 0));
660: VecMethodDispatch(y, dctx, VecAsyncFnName(AYPX), aypx, (Vec, PetscScalar, Vec, PetscDeviceContext), beta, x);
661: PetscCall(PetscLogEventEnd(VEC_AYPX, x, y, 0, 0));
662: PetscCall(PetscObjectStateIncrease((PetscObject)y));
663: }
664: PetscCall(VecLockReadPop(x));
665: PetscFunctionReturn(PETSC_SUCCESS);
666: }
668: /*@
669: VecAYPX - Computes `y = x + beta y`.
671: Logically Collective
673: Input Parameters:
674: + beta - the scalar
675: . x - the unscaled vector
676: - y - the vector to be scaled
678: Output Parameter:
679: . y - output vector
681: Level: intermediate
683: Developer Notes:
684: The implementation is optimized for `beta` of -1.0, 0.0, and 1.0
686: .seealso: [](ch_vectors), `Vec`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
687: @*/
688: PetscErrorCode VecAYPX(Vec y, PetscScalar beta, Vec x)
689: {
690: PetscFunctionBegin;
691: PetscCall(VecAYPXAsync_Private(y, beta, x, NULL));
692: PetscFunctionReturn(PETSC_SUCCESS);
693: }
695: PetscErrorCode VecAXPBYAsync_Private(Vec y, PetscScalar alpha, PetscScalar beta, Vec x, PetscDeviceContext dctx)
696: {
697: PetscFunctionBegin;
702: PetscCheckSameTypeAndComm(x, 4, y, 1);
703: VecCheckSameSize(y, 1, x, 4);
704: VecCheckAssembled(x);
705: VecCheckAssembled(y);
708: if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)1.0) PetscFunctionReturn(PETSC_SUCCESS);
709: if (x == y) {
710: PetscCall(VecScale(y, alpha + beta));
711: PetscFunctionReturn(PETSC_SUCCESS);
712: }
714: PetscCall(VecSetErrorIfLocked(y, 1));
715: PetscCall(VecLockReadPush(x));
716: PetscCall(PetscLogEventBegin(VEC_AXPY, y, x, 0, 0));
717: VecMethodDispatch(y, dctx, VecAsyncFnName(AXPBY), axpby, (Vec, PetscScalar, PetscScalar, Vec, PetscDeviceContext), alpha, beta, x);
718: PetscCall(PetscLogEventEnd(VEC_AXPY, y, x, 0, 0));
719: PetscCall(PetscObjectStateIncrease((PetscObject)y));
720: PetscCall(VecLockReadPop(x));
721: PetscFunctionReturn(PETSC_SUCCESS);
722: }
724: /*@
725: VecAXPBY - Computes `y = alpha x + beta y`.
727: Logically Collective
729: Input Parameters:
730: + alpha - first scalar
731: . beta - second scalar
732: . x - the first scaled vector
733: - y - the second scaled vector
735: Output Parameter:
736: . y - output vector
738: Level: intermediate
740: Developer Notes:
741: The implementation is optimized for `alpha` and/or `beta` values of 0.0 and 1.0
743: .seealso: [](ch_vectors), `Vec`, `VecAYPX()`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`
744: @*/
745: PetscErrorCode VecAXPBY(Vec y, PetscScalar alpha, PetscScalar beta, Vec x)
746: {
747: PetscFunctionBegin;
748: PetscCall(VecAXPBYAsync_Private(y, alpha, beta, x, NULL));
749: PetscFunctionReturn(PETSC_SUCCESS);
750: }
752: PetscErrorCode VecAXPBYPCZAsync_Private(Vec z, PetscScalar alpha, PetscScalar beta, PetscScalar gamma, Vec x, Vec y, PetscDeviceContext dctx)
753: {
754: PetscFunctionBegin;
761: PetscCheckSameTypeAndComm(x, 5, y, 6);
762: PetscCheckSameTypeAndComm(x, 5, z, 1);
763: VecCheckSameSize(x, 5, y, 6);
764: VecCheckSameSize(x, 5, z, 1);
765: PetscCheck(x != y && x != z, PetscObjectComm((PetscObject)x), PETSC_ERR_ARG_IDN, "x, y, and z must be different vectors");
766: PetscCheck(y != z, PetscObjectComm((PetscObject)y), PETSC_ERR_ARG_IDN, "x, y, and z must be different vectors");
767: VecCheckAssembled(x);
768: VecCheckAssembled(y);
769: VecCheckAssembled(z);
773: if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)0.0 && gamma == (PetscScalar)1.0) PetscFunctionReturn(PETSC_SUCCESS);
775: PetscCall(VecSetErrorIfLocked(z, 1));
776: PetscCall(VecLockReadPush(x));
777: PetscCall(VecLockReadPush(y));
778: PetscCall(PetscLogEventBegin(VEC_AXPBYPCZ, x, y, z, 0));
779: VecMethodDispatch(z, dctx, VecAsyncFnName(AXPBYPCZ), axpbypcz, (Vec, PetscScalar, PetscScalar, PetscScalar, Vec, Vec, PetscDeviceContext), alpha, beta, gamma, x, y);
780: PetscCall(PetscLogEventEnd(VEC_AXPBYPCZ, x, y, z, 0));
781: PetscCall(PetscObjectStateIncrease((PetscObject)z));
782: PetscCall(VecLockReadPop(x));
783: PetscCall(VecLockReadPop(y));
784: PetscFunctionReturn(PETSC_SUCCESS);
785: }
786: /*@
787: VecAXPBYPCZ - Computes `z = alpha x + beta y + gamma z`
789: Logically Collective
791: Input Parameters:
792: + alpha - first scalar
793: . beta - second scalar
794: . gamma - third scalar
795: . x - first vector
796: . y - second vector
797: - z - third vector
799: Output Parameter:
800: . z - output vector
802: Level: intermediate
804: Note:
805: `x`, `y` and `z` must be different vectors
807: Developer Notes:
808: The implementation is optimized for `alpha` of 1.0 and `gamma` of 1.0 or 0.0
810: .seealso: [](ch_vectors), `Vec`, `VecAYPX()`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBY()`
811: @*/
812: PetscErrorCode VecAXPBYPCZ(Vec z, PetscScalar alpha, PetscScalar beta, PetscScalar gamma, Vec x, Vec y)
813: {
814: PetscFunctionBegin;
815: PetscCall(VecAXPBYPCZAsync_Private(z, alpha, beta, gamma, x, y, NULL));
816: PetscFunctionReturn(PETSC_SUCCESS);
817: }
819: PetscErrorCode VecWAXPYAsync_Private(Vec w, PetscScalar alpha, Vec x, Vec y, PetscDeviceContext dctx)
820: {
821: PetscFunctionBegin;
828: PetscCheckSameTypeAndComm(x, 3, y, 4);
829: PetscCheckSameTypeAndComm(y, 4, w, 1);
830: VecCheckSameSize(x, 3, y, 4);
831: VecCheckSameSize(x, 3, w, 1);
832: PetscCheck(w != y, PETSC_COMM_SELF, PETSC_ERR_SUP, "Result vector w cannot be same as input vector y, suggest VecAXPY()");
833: PetscCheck(w != x, PETSC_COMM_SELF, PETSC_ERR_SUP, "Result vector w cannot be same as input vector x, suggest VecAYPX()");
834: VecCheckAssembled(x);
835: VecCheckAssembled(y);
837: PetscCall(VecSetErrorIfLocked(w, 1));
839: PetscCall(VecLockReadPush(x));
840: PetscCall(VecLockReadPush(y));
841: if (alpha == (PetscScalar)0.0) {
842: PetscCall(VecCopyAsync_Private(y, w, dctx));
843: } else {
844: PetscCall(PetscLogEventBegin(VEC_WAXPY, x, y, w, 0));
845: VecMethodDispatch(w, dctx, VecAsyncFnName(WAXPY), waxpy, (Vec, PetscScalar, Vec, Vec, PetscDeviceContext), alpha, x, y);
846: PetscCall(PetscLogEventEnd(VEC_WAXPY, x, y, w, 0));
847: PetscCall(PetscObjectStateIncrease((PetscObject)w));
848: }
849: PetscCall(VecLockReadPop(x));
850: PetscCall(VecLockReadPop(y));
851: PetscFunctionReturn(PETSC_SUCCESS);
852: }
854: /*@
855: VecWAXPY - Computes `w = alpha x + y`.
857: Logically Collective
859: Input Parameters:
860: + alpha - the scalar
861: . x - first vector, multiplied by `alpha`
862: - y - second vector
864: Output Parameter:
865: . w - the result
867: Level: intermediate
869: Note:
870: `w` cannot be either `x` or `y`, but `x` and `y` can be the same
872: Developer Notes:
873: The implementation is optimized for alpha of -1.0, 0.0, and 1.0
875: .seealso: [](ch_vectors), `Vec`, `VecAXPY()`, `VecAYPX()`, `VecAXPBY()`, `VecMAXPY()`, `VecAXPBYPCZ()`
876: @*/
877: PetscErrorCode VecWAXPY(Vec w, PetscScalar alpha, Vec x, Vec y)
878: {
879: PetscFunctionBegin;
880: PetscCall(VecWAXPYAsync_Private(w, alpha, x, y, NULL));
881: PetscFunctionReturn(PETSC_SUCCESS);
882: }
884: /*@
885: VecSetValues - Inserts or adds values into certain locations of a vector.
887: Not Collective
889: Input Parameters:
890: + x - vector to insert in
891: . ni - number of elements to add
892: . ix - indices where to add
893: . y - array of values
894: - iora - either `INSERT_VALUES` to replace the current values or `ADD_VALUES` to add values to any existing entries
896: Level: beginner
898: Notes:
899: .vb
900: `VecSetValues()` sets x[ix[i]] = y[i], for i=0,...,ni-1.
901: .ve
903: Calls to `VecSetValues()` with the `INSERT_VALUES` and `ADD_VALUES`
904: options cannot be mixed without intervening calls to the assembly
905: routines.
907: These values may be cached, so `VecAssemblyBegin()` and `VecAssemblyEnd()`
908: MUST be called after all calls to `VecSetValues()` have been completed.
910: VecSetValues() uses 0-based indices in Fortran as well as in C.
912: If you call `VecSetOption`(x, `VEC_IGNORE_NEGATIVE_INDICES`,`PETSC_TRUE`),
913: negative indices may be passed in ix. These rows are
914: simply ignored. This allows easily inserting element load matrices
915: with homogeneous Dirichlet boundary conditions that you don't want represented
916: in the vector.
918: Fortran Note:
919: If any of `ix` and `y` are scalars pass them using, for example,
920: .vb
921: call VecSetValues(mat, one, [ix], [y], INSERT_VALUES, ierr)
922: .ve
924: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValuesLocal()`,
925: `VecSetValue()`, `VecSetValuesBlocked()`, `InsertMode`, `INSERT_VALUES`, `ADD_VALUES`, `VecGetValues()`
926: @*/
927: PetscErrorCode VecSetValues(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
928: {
929: PetscFunctionBeginHot;
931: if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
932: PetscAssertPointer(ix, 3);
933: PetscAssertPointer(y, 4);
936: PetscCall(PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0));
937: PetscUseTypeMethod(x, setvalues, ni, ix, y, iora);
938: PetscCall(PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0));
939: PetscCall(PetscObjectStateIncrease((PetscObject)x));
940: PetscFunctionReturn(PETSC_SUCCESS);
941: }
943: /*@
944: VecGetValues - Gets values from certain locations of a vector. Currently
945: can only get values on the same processor on which they are owned
947: Not Collective
949: Input Parameters:
950: + x - vector to get values from
951: . ni - number of elements to get
952: - ix - indices where to get them from (in global 1d numbering)
954: Output Parameter:
955: . y - array of values, must be passed in with a length of `ni`
957: Level: beginner
959: Notes:
960: The user provides the allocated array y; it is NOT allocated in this routine
962: `VecGetValues()` gets y[i] = x[ix[i]], for i=0,...,ni-1.
964: `VecAssemblyBegin()` and `VecAssemblyEnd()` MUST be called before calling this if `VecSetValues()` or related routine has been called
966: VecGetValues() uses 0-based indices in Fortran as well as in C.
968: If you call `VecSetOption`(x, `VEC_IGNORE_NEGATIVE_INDICES`,`PETSC_TRUE`),
969: negative indices may be passed in ix. These rows are
970: simply ignored.
972: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`
973: @*/
974: PetscErrorCode VecGetValues(Vec x, PetscInt ni, const PetscInt ix[], PetscScalar y[])
975: {
976: PetscFunctionBegin;
978: if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
979: PetscAssertPointer(ix, 3);
980: PetscAssertPointer(y, 4);
982: VecCheckAssembled(x);
983: PetscUseTypeMethod(x, getvalues, ni, ix, y);
984: PetscFunctionReturn(PETSC_SUCCESS);
985: }
987: /*@
988: VecSetValuesBlocked - Inserts or adds blocks of values into certain locations of a vector.
990: Not Collective
992: Input Parameters:
993: + x - vector to insert in
994: . ni - number of blocks to add
995: . ix - indices where to add in block count, rather than element count
996: . y - array of values
997: - iora - either `INSERT_VALUES` replaces existing entries with new values, `ADD_VALUES`, adds values to any existing entries
999: Level: intermediate
1001: Notes:
1002: `VecSetValuesBlocked()` sets x[bs*ix[i]+j] = y[bs*i+j],
1003: for j=0,...,bs-1, for i=0,...,ni-1. where bs was set with VecSetBlockSize().
1005: Calls to `VecSetValuesBlocked()` with the `INSERT_VALUES` and `ADD_VALUES`
1006: options cannot be mixed without intervening calls to the assembly
1007: routines.
1009: These values may be cached, so `VecAssemblyBegin()` and `VecAssemblyEnd()`
1010: MUST be called after all calls to `VecSetValuesBlocked()` have been completed.
1012: `VecSetValuesBlocked()` uses 0-based indices in Fortran as well as in C.
1014: Negative indices may be passed in ix, these rows are
1015: simply ignored. This allows easily inserting element load matrices
1016: with homogeneous Dirichlet boundary conditions that you don't want represented
1017: in the vector.
1019: Fortran Note:
1020: If any of `ix` and `y` are scalars pass them using, for example,
1021: .vb
1022: call VecSetValuesBlocked(mat, one, [ix], [y], INSERT_VALUES, ierr)
1023: .ve
1025: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValuesBlockedLocal()`,
1026: `VecSetValues()`
1027: @*/
1028: PetscErrorCode VecSetValuesBlocked(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
1029: {
1030: PetscFunctionBeginHot;
1032: if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
1033: PetscAssertPointer(ix, 3);
1034: PetscAssertPointer(y, 4);
1037: PetscCall(PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0));
1038: PetscUseTypeMethod(x, setvaluesblocked, ni, ix, y, iora);
1039: PetscCall(PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0));
1040: PetscCall(PetscObjectStateIncrease((PetscObject)x));
1041: PetscFunctionReturn(PETSC_SUCCESS);
1042: }
1044: /*@
1045: VecSetValuesLocal - Inserts or adds values into certain locations of a vector,
1046: using a local ordering of the nodes.
1048: Not Collective
1050: Input Parameters:
1051: + x - vector to insert in
1052: . ni - number of elements to add
1053: . ix - indices where to add
1054: . y - array of values
1055: - iora - either `INSERT_VALUES` replaces existing entries with new values, `ADD_VALUES` adds values to any existing entries
1057: Level: intermediate
1059: Notes:
1060: `VecSetValuesLocal()` sets x[ix[i]] = y[i], for i=0,...,ni-1.
1062: Calls to `VecSetValuesLocal()` with the `INSERT_VALUES` and `ADD_VALUES`
1063: options cannot be mixed without intervening calls to the assembly
1064: routines.
1066: These values may be cached, so `VecAssemblyBegin()` and `VecAssemblyEnd()`
1067: MUST be called after all calls to `VecSetValuesLocal()` have been completed.
1069: `VecSetValuesLocal()` uses 0-based indices in Fortran as well as in C.
1071: Fortran Note:
1072: If any of `ix` and `y` are scalars pass them using, for example,
1073: .vb
1074: call VecSetValuesLocal(mat, one, [ix], [y], INSERT_VALUES, ierr)
1075: .ve
1077: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`, `VecSetLocalToGlobalMapping()`,
1078: `VecSetValuesBlockedLocal()`
1079: @*/
1080: PetscErrorCode VecSetValuesLocal(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
1081: {
1082: PetscInt lixp[128], *lix = lixp;
1084: PetscFunctionBeginHot;
1086: if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
1087: PetscAssertPointer(ix, 3);
1088: PetscAssertPointer(y, 4);
1091: PetscCall(PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0));
1092: if (!x->ops->setvalueslocal) {
1093: if (PetscUnlikely(!x->map->mapping && x->ops->getlocaltoglobalmapping)) PetscUseTypeMethod(x, getlocaltoglobalmapping, &x->map->mapping);
1094: if (x->map->mapping) {
1095: if (ni > 128) PetscCall(PetscMalloc1(ni, &lix));
1096: PetscCall(ISLocalToGlobalMappingApply(x->map->mapping, ni, (PetscInt *)ix, lix));
1097: PetscUseTypeMethod(x, setvalues, ni, lix, y, iora);
1098: if (ni > 128) PetscCall(PetscFree(lix));
1099: } else PetscUseTypeMethod(x, setvalues, ni, ix, y, iora);
1100: } else PetscUseTypeMethod(x, setvalueslocal, ni, ix, y, iora);
1101: PetscCall(PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0));
1102: PetscCall(PetscObjectStateIncrease((PetscObject)x));
1103: PetscFunctionReturn(PETSC_SUCCESS);
1104: }
1106: /*@
1107: VecSetValuesBlockedLocal - Inserts or adds values into certain locations of a vector,
1108: using a local ordering of the nodes.
1110: Not Collective
1112: Input Parameters:
1113: + x - vector to insert in
1114: . ni - number of blocks to add
1115: . ix - indices where to add in block count, not element count
1116: . y - array of values
1117: - iora - either `INSERT_VALUES` replaces existing entries with new values, `ADD_VALUES` adds values to any existing entries
1119: Level: intermediate
1121: Notes:
1122: `VecSetValuesBlockedLocal()` sets x[bs*ix[i]+j] = y[bs*i+j],
1123: for j=0,..bs-1, for i=0,...,ni-1, where bs has been set with `VecSetBlockSize()`.
1125: Calls to `VecSetValuesBlockedLocal()` with the `INSERT_VALUES` and `ADD_VALUES`
1126: options cannot be mixed without intervening calls to the assembly
1127: routines.
1129: These values may be cached, so `VecAssemblyBegin()` and `VecAssemblyEnd()`
1130: MUST be called after all calls to `VecSetValuesBlockedLocal()` have been completed.
1132: `VecSetValuesBlockedLocal()` uses 0-based indices in Fortran as well as in C.
1134: Fortran Note:
1135: If any of `ix` and `y` are scalars pass them using, for example,
1136: .vb
1137: call VecSetValuesBlockedLocal(mat, one, [ix], [y], INSERT_VALUES, ierr)
1138: .ve
1140: .seealso: [](ch_vectors), `Vec`, `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`, `VecSetValuesBlocked()`,
1141: `VecSetLocalToGlobalMapping()`
1142: @*/
1143: PetscErrorCode VecSetValuesBlockedLocal(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
1144: {
1145: PetscInt lixp[128], *lix = lixp;
1147: PetscFunctionBeginHot;
1149: if (!ni) PetscFunctionReturn(PETSC_SUCCESS);
1150: PetscAssertPointer(ix, 3);
1151: PetscAssertPointer(y, 4);
1153: PetscCall(PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0));
1154: if (PetscUnlikely(!x->map->mapping && x->ops->getlocaltoglobalmapping)) PetscUseTypeMethod(x, getlocaltoglobalmapping, &x->map->mapping);
1155: if (x->map->mapping) {
1156: if (ni > 128) PetscCall(PetscMalloc1(ni, &lix));
1157: PetscCall(ISLocalToGlobalMappingApplyBlock(x->map->mapping, ni, (PetscInt *)ix, lix));
1158: PetscUseTypeMethod(x, setvaluesblocked, ni, lix, y, iora);
1159: if (ni > 128) PetscCall(PetscFree(lix));
1160: } else {
1161: PetscUseTypeMethod(x, setvaluesblocked, ni, ix, y, iora);
1162: }
1163: PetscCall(PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0));
1164: PetscCall(PetscObjectStateIncrease((PetscObject)x));
1165: PetscFunctionReturn(PETSC_SUCCESS);
1166: }
1168: static PetscErrorCode VecMXDot_Private(Vec x, PetscInt nv, const Vec y[], PetscScalar result[], PetscErrorCode (*mxdot)(Vec, PetscInt, const Vec[], PetscScalar[]), PetscLogEvent event)
1169: {
1170: PetscFunctionBegin;
1173: VecCheckAssembled(x);
1175: if (!nv) PetscFunctionReturn(PETSC_SUCCESS);
1176: PetscAssertPointer(y, 3);
1177: for (PetscInt i = 0; i < nv; ++i) {
1180: PetscCheckSameTypeAndComm(x, 1, y[i], 3);
1181: VecCheckSameSize(x, 1, y[i], 3);
1182: VecCheckAssembled(y[i]);
1183: PetscCall(VecLockReadPush(y[i]));
1184: }
1185: PetscAssertPointer(result, 4);
1188: PetscCall(VecLockReadPush(x));
1189: PetscCall(PetscLogEventBegin(event, x, *y, 0, 0));
1190: PetscCall((*mxdot)(x, nv, y, result));
1191: PetscCall(PetscLogEventEnd(event, x, *y, 0, 0));
1192: PetscCall(VecLockReadPop(x));
1193: for (PetscInt i = 0; i < nv; ++i) PetscCall(VecLockReadPop(y[i]));
1194: PetscFunctionReturn(PETSC_SUCCESS);
1195: }
1197: /*@
1198: VecMTDot - Computes indefinite vector multiple dot products.
1199: That is, it does NOT use the complex conjugate.
1201: Collective
1203: Input Parameters:
1204: + x - one vector
1205: . nv - number of vectors
1206: - y - array of vectors. Note that vectors are pointers
1208: Output Parameter:
1209: . val - array of the dot products
1211: Level: intermediate
1213: Notes for Users of Complex Numbers:
1214: For complex vectors, `VecMTDot()` computes the indefinite form
1215: .vb
1216: val = (x,y) = y^T x,
1217: .ve
1218: where y^T denotes the transpose of y.
1220: Use `VecMDot()` for the inner product
1221: .vb
1222: val = (x,y) = y^H x,
1223: .ve
1224: where y^H denotes the conjugate transpose of y.
1226: .seealso: [](ch_vectors), `Vec`, `VecMDot()`, `VecTDot()`
1227: @*/
1228: PetscErrorCode VecMTDot(Vec x, PetscInt nv, const Vec y[], PetscScalar val[])
1229: {
1230: PetscFunctionBegin;
1232: PetscCall(VecMXDot_Private(x, nv, y, val, x->ops->mtdot, VEC_MTDot));
1233: PetscFunctionReturn(PETSC_SUCCESS);
1234: }
1236: /*@
1237: VecMDot - Computes multiple vector dot products.
1239: Collective
1241: Input Parameters:
1242: + x - one vector
1243: . nv - number of vectors
1244: - y - array of vectors.
1246: Output Parameter:
1247: . val - array of the dot products (does not allocate the array)
1249: Level: intermediate
1251: Notes for Users of Complex Numbers:
1252: For complex vectors, `VecMDot()` computes
1253: .vb
1254: val = (x,y) = y^H x,
1255: .ve
1256: where y^H denotes the conjugate transpose of y.
1258: Use `VecMTDot()` for the indefinite form
1259: .vb
1260: val = (x,y) = y^T x,
1261: .ve
1262: where y^T denotes the transpose of y.
1264: Note:
1265: The implementation may use BLAS 2 operations when the vectors `y` have been obtained with `VecDuplicateVecs()`
1267: .seealso: [](ch_vectors), `Vec`, `VecMTDot()`, `VecDot()`, `VecDuplicateVecs()`
1268: @*/
1269: PetscErrorCode VecMDot(Vec x, PetscInt nv, const Vec y[], PetscScalar val[])
1270: {
1271: PetscFunctionBegin;
1273: PetscCall(VecMXDot_Private(x, nv, y, val, x->ops->mdot, VEC_MDot));
1274: PetscFunctionReturn(PETSC_SUCCESS);
1275: }
1277: PetscErrorCode VecMAXPYAsync_Private(Vec y, PetscInt nv, const PetscScalar alpha[], Vec x[], PetscDeviceContext dctx)
1278: {
1279: PetscFunctionBegin;
1281: VecCheckAssembled(y);
1283: PetscCall(VecSetErrorIfLocked(y, 1));
1284: PetscCheck(nv >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of vectors (given %" PetscInt_FMT ") cannot be negative", nv);
1285: if (nv) {
1286: PetscInt zeros = 0;
1288: PetscAssertPointer(alpha, 3);
1289: PetscAssertPointer(x, 4);
1290: for (PetscInt i = 0; i < nv; ++i) {
1294: PetscCheckSameTypeAndComm(y, 1, x[i], 4);
1295: VecCheckSameSize(y, 1, x[i], 4);
1296: PetscCheck(y != x[i], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Array of vectors 'x' cannot contain y, found x[%" PetscInt_FMT "] == y", i);
1297: VecCheckAssembled(x[i]);
1298: PetscCall(VecLockReadPush(x[i]));
1299: zeros += alpha[i] == (PetscScalar)0.0;
1300: }
1302: if (zeros < nv) {
1303: PetscCall(PetscLogEventBegin(VEC_MAXPY, y, *x, 0, 0));
1304: VecMethodDispatch(y, dctx, VecAsyncFnName(MAXPY), maxpy, (Vec, PetscInt, const PetscScalar[], Vec[], PetscDeviceContext), nv, alpha, x);
1305: PetscCall(PetscLogEventEnd(VEC_MAXPY, y, *x, 0, 0));
1306: PetscCall(PetscObjectStateIncrease((PetscObject)y));
1307: }
1309: for (PetscInt i = 0; i < nv; ++i) PetscCall(VecLockReadPop(x[i]));
1310: }
1311: PetscFunctionReturn(PETSC_SUCCESS);
1312: }
1314: /*@
1315: VecMAXPY - Computes `y = y + sum alpha[i] x[i]`
1317: Logically Collective
1319: Input Parameters:
1320: + nv - number of scalars and `x` vectors
1321: . alpha - array of scalars
1322: . y - one vector
1323: - x - array of vectors
1325: Level: intermediate
1327: Notes:
1328: `y` cannot be any of the `x` vectors
1330: The implementation may use BLAS 2 operations when the vectors `y` have been obtained with `VecDuplicateVecs()`
1332: .seealso: [](ch_vectors), `Vec`, `VecMAXPBY()`,`VecAYPX()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`, `VecDuplicateVecs()`
1333: @*/
1334: PetscErrorCode VecMAXPY(Vec y, PetscInt nv, const PetscScalar alpha[], Vec x[])
1335: {
1336: PetscFunctionBegin;
1337: PetscCall(VecMAXPYAsync_Private(y, nv, alpha, x, NULL));
1338: PetscFunctionReturn(PETSC_SUCCESS);
1339: }
1341: /*@
1342: VecMAXPBY - Computes `y = beta y + sum alpha[i] x[i]`
1344: Logically Collective
1346: Input Parameters:
1347: + nv - number of scalars and `x` vectors
1348: . alpha - array of scalars
1349: . beta - scalar
1350: . y - one vector
1351: - x - array of vectors
1353: Level: intermediate
1355: Note:
1356: `y` cannot be any of the `x` vectors.
1358: Developer Notes:
1359: This is a convenience routine, but implementations might be able to optimize it, for example, when `beta` is zero.
1361: .seealso: [](ch_vectors), `Vec`, `VecMAXPY()`, `VecAYPX()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
1362: @*/
1363: PetscErrorCode VecMAXPBY(Vec y, PetscInt nv, const PetscScalar alpha[], PetscScalar beta, Vec x[])
1364: {
1365: PetscFunctionBegin;
1367: VecCheckAssembled(y);
1369: PetscCall(VecSetErrorIfLocked(y, 1));
1370: PetscCheck(nv >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Number of vectors (given %" PetscInt_FMT ") cannot be negative", nv);
1373: if (y->ops->maxpby) {
1374: PetscInt zeros = 0;
1376: if (nv) {
1377: PetscAssertPointer(alpha, 3);
1378: PetscAssertPointer(x, 5);
1379: }
1381: for (PetscInt i = 0; i < nv; ++i) { // scan all alpha[]
1385: PetscCheckSameTypeAndComm(y, 1, x[i], 5);
1386: VecCheckSameSize(y, 1, x[i], 5);
1387: PetscCheck(y != x[i], PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Array of vectors 'x' cannot contain y, found x[%" PetscInt_FMT "] == y", i);
1388: VecCheckAssembled(x[i]);
1389: PetscCall(VecLockReadPush(x[i]));
1390: zeros += alpha[i] == (PetscScalar)0.0;
1391: }
1393: if (zeros < nv) { // has nonzero alpha
1394: PetscCall(PetscLogEventBegin(VEC_MAXPY, y, *x, 0, 0));
1395: PetscUseTypeMethod(y, maxpby, nv, alpha, beta, x);
1396: PetscCall(PetscLogEventEnd(VEC_MAXPY, y, *x, 0, 0));
1397: PetscCall(PetscObjectStateIncrease((PetscObject)y));
1398: } else {
1399: PetscCall(VecScale(y, beta));
1400: }
1402: for (PetscInt i = 0; i < nv; ++i) PetscCall(VecLockReadPop(x[i]));
1403: } else { // no maxpby
1404: if (beta == 0.0) PetscCall(VecSet(y, 0.0));
1405: else PetscCall(VecScale(y, beta));
1406: PetscCall(VecMAXPY(y, nv, alpha, x));
1407: }
1408: PetscFunctionReturn(PETSC_SUCCESS);
1409: }
1411: /*@
1412: VecConcatenate - Creates a new vector that is a vertical concatenation of all the given array of vectors
1413: in the order they appear in the array. The concatenated vector resides on the same
1414: communicator and is the same type as the source vectors.
1416: Collective
1418: Input Parameters:
1419: + nx - number of vectors to be concatenated
1420: - X - array containing the vectors to be concatenated in the order of concatenation
1422: Output Parameters:
1423: + Y - concatenated vector
1424: - x_is - array of index sets corresponding to the concatenated components of `Y` (pass `NULL` if not needed)
1426: Level: advanced
1428: Notes:
1429: Concatenation is similar to the functionality of a `VECNEST` object; they both represent combination of
1430: different vector spaces. However, concatenated vectors do not store any information about their
1431: sub-vectors and own their own data. Consequently, this function provides index sets to enable the
1432: manipulation of data in the concatenated vector that corresponds to the original components at creation.
1434: This is a useful tool for outer loop algorithms, particularly constrained optimizers, where the solver
1435: has to operate on combined vector spaces and cannot utilize `VECNEST` objects due to incompatibility with
1436: bound projections.
1438: .seealso: [](ch_vectors), `Vec`, `VECNEST`, `VECSCATTER`, `VecScatterCreate()`
1439: @*/
1440: PetscErrorCode VecConcatenate(PetscInt nx, const Vec X[], Vec *Y, IS *x_is[])
1441: {
1442: MPI_Comm comm;
1443: VecType vec_type;
1444: Vec Ytmp, Xtmp;
1445: IS *is_tmp;
1446: PetscInt i, shift = 0, Xnl, Xng, Xbegin;
1448: PetscFunctionBegin;
1452: PetscAssertPointer(Y, 3);
1454: if ((*X)->ops->concatenate) {
1455: /* use the dedicated concatenation function if available */
1456: PetscCall((*(*X)->ops->concatenate)(nx, X, Y, x_is));
1457: } else {
1458: /* loop over vectors and start creating IS */
1459: comm = PetscObjectComm((PetscObject)*X);
1460: PetscCall(VecGetType(*X, &vec_type));
1461: PetscCall(PetscMalloc1(nx, &is_tmp));
1462: for (i = 0; i < nx; i++) {
1463: PetscCall(VecGetSize(X[i], &Xng));
1464: PetscCall(VecGetLocalSize(X[i], &Xnl));
1465: PetscCall(VecGetOwnershipRange(X[i], &Xbegin, NULL));
1466: PetscCall(ISCreateStride(comm, Xnl, shift + Xbegin, 1, &is_tmp[i]));
1467: shift += Xng;
1468: }
1469: /* create the concatenated vector */
1470: PetscCall(VecCreate(comm, &Ytmp));
1471: PetscCall(VecSetType(Ytmp, vec_type));
1472: PetscCall(VecSetSizes(Ytmp, PETSC_DECIDE, shift));
1473: PetscCall(VecSetUp(Ytmp));
1474: /* copy data from X array to Y and return */
1475: for (i = 0; i < nx; i++) {
1476: PetscCall(VecGetSubVector(Ytmp, is_tmp[i], &Xtmp));
1477: PetscCall(VecCopy(X[i], Xtmp));
1478: PetscCall(VecRestoreSubVector(Ytmp, is_tmp[i], &Xtmp));
1479: }
1480: *Y = Ytmp;
1481: if (x_is) {
1482: *x_is = is_tmp;
1483: } else {
1484: for (i = 0; i < nx; i++) PetscCall(ISDestroy(&is_tmp[i]));
1485: PetscCall(PetscFree(is_tmp));
1486: }
1487: }
1488: PetscFunctionReturn(PETSC_SUCCESS);
1489: }
1491: /* A helper function for VecGetSubVector to check if we can implement it with no-copy (i.e. the subvector shares
1492: memory with the original vector), and the block size of the subvector.
1494: Input Parameters:
1495: + X - the original vector
1496: - is - the index set of the subvector
1498: Output Parameters:
1499: + contig - PETSC_TRUE if the index set refers to contiguous entries on this process, else PETSC_FALSE
1500: . start - start of contiguous block, as an offset from the start of the ownership range of the original vector
1501: - blocksize - the block size of the subvector
1503: */
1504: PetscErrorCode VecGetSubVectorContiguityAndBS_Private(Vec X, IS is, PetscBool *contig, PetscInt *start, PetscInt *blocksize)
1505: {
1506: PetscInt gstart, gend, lstart;
1507: PetscBool red[2] = {PETSC_TRUE /*contiguous*/, PETSC_TRUE /*validVBS*/};
1508: PetscInt n, N, ibs, vbs, bs = 1;
1510: PetscFunctionBegin;
1511: PetscCall(ISGetLocalSize(is, &n));
1512: PetscCall(ISGetSize(is, &N));
1513: PetscCall(ISGetBlockSize(is, &ibs));
1514: PetscCall(VecGetBlockSize(X, &vbs));
1515: PetscCall(VecGetOwnershipRange(X, &gstart, &gend));
1516: PetscCall(ISContiguousLocal(is, gstart, gend, &lstart, &red[0]));
1517: /* block size is given by IS if ibs > 1; otherwise, check the vector */
1518: if (ibs > 1) {
1519: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, red, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)is)));
1520: bs = ibs;
1521: } else {
1522: if (n % vbs || vbs == 1) red[1] = PETSC_FALSE; /* this process invalidate the collectiveness of block size */
1523: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, red, 2, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)is)));
1524: if (red[0] && red[1]) bs = vbs; /* all processes have a valid block size and the access will be contiguous */
1525: }
1527: *contig = red[0];
1528: *start = lstart;
1529: *blocksize = bs;
1530: PetscFunctionReturn(PETSC_SUCCESS);
1531: }
1533: /* A helper function for VecGetSubVector, to be used when we have to build a standalone subvector through VecScatter
1535: Input Parameters:
1536: + X - the original vector
1537: . is - the index set of the subvector
1538: - bs - the block size of the subvector, gotten from VecGetSubVectorContiguityAndBS_Private()
1540: Output Parameter:
1541: . Z - the subvector, which will compose the VecScatter context on output
1542: */
1543: PetscErrorCode VecGetSubVectorThroughVecScatter_Private(Vec X, IS is, PetscInt bs, Vec *Z)
1544: {
1545: PetscInt n, N;
1546: VecScatter vscat;
1547: Vec Y;
1549: PetscFunctionBegin;
1550: PetscCall(ISGetLocalSize(is, &n));
1551: PetscCall(ISGetSize(is, &N));
1552: PetscCall(VecCreate(PetscObjectComm((PetscObject)is), &Y));
1553: PetscCall(VecSetSizes(Y, n, N));
1554: PetscCall(VecSetBlockSize(Y, bs));
1555: PetscCall(VecSetType(Y, ((PetscObject)X)->type_name));
1556: PetscCall(VecScatterCreate(X, is, Y, NULL, &vscat));
1557: PetscCall(VecScatterBegin(vscat, X, Y, INSERT_VALUES, SCATTER_FORWARD));
1558: PetscCall(VecScatterEnd(vscat, X, Y, INSERT_VALUES, SCATTER_FORWARD));
1559: PetscCall(PetscObjectCompose((PetscObject)Y, "VecGetSubVector_Scatter", (PetscObject)vscat));
1560: PetscCall(VecScatterDestroy(&vscat));
1561: *Z = Y;
1562: PetscFunctionReturn(PETSC_SUCCESS);
1563: }
1565: /*@
1566: VecGetSubVector - Gets a vector representing part of another vector
1568: Collective
1570: Input Parameters:
1571: + X - vector from which to extract a subvector
1572: - is - index set representing portion of `X` to extract
1574: Output Parameter:
1575: . Y - subvector corresponding to `is`
1577: Level: advanced
1579: Notes:
1580: The subvector `Y` should be returned with `VecRestoreSubVector()`.
1581: `X` and `is` must be defined on the same communicator
1583: Changes to the subvector will be reflected in the `X` vector on the call to `VecRestoreSubVector()`.
1585: This function may return a subvector without making a copy, therefore it is not safe to use the original vector while
1586: modifying the subvector. Other non-overlapping subvectors can still be obtained from `X` using this function.
1588: The resulting subvector inherits the block size from `is` if greater than one. Otherwise, the block size is guessed from the block size of the original `X`.
1590: .seealso: [](ch_vectors), `Vec`, `IS`, `VECNEST`, `MatCreateSubMatrix()`
1591: @*/
1592: PetscErrorCode VecGetSubVector(Vec X, IS is, Vec *Y)
1593: {
1594: Vec Z;
1596: PetscFunctionBegin;
1599: PetscCheckSameComm(X, 1, is, 2);
1600: PetscAssertPointer(Y, 3);
1601: if (X->ops->getsubvector) {
1602: PetscUseTypeMethod(X, getsubvector, is, &Z);
1603: } else { /* Default implementation currently does no caching */
1604: PetscBool contig;
1605: PetscInt n, N, start, bs;
1607: PetscCall(ISGetLocalSize(is, &n));
1608: PetscCall(ISGetSize(is, &N));
1609: PetscCall(VecGetSubVectorContiguityAndBS_Private(X, is, &contig, &start, &bs));
1610: if (contig) { /* We can do a no-copy implementation */
1611: const PetscScalar *x;
1612: PetscInt state = 0;
1613: PetscBool isstd, iscuda, iship;
1615: PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &isstd, VECSEQ, VECMPI, VECSTANDARD, ""));
1616: PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &iscuda, VECSEQCUDA, VECMPICUDA, ""));
1617: PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &iship, VECSEQHIP, VECMPIHIP, ""));
1618: if (iscuda) {
1619: #if defined(PETSC_HAVE_CUDA)
1620: const PetscScalar *x_d;
1621: PetscMPIInt size;
1622: PetscOffloadMask flg;
1624: PetscCall(VecCUDAGetArrays_Private(X, &x, &x_d, &flg));
1625: PetscCheck(flg != PETSC_OFFLOAD_UNALLOCATED, PETSC_COMM_SELF, PETSC_ERR_SUP, "Not for PETSC_OFFLOAD_UNALLOCATED");
1626: PetscCheck(!n || x || x_d, PETSC_COMM_SELF, PETSC_ERR_SUP, "Missing vector data");
1627: if (x) x += start;
1628: if (x_d) x_d += start;
1629: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)X), &size));
1630: if (size == 1) {
1631: PetscCall(VecCreateSeqCUDAWithArrays(PetscObjectComm((PetscObject)X), bs, n, x, x_d, &Z));
1632: } else {
1633: PetscCall(VecCreateMPICUDAWithArrays(PetscObjectComm((PetscObject)X), bs, n, N, x, x_d, &Z));
1634: }
1635: Z->offloadmask = flg;
1636: #endif
1637: } else if (iship) {
1638: #if defined(PETSC_HAVE_HIP)
1639: const PetscScalar *x_d;
1640: PetscMPIInt size;
1641: PetscOffloadMask flg;
1643: PetscCall(VecHIPGetArrays_Private(X, &x, &x_d, &flg));
1644: PetscCheck(flg != PETSC_OFFLOAD_UNALLOCATED, PETSC_COMM_SELF, PETSC_ERR_SUP, "Not for PETSC_OFFLOAD_UNALLOCATED");
1645: PetscCheck(!n || x || x_d, PETSC_COMM_SELF, PETSC_ERR_SUP, "Missing vector data");
1646: if (x) x += start;
1647: if (x_d) x_d += start;
1648: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)X), &size));
1649: if (size == 1) {
1650: PetscCall(VecCreateSeqHIPWithArrays(PetscObjectComm((PetscObject)X), bs, n, x, x_d, &Z));
1651: } else {
1652: PetscCall(VecCreateMPIHIPWithArrays(PetscObjectComm((PetscObject)X), bs, n, N, x, x_d, &Z));
1653: }
1654: Z->offloadmask = flg;
1655: #endif
1656: } else if (isstd) {
1657: PetscMPIInt size;
1659: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)X), &size));
1660: PetscCall(VecGetArrayRead(X, &x));
1661: if (x) x += start;
1662: if (size == 1) {
1663: PetscCall(VecCreateSeqWithArray(PetscObjectComm((PetscObject)X), bs, n, x, &Z));
1664: } else {
1665: PetscCall(VecCreateMPIWithArray(PetscObjectComm((PetscObject)X), bs, n, N, x, &Z));
1666: }
1667: PetscCall(VecRestoreArrayRead(X, &x));
1668: } else { /* default implementation: use place array */
1669: PetscCall(VecGetArrayRead(X, &x));
1670: PetscCall(VecCreate(PetscObjectComm((PetscObject)X), &Z));
1671: PetscCall(VecSetType(Z, ((PetscObject)X)->type_name));
1672: PetscCall(VecSetSizes(Z, n, N));
1673: PetscCall(VecSetBlockSize(Z, bs));
1674: PetscCall(VecPlaceArray(Z, PetscSafePointerPlusOffset(x, start)));
1675: PetscCall(VecRestoreArrayRead(X, &x));
1676: }
1678: /* this is relevant only in debug mode */
1679: PetscCall(VecLockGet(X, &state));
1680: if (state) PetscCall(VecLockReadPush(Z));
1681: Z->ops->placearray = NULL;
1682: Z->ops->replacearray = NULL;
1683: } else { /* Have to create a scatter and do a copy */
1684: PetscCall(VecGetSubVectorThroughVecScatter_Private(X, is, bs, &Z));
1685: }
1686: }
1687: /* Record the state when the subvector was gotten so we know whether its values need to be put back */
1688: if (VecGetSubVectorSavedStateId < 0) PetscCall(PetscObjectComposedDataRegister(&VecGetSubVectorSavedStateId));
1689: PetscCall(PetscObjectComposedDataSetInt((PetscObject)Z, VecGetSubVectorSavedStateId, 1));
1690: *Y = Z;
1691: PetscFunctionReturn(PETSC_SUCCESS);
1692: }
1694: /*@
1695: VecRestoreSubVector - Restores a subvector extracted using `VecGetSubVector()`
1697: Collective
1699: Input Parameters:
1700: + X - vector from which subvector was obtained
1701: . is - index set representing the subset of `X`
1702: - Y - subvector being restored
1704: Level: advanced
1706: .seealso: [](ch_vectors), `Vec`, `IS`, `VecGetSubVector()`
1707: @*/
1708: PetscErrorCode VecRestoreSubVector(Vec X, IS is, Vec *Y)
1709: {
1710: PETSC_UNUSED PetscObjectState dummystate = 0;
1711: PetscBool unchanged;
1713: PetscFunctionBegin;
1716: PetscCheckSameComm(X, 1, is, 2);
1717: PetscAssertPointer(Y, 3);
1720: if (X->ops->restoresubvector) PetscUseTypeMethod(X, restoresubvector, is, Y);
1721: else {
1722: PetscCall(PetscObjectComposedDataGetInt((PetscObject)*Y, VecGetSubVectorSavedStateId, dummystate, unchanged));
1723: if (!unchanged) { /* If Y's state has not changed since VecGetSubVector(), we only need to destroy Y */
1724: VecScatter scatter;
1725: PetscInt state;
1727: PetscCall(VecLockGet(X, &state));
1728: PetscCheck(state == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vec X is locked for read-only or read/write access");
1730: PetscCall(PetscObjectQuery((PetscObject)*Y, "VecGetSubVector_Scatter", (PetscObject *)&scatter));
1731: if (scatter) {
1732: PetscCall(VecScatterBegin(scatter, *Y, X, INSERT_VALUES, SCATTER_REVERSE));
1733: PetscCall(VecScatterEnd(scatter, *Y, X, INSERT_VALUES, SCATTER_REVERSE));
1734: } else {
1735: PetscBool iscuda, iship;
1736: PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &iscuda, VECSEQCUDA, VECMPICUDA, ""));
1737: PetscCall(PetscObjectTypeCompareAny((PetscObject)X, &iship, VECSEQHIP, VECMPIHIP, ""));
1739: if (iscuda) {
1740: #if defined(PETSC_HAVE_CUDA)
1741: PetscOffloadMask ymask = (*Y)->offloadmask;
1743: /* The offloadmask of X dictates where to move memory
1744: If X GPU data is valid, then move Y data on GPU if needed
1745: Otherwise, move back to the CPU */
1746: switch (X->offloadmask) {
1747: case PETSC_OFFLOAD_BOTH:
1748: if (ymask == PETSC_OFFLOAD_CPU) {
1749: PetscCall(VecCUDAResetArray(*Y));
1750: } else if (ymask == PETSC_OFFLOAD_GPU) {
1751: X->offloadmask = PETSC_OFFLOAD_GPU;
1752: }
1753: break;
1754: case PETSC_OFFLOAD_GPU:
1755: if (ymask == PETSC_OFFLOAD_CPU) PetscCall(VecCUDAResetArray(*Y));
1756: break;
1757: case PETSC_OFFLOAD_CPU:
1758: if (ymask == PETSC_OFFLOAD_GPU) PetscCall(VecResetArray(*Y));
1759: break;
1760: case PETSC_OFFLOAD_UNALLOCATED:
1761: case PETSC_OFFLOAD_KOKKOS:
1762: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "This should not happen");
1763: }
1764: #endif
1765: } else if (iship) {
1766: #if defined(PETSC_HAVE_HIP)
1767: PetscOffloadMask ymask = (*Y)->offloadmask;
1769: /* The offloadmask of X dictates where to move memory
1770: If X GPU data is valid, then move Y data on GPU if needed
1771: Otherwise, move back to the CPU */
1772: switch (X->offloadmask) {
1773: case PETSC_OFFLOAD_BOTH:
1774: if (ymask == PETSC_OFFLOAD_CPU) {
1775: PetscCall(VecHIPResetArray(*Y));
1776: } else if (ymask == PETSC_OFFLOAD_GPU) {
1777: X->offloadmask = PETSC_OFFLOAD_GPU;
1778: }
1779: break;
1780: case PETSC_OFFLOAD_GPU:
1781: if (ymask == PETSC_OFFLOAD_CPU) PetscCall(VecHIPResetArray(*Y));
1782: break;
1783: case PETSC_OFFLOAD_CPU:
1784: if (ymask == PETSC_OFFLOAD_GPU) PetscCall(VecResetArray(*Y));
1785: break;
1786: case PETSC_OFFLOAD_UNALLOCATED:
1787: case PETSC_OFFLOAD_KOKKOS:
1788: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "This should not happen");
1789: }
1790: #endif
1791: } else {
1792: /* If OpenCL vecs updated the device memory, this triggers a copy on the CPU */
1793: PetscCall(VecResetArray(*Y));
1794: }
1795: PetscCall(PetscObjectStateIncrease((PetscObject)X));
1796: }
1797: }
1798: }
1799: PetscCall(VecDestroy(Y));
1800: PetscFunctionReturn(PETSC_SUCCESS);
1801: }
1803: /*@
1804: VecCreateLocalVector - Creates a vector object suitable for use with `VecGetLocalVector()` and friends. You must call `VecDestroy()` when the
1805: vector is no longer needed.
1807: Not Collective.
1809: Input Parameter:
1810: . v - The vector for which the local vector is desired.
1812: Output Parameter:
1813: . w - Upon exit this contains the local vector.
1815: Level: beginner
1817: .seealso: [](ch_vectors), `Vec`, `VecGetLocalVectorRead()`, `VecRestoreLocalVectorRead()`, `VecGetLocalVector()`, `VecRestoreLocalVector()`
1818: @*/
1819: PetscErrorCode VecCreateLocalVector(Vec v, Vec *w)
1820: {
1821: VecType roottype;
1822: PetscInt n;
1824: PetscFunctionBegin;
1826: PetscAssertPointer(w, 2);
1827: if (v->ops->createlocalvector) {
1828: PetscUseTypeMethod(v, createlocalvector, w);
1829: PetscFunctionReturn(PETSC_SUCCESS);
1830: }
1831: PetscCall(VecGetRootType_Private(v, &roottype));
1832: PetscCall(VecCreate(PETSC_COMM_SELF, w));
1833: PetscCall(VecGetLocalSize(v, &n));
1834: PetscCall(VecSetSizes(*w, n, n));
1835: PetscCall(VecGetBlockSize(v, &n));
1836: PetscCall(VecSetBlockSize(*w, n));
1837: PetscCall(VecSetType(*w, roottype));
1838: PetscFunctionReturn(PETSC_SUCCESS);
1839: }
1841: /*@
1842: VecGetLocalVectorRead - Maps the local portion of a vector into a
1843: vector.
1845: Not Collective.
1847: Input Parameter:
1848: . v - The vector for which the local vector is desired.
1850: Output Parameter:
1851: . w - Upon exit this contains the local vector.
1853: Level: beginner
1855: Notes:
1856: You must call `VecRestoreLocalVectorRead()` when the local
1857: vector is no longer needed.
1859: This function is similar to `VecGetArrayRead()` which maps the local
1860: portion into a raw pointer. `VecGetLocalVectorRead()` is usually
1861: almost as efficient as `VecGetArrayRead()` but in certain circumstances
1862: `VecGetLocalVectorRead()` can be much more efficient than
1863: `VecGetArrayRead()`. This is because the construction of a contiguous
1864: array representing the vector data required by `VecGetArrayRead()` can
1865: be an expensive operation for certain vector types. For example, for
1866: GPU vectors `VecGetArrayRead()` requires that the data between device
1867: and host is synchronized.
1869: Unlike `VecGetLocalVector()`, this routine is not collective and
1870: preserves cached information.
1872: .seealso: [](ch_vectors), `Vec`, `VecCreateLocalVector()`, `VecRestoreLocalVectorRead()`, `VecGetLocalVector()`, `VecGetArrayRead()`, `VecGetArray()`
1873: @*/
1874: PetscErrorCode VecGetLocalVectorRead(Vec v, Vec w)
1875: {
1876: PetscFunctionBegin;
1879: VecCheckSameLocalSize(v, 1, w, 2);
1880: if (v->ops->getlocalvectorread) {
1881: PetscUseTypeMethod(v, getlocalvectorread, w);
1882: } else {
1883: PetscScalar *a;
1885: PetscCall(VecGetArrayRead(v, (const PetscScalar **)&a));
1886: PetscCall(VecPlaceArray(w, a));
1887: }
1888: PetscCall(PetscObjectStateIncrease((PetscObject)w));
1889: PetscCall(VecLockReadPush(v));
1890: PetscCall(VecLockReadPush(w));
1891: PetscFunctionReturn(PETSC_SUCCESS);
1892: }
1894: /*@
1895: VecRestoreLocalVectorRead - Unmaps the local portion of a vector
1896: previously mapped into a vector using `VecGetLocalVectorRead()`.
1898: Not Collective.
1900: Input Parameters:
1901: + v - The local portion of this vector was previously mapped into `w` using `VecGetLocalVectorRead()`.
1902: - w - The vector into which the local portion of `v` was mapped.
1904: Level: beginner
1906: .seealso: [](ch_vectors), `Vec`, `VecCreateLocalVector()`, `VecGetLocalVectorRead()`, `VecGetLocalVector()`, `VecGetArrayRead()`, `VecGetArray()`
1907: @*/
1908: PetscErrorCode VecRestoreLocalVectorRead(Vec v, Vec w)
1909: {
1910: PetscFunctionBegin;
1913: if (v->ops->restorelocalvectorread) {
1914: PetscUseTypeMethod(v, restorelocalvectorread, w);
1915: } else {
1916: const PetscScalar *a;
1918: PetscCall(VecGetArrayRead(w, &a));
1919: PetscCall(VecRestoreArrayRead(v, &a));
1920: PetscCall(VecResetArray(w));
1921: }
1922: PetscCall(VecLockReadPop(v));
1923: PetscCall(VecLockReadPop(w));
1924: PetscCall(PetscObjectStateIncrease((PetscObject)w));
1925: PetscFunctionReturn(PETSC_SUCCESS);
1926: }
1928: /*@
1929: VecGetLocalVector - Maps the local portion of a vector into a
1930: vector.
1932: Collective
1934: Input Parameter:
1935: . v - The vector for which the local vector is desired.
1937: Output Parameter:
1938: . w - Upon exit this contains the local vector.
1940: Level: beginner
1942: Notes:
1943: You must call `VecRestoreLocalVector()` when the local
1944: vector is no longer needed.
1946: This function is similar to `VecGetArray()` which maps the local
1947: portion into a raw pointer. `VecGetLocalVector()` is usually about as
1948: efficient as `VecGetArray()` but in certain circumstances
1949: `VecGetLocalVector()` can be much more efficient than `VecGetArray()`.
1950: This is because the construction of a contiguous array representing
1951: the vector data required by `VecGetArray()` can be an expensive
1952: operation for certain vector types. For example, for GPU vectors
1953: `VecGetArray()` requires that the data between device and host is
1954: synchronized.
1956: .seealso: [](ch_vectors), `Vec`, `VecCreateLocalVector()`, `VecRestoreLocalVector()`, `VecGetLocalVectorRead()`, `VecGetArrayRead()`, `VecGetArray()`
1957: @*/
1958: PetscErrorCode VecGetLocalVector(Vec v, Vec w)
1959: {
1960: PetscFunctionBegin;
1963: VecCheckSameLocalSize(v, 1, w, 2);
1964: if (v->ops->getlocalvector) {
1965: PetscUseTypeMethod(v, getlocalvector, w);
1966: } else {
1967: PetscScalar *a;
1969: PetscCall(VecGetArray(v, &a));
1970: PetscCall(VecPlaceArray(w, a));
1971: }
1972: PetscCall(PetscObjectStateIncrease((PetscObject)w));
1973: PetscFunctionReturn(PETSC_SUCCESS);
1974: }
1976: /*@
1977: VecRestoreLocalVector - Unmaps the local portion of a vector
1978: previously mapped into a vector using `VecGetLocalVector()`.
1980: Logically Collective.
1982: Input Parameters:
1983: + v - The local portion of this vector was previously mapped into `w` using `VecGetLocalVector()`.
1984: - w - The vector into which the local portion of `v` was mapped.
1986: Level: beginner
1988: .seealso: [](ch_vectors), `Vec`, `VecCreateLocalVector()`, `VecGetLocalVector()`, `VecGetLocalVectorRead()`, `VecRestoreLocalVectorRead()`, `LocalVectorRead()`, `VecGetArrayRead()`, `VecGetArray()`
1989: @*/
1990: PetscErrorCode VecRestoreLocalVector(Vec v, Vec w)
1991: {
1992: PetscFunctionBegin;
1995: if (v->ops->restorelocalvector) {
1996: PetscUseTypeMethod(v, restorelocalvector, w);
1997: } else {
1998: PetscScalar *a;
1999: PetscCall(VecGetArray(w, &a));
2000: PetscCall(VecRestoreArray(v, &a));
2001: PetscCall(VecResetArray(w));
2002: }
2003: PetscCall(PetscObjectStateIncrease((PetscObject)w));
2004: PetscCall(PetscObjectStateIncrease((PetscObject)v));
2005: PetscFunctionReturn(PETSC_SUCCESS);
2006: }
2008: /*@C
2009: VecGetArray - Returns a pointer to a contiguous array that contains this
2010: MPI processes's portion of the vector data
2012: Logically Collective
2014: Input Parameter:
2015: . x - the vector
2017: Output Parameter:
2018: . a - location to put pointer to the array
2020: Level: beginner
2022: Notes:
2023: For the standard PETSc vectors, `VecGetArray()` returns a pointer to the local data array and
2024: does not use any copies. If the underlying vector data is not stored in a contiguous array
2025: this routine will copy the data to a contiguous array and return a pointer to that. You MUST
2026: call `VecRestoreArray()` when you no longer need access to the array.
2028: Fortran Note:
2029: .vb
2030: PetscScalar, pointer :: a(:)
2031: .ve
2033: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecGetArrays()`, `VecPlaceArray()`, `VecGetArray2d()`,
2034: `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayWrite()`, `VecRestoreArrayWrite()`
2035: @*/
2036: PetscErrorCode VecGetArray(Vec x, PetscScalar *a[])
2037: {
2038: PetscFunctionBegin;
2040: PetscCall(VecSetErrorIfLocked(x, 1));
2041: if (x->ops->getarray) { /* The if-else order matters! VECNEST, VECCUDA etc should have ops->getarray while VECCUDA etc are petscnative */
2042: PetscUseTypeMethod(x, getarray, a);
2043: } else if (x->petscnative) { /* VECSTANDARD */
2044: *a = *((PetscScalar **)x->data);
2045: } else SETERRQ(PetscObjectComm((PetscObject)x), PETSC_ERR_SUP, "Cannot get array for vector type \"%s\"", ((PetscObject)x)->type_name);
2046: PetscFunctionReturn(PETSC_SUCCESS);
2047: }
2049: /*@C
2050: VecRestoreArray - Restores a vector after `VecGetArray()` has been called and the array is no longer needed
2052: Logically Collective
2054: Input Parameters:
2055: + x - the vector
2056: - a - location of pointer to array obtained from `VecGetArray()`
2058: Level: beginner
2060: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArrayRead()`, `VecRestoreArrays()`, `VecPlaceArray()`, `VecRestoreArray2d()`,
2061: `VecGetArrayPair()`, `VecRestoreArrayPair()`
2062: @*/
2063: PetscErrorCode VecRestoreArray(Vec x, PetscScalar *a[])
2064: {
2065: PetscFunctionBegin;
2067: if (a) PetscAssertPointer(a, 2);
2068: if (x->ops->restorearray) {
2069: PetscUseTypeMethod(x, restorearray, a);
2070: } else PetscCheck(x->petscnative, PetscObjectComm((PetscObject)x), PETSC_ERR_SUP, "Cannot restore array for vector type \"%s\"", ((PetscObject)x)->type_name);
2071: if (a) *a = NULL;
2072: PetscCall(PetscObjectStateIncrease((PetscObject)x));
2073: PetscFunctionReturn(PETSC_SUCCESS);
2074: }
2075: /*@C
2076: VecGetArrayRead - Get read-only pointer to contiguous array containing this processor's portion of the vector data.
2078: Not Collective
2080: Input Parameter:
2081: . x - the vector
2083: Output Parameter:
2084: . a - the array
2086: Level: beginner
2088: Notes:
2089: The array must be returned using a matching call to `VecRestoreArrayRead()`.
2091: Unlike `VecGetArray()`, preserves cached information like vector norms.
2093: Standard PETSc vectors use contiguous storage so that this routine does not perform a copy. Other vector
2094: implementations may require a copy, but such implementations should cache the contiguous representation so that
2095: only one copy is performed when this routine is called multiple times in sequence.
2097: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2098: @*/
2099: PetscErrorCode VecGetArrayRead(Vec x, const PetscScalar *a[])
2100: {
2101: PetscFunctionBegin;
2103: PetscAssertPointer(a, 2);
2104: if (x->ops->getarrayread) {
2105: PetscUseTypeMethod(x, getarrayread, a);
2106: } else if (x->ops->getarray) {
2107: PetscObjectState state;
2109: /* VECNEST, VECCUDA, VECKOKKOS etc */
2110: // x->ops->getarray may bump the object state, but since we know this is a read-only get
2111: // we can just undo that
2112: PetscCall(PetscObjectStateGet((PetscObject)x, &state));
2113: PetscUseTypeMethod(x, getarray, (PetscScalar **)a);
2114: PetscCall(PetscObjectStateSet((PetscObject)x, state));
2115: } else if (x->petscnative) {
2116: /* VECSTANDARD */
2117: *a = *((PetscScalar **)x->data);
2118: } else SETERRQ(PetscObjectComm((PetscObject)x), PETSC_ERR_SUP, "Cannot get array read for vector type \"%s\"", ((PetscObject)x)->type_name);
2119: PetscFunctionReturn(PETSC_SUCCESS);
2120: }
2122: /*@C
2123: VecRestoreArrayRead - Restore array obtained with `VecGetArrayRead()`
2125: Not Collective
2127: Input Parameters:
2128: + x - the vector
2129: - a - the array
2131: Level: beginner
2133: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2134: @*/
2135: PetscErrorCode VecRestoreArrayRead(Vec x, const PetscScalar *a[])
2136: {
2137: PetscFunctionBegin;
2139: if (a) PetscAssertPointer(a, 2);
2140: if (x->petscnative) { /* VECSTANDARD, VECCUDA, VECKOKKOS etc */
2141: /* nothing */
2142: } else if (x->ops->restorearrayread) { /* VECNEST */
2143: PetscUseTypeMethod(x, restorearrayread, a);
2144: } else { /* No one? */
2145: PetscObjectState state;
2147: // x->ops->restorearray may bump the object state, but since we know this is a read-restore
2148: // we can just undo that
2149: PetscCall(PetscObjectStateGet((PetscObject)x, &state));
2150: PetscUseTypeMethod(x, restorearray, (PetscScalar **)a);
2151: PetscCall(PetscObjectStateSet((PetscObject)x, state));
2152: }
2153: if (a) *a = NULL;
2154: PetscFunctionReturn(PETSC_SUCCESS);
2155: }
2157: /*@C
2158: VecGetArrayWrite - Returns a pointer to a contiguous array that WILL contain this
2159: MPI processes's portion of the vector data.
2161: Logically Collective
2163: Input Parameter:
2164: . x - the vector
2166: Output Parameter:
2167: . a - location to put pointer to the array
2169: Level: intermediate
2171: Note:
2172: The values in this array are NOT valid, the caller of this routine is responsible for putting
2173: values into the array; any values it does not set will be invalid.
2175: The array must be returned using a matching call to `VecRestoreArrayWrite()`.
2177: For vectors associated with GPUs, the host and device vectors are not synchronized before
2178: giving access. If you need correct values in the array use `VecGetArray()`
2180: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecGetArrays()`, `VecPlaceArray()`, `VecGetArray2d()`,
2181: `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArray()`, `VecRestoreArrayWrite()`
2182: @*/
2183: PetscErrorCode VecGetArrayWrite(Vec x, PetscScalar *a[])
2184: {
2185: PetscFunctionBegin;
2187: PetscAssertPointer(a, 2);
2188: PetscCall(VecSetErrorIfLocked(x, 1));
2189: if (x->ops->getarraywrite) {
2190: PetscUseTypeMethod(x, getarraywrite, a);
2191: } else {
2192: PetscCall(VecGetArray(x, a));
2193: }
2194: PetscFunctionReturn(PETSC_SUCCESS);
2195: }
2197: /*@C
2198: VecRestoreArrayWrite - Restores a vector after `VecGetArrayWrite()` has been called.
2200: Logically Collective
2202: Input Parameters:
2203: + x - the vector
2204: - a - location of pointer to array obtained from `VecGetArray()`
2206: Level: beginner
2208: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArrayRead()`, `VecRestoreArrays()`, `VecPlaceArray()`, `VecRestoreArray2d()`,
2209: `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayWrite()`
2210: @*/
2211: PetscErrorCode VecRestoreArrayWrite(Vec x, PetscScalar *a[])
2212: {
2213: PetscFunctionBegin;
2215: if (a) PetscAssertPointer(a, 2);
2216: if (x->ops->restorearraywrite) {
2217: PetscUseTypeMethod(x, restorearraywrite, a);
2218: } else if (x->ops->restorearray) {
2219: PetscUseTypeMethod(x, restorearray, a);
2220: }
2221: if (a) *a = NULL;
2222: PetscCall(PetscObjectStateIncrease((PetscObject)x));
2223: PetscFunctionReturn(PETSC_SUCCESS);
2224: }
2226: /*@C
2227: VecGetArrays - Returns a pointer to the arrays in a set of vectors
2228: that were created by a call to `VecDuplicateVecs()`.
2230: Logically Collective; No Fortran Support
2232: Input Parameters:
2233: + x - the vectors
2234: - n - the number of vectors
2236: Output Parameter:
2237: . a - location to put pointer to the array
2239: Level: intermediate
2241: Note:
2242: You MUST call `VecRestoreArrays()` when you no longer need access to the arrays.
2244: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArrays()`
2245: @*/
2246: PetscErrorCode VecGetArrays(const Vec x[], PetscInt n, PetscScalar **a[])
2247: {
2248: PetscInt i;
2249: PetscScalar **q;
2251: PetscFunctionBegin;
2252: PetscAssertPointer(x, 1);
2254: PetscAssertPointer(a, 3);
2255: PetscCheck(n > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Must get at least one array n = %" PetscInt_FMT, n);
2256: PetscCall(PetscMalloc1(n, &q));
2257: for (i = 0; i < n; ++i) PetscCall(VecGetArray(x[i], &q[i]));
2258: *a = q;
2259: PetscFunctionReturn(PETSC_SUCCESS);
2260: }
2262: /*@C
2263: VecRestoreArrays - Restores a group of vectors after `VecGetArrays()`
2264: has been called.
2266: Logically Collective; No Fortran Support
2268: Input Parameters:
2269: + x - the vector
2270: . n - the number of vectors
2271: - a - location of pointer to arrays obtained from `VecGetArrays()`
2273: Notes:
2274: For regular PETSc vectors this routine does not involve any copies. For
2275: any special vectors that do not store local vector data in a contiguous
2276: array, this routine will copy the data back into the underlying
2277: vector data structure from the arrays obtained with `VecGetArrays()`.
2279: Level: intermediate
2281: .seealso: [](ch_vectors), `Vec`, `VecGetArrays()`, `VecRestoreArray()`
2282: @*/
2283: PetscErrorCode VecRestoreArrays(const Vec x[], PetscInt n, PetscScalar **a[])
2284: {
2285: PetscInt i;
2286: PetscScalar **q = *a;
2288: PetscFunctionBegin;
2289: PetscAssertPointer(x, 1);
2291: PetscAssertPointer(a, 3);
2293: for (i = 0; i < n; ++i) PetscCall(VecRestoreArray(x[i], &q[i]));
2294: PetscCall(PetscFree(q));
2295: PetscFunctionReturn(PETSC_SUCCESS);
2296: }
2298: /*@C
2299: VecGetArrayAndMemType - Like `VecGetArray()`, but if this is a standard device vector (e.g.,
2300: `VECCUDA`), the returned pointer will be a device pointer to the device memory that contains
2301: this MPI processes's portion of the vector data.
2303: Logically Collective; No Fortran Support
2305: Input Parameter:
2306: . x - the vector
2308: Output Parameters:
2309: + a - location to put pointer to the array
2310: - mtype - memory type of the array
2312: Level: beginner
2314: Note:
2315: Device data is guaranteed to have the latest value. Otherwise, when this is a host vector
2316: (e.g., `VECMPI`), this routine functions the same as `VecGetArray()` and returns a host
2317: pointer.
2319: For `VECKOKKOS`, if Kokkos is configured without device (e.g., use serial or openmp), per
2320: this function, the vector works like `VECSEQ`/`VECMPI`; otherwise, it works like `VECCUDA` or
2321: `VECHIP` etc.
2323: Use `VecRestoreArrayAndMemType()` when the array access is no longer needed.
2325: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayAndMemType()`, `VecGetArrayReadAndMemType()`, `VecGetArrayWriteAndMemType()`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecGetArrays()`,
2326: `VecPlaceArray()`, `VecGetArray2d()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayWrite()`, `VecRestoreArrayWrite()`
2327: @*/
2328: PetscErrorCode VecGetArrayAndMemType(Vec x, PetscScalar *a[], PetscMemType *mtype)
2329: {
2330: PetscFunctionBegin;
2333: PetscAssertPointer(a, 2);
2334: if (mtype) PetscAssertPointer(mtype, 3);
2335: PetscCall(VecSetErrorIfLocked(x, 1));
2336: if (x->ops->getarrayandmemtype) {
2337: /* VECCUDA, VECKOKKOS etc */
2338: PetscUseTypeMethod(x, getarrayandmemtype, a, mtype);
2339: } else {
2340: /* VECSTANDARD, VECNEST, VECVIENNACL */
2341: PetscCall(VecGetArray(x, a));
2342: if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2343: }
2344: PetscFunctionReturn(PETSC_SUCCESS);
2345: }
2347: /*@C
2348: VecRestoreArrayAndMemType - Restores a vector after `VecGetArrayAndMemType()` has been called.
2350: Logically Collective; No Fortran Support
2352: Input Parameters:
2353: + x - the vector
2354: - a - location of pointer to array obtained from `VecGetArrayAndMemType()`
2356: Level: beginner
2358: .seealso: [](ch_vectors), `Vec`, `VecGetArrayAndMemType()`, `VecGetArray()`, `VecRestoreArrayRead()`, `VecRestoreArrays()`,
2359: `VecPlaceArray()`, `VecRestoreArray2d()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2360: @*/
2361: PetscErrorCode VecRestoreArrayAndMemType(Vec x, PetscScalar *a[])
2362: {
2363: PetscFunctionBegin;
2366: if (a) PetscAssertPointer(a, 2);
2367: if (x->ops->restorearrayandmemtype) {
2368: /* VECCUDA, VECKOKKOS etc */
2369: PetscUseTypeMethod(x, restorearrayandmemtype, a);
2370: } else {
2371: /* VECNEST, VECVIENNACL */
2372: PetscCall(VecRestoreArray(x, a));
2373: } /* VECSTANDARD does nothing */
2374: if (a) *a = NULL;
2375: PetscCall(PetscObjectStateIncrease((PetscObject)x));
2376: PetscFunctionReturn(PETSC_SUCCESS);
2377: }
2379: /*@C
2380: VecGetArrayReadAndMemType - Like `VecGetArrayRead()`, but if the input vector is a device vector, it will return a read-only device pointer.
2381: The returned pointer is guaranteed to point to up-to-date data. For host vectors, it functions as `VecGetArrayRead()`.
2383: Not Collective; No Fortran Support
2385: Input Parameter:
2386: . x - the vector
2388: Output Parameters:
2389: + a - the array
2390: - mtype - memory type of the array
2392: Level: beginner
2394: Notes:
2395: The array must be returned using a matching call to `VecRestoreArrayReadAndMemType()`.
2397: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayReadAndMemType()`, `VecGetArrayAndMemType()`, `VecGetArrayWriteAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2398: @*/
2399: PetscErrorCode VecGetArrayReadAndMemType(Vec x, const PetscScalar *a[], PetscMemType *mtype)
2400: {
2401: PetscFunctionBegin;
2404: PetscAssertPointer(a, 2);
2405: if (mtype) PetscAssertPointer(mtype, 3);
2406: if (x->ops->getarrayreadandmemtype) {
2407: /* VECCUDA/VECHIP though they are also petscnative */
2408: PetscUseTypeMethod(x, getarrayreadandmemtype, a, mtype);
2409: } else if (x->ops->getarrayandmemtype) {
2410: /* VECKOKKOS */
2411: PetscObjectState state;
2413: // see VecGetArrayRead() for why
2414: PetscCall(PetscObjectStateGet((PetscObject)x, &state));
2415: PetscUseTypeMethod(x, getarrayandmemtype, (PetscScalar **)a, mtype);
2416: PetscCall(PetscObjectStateSet((PetscObject)x, state));
2417: } else {
2418: PetscCall(VecGetArrayRead(x, a));
2419: if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2420: }
2421: PetscFunctionReturn(PETSC_SUCCESS);
2422: }
2424: /*@C
2425: VecRestoreArrayReadAndMemType - Restore array obtained with `VecGetArrayReadAndMemType()`
2427: Not Collective; No Fortran Support
2429: Input Parameters:
2430: + x - the vector
2431: - a - the array
2433: Level: beginner
2435: .seealso: [](ch_vectors), `Vec`, `VecGetArrayReadAndMemType()`, `VecRestoreArrayAndMemType()`, `VecRestoreArrayWriteAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2436: @*/
2437: PetscErrorCode VecRestoreArrayReadAndMemType(Vec x, const PetscScalar *a[])
2438: {
2439: PetscFunctionBegin;
2442: if (a) PetscAssertPointer(a, 2);
2443: if (x->ops->restorearrayreadandmemtype) {
2444: /* VECCUDA/VECHIP */
2445: PetscUseTypeMethod(x, restorearrayreadandmemtype, a);
2446: } else if (!x->petscnative) {
2447: /* VECNEST */
2448: PetscCall(VecRestoreArrayRead(x, a));
2449: }
2450: if (a) *a = NULL;
2451: PetscFunctionReturn(PETSC_SUCCESS);
2452: }
2454: /*@C
2455: VecGetArrayWriteAndMemType - Like `VecGetArrayWrite()`, but if this is a device vector it will always return
2456: a device pointer to the device memory that contains this processor's portion of the vector data.
2458: Logically Collective; No Fortran Support
2460: Input Parameter:
2461: . x - the vector
2463: Output Parameters:
2464: + a - the array
2465: - mtype - memory type of the array
2467: Level: beginner
2469: Note:
2470: The array must be returned using a matching call to `VecRestoreArrayWriteAndMemType()`, where it will label the device memory as most recent.
2472: .seealso: [](ch_vectors), `Vec`, `VecRestoreArrayWriteAndMemType()`, `VecGetArrayReadAndMemType()`, `VecGetArrayAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`,
2473: @*/
2474: PetscErrorCode VecGetArrayWriteAndMemType(Vec x, PetscScalar *a[], PetscMemType *mtype)
2475: {
2476: PetscFunctionBegin;
2479: PetscCall(VecSetErrorIfLocked(x, 1));
2480: PetscAssertPointer(a, 2);
2481: if (mtype) PetscAssertPointer(mtype, 3);
2482: if (x->ops->getarraywriteandmemtype) {
2483: /* VECCUDA, VECHIP, VECKOKKOS etc, though they are also petscnative */
2484: PetscUseTypeMethod(x, getarraywriteandmemtype, a, mtype);
2485: } else if (x->ops->getarrayandmemtype) {
2486: PetscCall(VecGetArrayAndMemType(x, a, mtype));
2487: } else {
2488: /* VECNEST, VECVIENNACL */
2489: PetscCall(VecGetArrayWrite(x, a));
2490: if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2491: }
2492: PetscFunctionReturn(PETSC_SUCCESS);
2493: }
2495: /*@C
2496: VecRestoreArrayWriteAndMemType - Restore array obtained with `VecGetArrayWriteAndMemType()`
2498: Logically Collective; No Fortran Support
2500: Input Parameters:
2501: + x - the vector
2502: - a - the array
2504: Level: beginner
2506: .seealso: [](ch_vectors), `Vec`, `VecGetArrayWriteAndMemType()`, `VecRestoreArrayAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2507: @*/
2508: PetscErrorCode VecRestoreArrayWriteAndMemType(Vec x, PetscScalar *a[])
2509: {
2510: PetscFunctionBegin;
2513: PetscCall(VecSetErrorIfLocked(x, 1));
2514: if (a) PetscAssertPointer(a, 2);
2515: if (x->ops->restorearraywriteandmemtype) {
2516: /* VECCUDA/VECHIP */
2517: PetscMemType PETSC_UNUSED mtype; // since this function doesn't accept a memtype?
2518: PetscUseTypeMethod(x, restorearraywriteandmemtype, a, &mtype);
2519: } else if (x->ops->restorearrayandmemtype) {
2520: PetscCall(VecRestoreArrayAndMemType(x, a));
2521: } else {
2522: PetscCall(VecRestoreArray(x, a));
2523: }
2524: if (a) *a = NULL;
2525: PetscFunctionReturn(PETSC_SUCCESS);
2526: }
2528: /*@
2529: VecPlaceArray - Allows one to replace the array in a vector with an
2530: array provided by the user. This is useful to avoid copying an array
2531: into a vector.
2533: Logically Collective; No Fortran Support
2535: Input Parameters:
2536: + vec - the vector
2537: - array - the array
2539: Level: developer
2541: Notes:
2542: Adding `const` to `array` was an oversight, as subsequent operations on `vec` would
2543: likely modify the data in `array`. However, we have kept it to avoid breaking APIs.
2545: Use `VecReplaceArray()` instead to permanently replace the array
2547: You can return to the original array with a call to `VecResetArray()`. `vec` does not take
2548: ownership of `array` in any way.
2550: The user must free `array` themselves but be careful not to
2551: do so before the vector has either been destroyed, had its original array restored with
2552: `VecResetArray()` or permanently replaced with `VecReplaceArray()`.
2554: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecReplaceArray()`, `VecResetArray()`
2555: @*/
2556: PetscErrorCode VecPlaceArray(Vec vec, const PetscScalar array[])
2557: {
2558: PetscFunctionBegin;
2561: if (array) PetscAssertPointer(array, 2);
2562: PetscUseTypeMethod(vec, placearray, array);
2563: PetscCall(PetscObjectStateIncrease((PetscObject)vec));
2564: PetscFunctionReturn(PETSC_SUCCESS);
2565: }
2567: /*@C
2568: VecReplaceArray - Allows one to replace the array in a vector with an
2569: array provided by the user. This is useful to avoid copying an array
2570: into a vector.
2572: Logically Collective; No Fortran Support
2574: Input Parameters:
2575: + vec - the vector
2576: - array - the array
2578: Level: developer
2580: Notes:
2581: Adding `const` to `array` was an oversight, as subsequent operations on `vec` would
2582: likely modify the data in `array`. However, we have kept it to avoid breaking APIs.
2584: This permanently replaces the array and frees the memory associated
2585: with the old array. Use `VecPlaceArray()` to temporarily replace the array.
2587: The memory passed in MUST be obtained with `PetscMalloc()` and CANNOT be
2588: freed by the user. It will be freed when the vector is destroyed.
2590: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecPlaceArray()`, `VecResetArray()`
2591: @*/
2592: PetscErrorCode VecReplaceArray(Vec vec, const PetscScalar array[])
2593: {
2594: PetscFunctionBegin;
2597: PetscUseTypeMethod(vec, replacearray, array);
2598: PetscCall(PetscObjectStateIncrease((PetscObject)vec));
2599: PetscFunctionReturn(PETSC_SUCCESS);
2600: }
2602: /*@C
2603: VecGetArray2d - Returns a pointer to a 2d contiguous array that contains this
2604: processor's portion of the vector data. You MUST call `VecRestoreArray2d()`
2605: when you no longer need access to the array.
2607: Logically Collective
2609: Input Parameters:
2610: + x - the vector
2611: . m - first dimension of two dimensional array
2612: . n - second dimension of two dimensional array
2613: . mstart - first index you will use in first coordinate direction (often 0)
2614: - nstart - first index in the second coordinate direction (often 0)
2616: Output Parameter:
2617: . a - location to put pointer to the array
2619: Level: developer
2621: Notes:
2622: For a vector obtained from `DMCreateLocalVector()` `mstart` and `nstart` are likely
2623: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
2624: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
2625: the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray2d()`.
2627: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
2629: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
2630: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
2631: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2632: @*/
2633: PetscErrorCode VecGetArray2d(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
2634: {
2635: PetscInt i, N;
2636: PetscScalar *aa;
2638: PetscFunctionBegin;
2640: PetscAssertPointer(a, 6);
2642: PetscCall(VecGetLocalSize(x, &N));
2643: PetscCheck(m * n == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 2d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n);
2644: PetscCall(VecGetArray(x, &aa));
2646: PetscCall(PetscMalloc1(m, a));
2647: for (i = 0; i < m; i++) (*a)[i] = aa + i * n - nstart;
2648: *a -= mstart;
2649: PetscFunctionReturn(PETSC_SUCCESS);
2650: }
2652: /*@C
2653: VecGetArray2dWrite - Returns a pointer to a 2d contiguous array that will contain this
2654: processor's portion of the vector data. You MUST call `VecRestoreArray2dWrite()`
2655: when you no longer need access to the array.
2657: Logically Collective
2659: Input Parameters:
2660: + x - the vector
2661: . m - first dimension of two dimensional array
2662: . n - second dimension of two dimensional array
2663: . mstart - first index you will use in first coordinate direction (often 0)
2664: - nstart - first index in the second coordinate direction (often 0)
2666: Output Parameter:
2667: . a - location to put pointer to the array
2669: Level: developer
2671: Notes:
2672: For a vector obtained from `DMCreateLocalVector()` `mstart` and `nstart` are likely
2673: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
2674: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
2675: the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray2d()`.
2677: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
2679: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
2680: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
2681: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2682: @*/
2683: PetscErrorCode VecGetArray2dWrite(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
2684: {
2685: PetscInt i, N;
2686: PetscScalar *aa;
2688: PetscFunctionBegin;
2690: PetscAssertPointer(a, 6);
2692: PetscCall(VecGetLocalSize(x, &N));
2693: PetscCheck(m * n == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 2d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n);
2694: PetscCall(VecGetArrayWrite(x, &aa));
2696: PetscCall(PetscMalloc1(m, a));
2697: for (i = 0; i < m; i++) (*a)[i] = aa + i * n - nstart;
2698: *a -= mstart;
2699: PetscFunctionReturn(PETSC_SUCCESS);
2700: }
2702: /*@C
2703: VecRestoreArray2d - Restores a vector after `VecGetArray2d()` has been called.
2705: Logically Collective
2707: Input Parameters:
2708: + x - the vector
2709: . m - first dimension of two dimensional array
2710: . n - second dimension of the two dimensional array
2711: . mstart - first index you will use in first coordinate direction (often 0)
2712: . nstart - first index in the second coordinate direction (often 0)
2713: - a - location of pointer to array obtained from `VecGetArray2d()`
2715: Level: developer
2717: Notes:
2718: For regular PETSc vectors this routine does not involve any copies. For
2719: any special vectors that do not store local vector data in a contiguous
2720: array, this routine will copy the data back into the underlying
2721: vector data structure from the array obtained with `VecGetArray()`.
2723: This routine actually zeros out the `a` pointer.
2725: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
2726: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
2727: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2728: @*/
2729: PetscErrorCode VecRestoreArray2d(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
2730: {
2731: void *dummy;
2733: PetscFunctionBegin;
2735: PetscAssertPointer(a, 6);
2737: dummy = (void *)(*a + mstart);
2738: PetscCall(PetscFree(dummy));
2739: PetscCall(VecRestoreArray(x, NULL));
2740: *a = NULL;
2741: PetscFunctionReturn(PETSC_SUCCESS);
2742: }
2744: /*@C
2745: VecRestoreArray2dWrite - Restores a vector after `VecGetArray2dWrite()` has been called.
2747: Logically Collective
2749: Input Parameters:
2750: + x - the vector
2751: . m - first dimension of two dimensional array
2752: . n - second dimension of the two dimensional array
2753: . mstart - first index you will use in first coordinate direction (often 0)
2754: . nstart - first index in the second coordinate direction (often 0)
2755: - a - location of pointer to array obtained from `VecGetArray2d()`
2757: Level: developer
2759: Notes:
2760: For regular PETSc vectors this routine does not involve any copies. For
2761: any special vectors that do not store local vector data in a contiguous
2762: array, this routine will copy the data back into the underlying
2763: vector data structure from the array obtained with `VecGetArray()`.
2765: This routine actually zeros out the `a` pointer.
2767: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
2768: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
2769: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2770: @*/
2771: PetscErrorCode VecRestoreArray2dWrite(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
2772: {
2773: void *dummy;
2775: PetscFunctionBegin;
2777: PetscAssertPointer(a, 6);
2779: dummy = (void *)(*a + mstart);
2780: PetscCall(PetscFree(dummy));
2781: PetscCall(VecRestoreArrayWrite(x, NULL));
2782: PetscFunctionReturn(PETSC_SUCCESS);
2783: }
2785: /*@C
2786: VecGetArray1d - Returns a pointer to a 1d contiguous array that contains this
2787: processor's portion of the vector data. You MUST call `VecRestoreArray1d()`
2788: when you no longer need access to the array.
2790: Logically Collective
2792: Input Parameters:
2793: + x - the vector
2794: . m - first dimension of two dimensional array
2795: - mstart - first index you will use in first coordinate direction (often 0)
2797: Output Parameter:
2798: . a - location to put pointer to the array
2800: Level: developer
2802: Notes:
2803: For a vector obtained from `DMCreateLocalVector()` `mstart` is likely
2804: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
2805: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`.
2807: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
2809: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
2810: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
2811: `VecGetArray2d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2812: @*/
2813: PetscErrorCode VecGetArray1d(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
2814: {
2815: PetscInt N;
2817: PetscFunctionBegin;
2819: PetscAssertPointer(a, 4);
2821: PetscCall(VecGetLocalSize(x, &N));
2822: PetscCheck(m == N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local array size %" PetscInt_FMT " does not match 1d array dimensions %" PetscInt_FMT, N, m);
2823: PetscCall(VecGetArray(x, a));
2824: *a -= mstart;
2825: PetscFunctionReturn(PETSC_SUCCESS);
2826: }
2828: /*@C
2829: VecGetArray1dWrite - Returns a pointer to a 1d contiguous array that will contain this
2830: processor's portion of the vector data. You MUST call `VecRestoreArray1dWrite()`
2831: when you no longer need access to the array.
2833: Logically Collective
2835: Input Parameters:
2836: + x - the vector
2837: . m - first dimension of two dimensional array
2838: - mstart - first index you will use in first coordinate direction (often 0)
2840: Output Parameter:
2841: . a - location to put pointer to the array
2843: Level: developer
2845: Notes:
2846: For a vector obtained from `DMCreateLocalVector()` `mstart` is likely
2847: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
2848: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`.
2850: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
2852: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
2853: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
2854: `VecGetArray2d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2855: @*/
2856: PetscErrorCode VecGetArray1dWrite(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
2857: {
2858: PetscInt N;
2860: PetscFunctionBegin;
2862: PetscAssertPointer(a, 4);
2864: PetscCall(VecGetLocalSize(x, &N));
2865: PetscCheck(m == N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local array size %" PetscInt_FMT " does not match 1d array dimensions %" PetscInt_FMT, N, m);
2866: PetscCall(VecGetArrayWrite(x, a));
2867: *a -= mstart;
2868: PetscFunctionReturn(PETSC_SUCCESS);
2869: }
2871: /*@C
2872: VecRestoreArray1d - Restores a vector after `VecGetArray1d()` has been called.
2874: Logically Collective
2876: Input Parameters:
2877: + x - the vector
2878: . m - first dimension of two dimensional array
2879: . mstart - first index you will use in first coordinate direction (often 0)
2880: - a - location of pointer to array obtained from `VecGetArray1d()`
2882: Level: developer
2884: Notes:
2885: For regular PETSc vectors this routine does not involve any copies. For
2886: any special vectors that do not store local vector data in a contiguous
2887: array, this routine will copy the data back into the underlying
2888: vector data structure from the array obtained with `VecGetArray1d()`.
2890: This routine actually zeros out the `a` pointer.
2892: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
2893: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
2894: `VecGetArray1d()`, `VecRestoreArray2d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2895: @*/
2896: PetscErrorCode VecRestoreArray1d(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
2897: {
2898: PetscFunctionBegin;
2901: PetscCall(VecRestoreArray(x, NULL));
2902: *a = NULL;
2903: PetscFunctionReturn(PETSC_SUCCESS);
2904: }
2906: /*@C
2907: VecRestoreArray1dWrite - Restores a vector after `VecGetArray1dWrite()` has been called.
2909: Logically Collective
2911: Input Parameters:
2912: + x - the vector
2913: . m - first dimension of two dimensional array
2914: . mstart - first index you will use in first coordinate direction (often 0)
2915: - a - location of pointer to array obtained from `VecGetArray1d()`
2917: Level: developer
2919: Notes:
2920: For regular PETSc vectors this routine does not involve any copies. For
2921: any special vectors that do not store local vector data in a contiguous
2922: array, this routine will copy the data back into the underlying
2923: vector data structure from the array obtained with `VecGetArray1d()`.
2925: This routine actually zeros out the `a` pointer.
2927: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
2928: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
2929: `VecGetArray1d()`, `VecRestoreArray2d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2930: @*/
2931: PetscErrorCode VecRestoreArray1dWrite(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
2932: {
2933: PetscFunctionBegin;
2936: PetscCall(VecRestoreArrayWrite(x, NULL));
2937: *a = NULL;
2938: PetscFunctionReturn(PETSC_SUCCESS);
2939: }
2941: /*@C
2942: VecGetArray3d - Returns a pointer to a 3d contiguous array that contains this
2943: processor's portion of the vector data. You MUST call `VecRestoreArray3d()`
2944: when you no longer need access to the array.
2946: Logically Collective
2948: Input Parameters:
2949: + x - the vector
2950: . m - first dimension of three dimensional array
2951: . n - second dimension of three dimensional array
2952: . p - third dimension of three dimensional array
2953: . mstart - first index you will use in first coordinate direction (often 0)
2954: . nstart - first index in the second coordinate direction (often 0)
2955: - pstart - first index in the third coordinate direction (often 0)
2957: Output Parameter:
2958: . a - location to put pointer to the array
2960: Level: developer
2962: Notes:
2963: For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
2964: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
2965: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
2966: the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.
2968: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
2970: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
2971: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecRestoreArray3d()`,
2972: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
2973: @*/
2974: PetscErrorCode VecGetArray3d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
2975: {
2976: PetscInt i, N, j;
2977: PetscScalar *aa, **b;
2979: PetscFunctionBegin;
2981: PetscAssertPointer(a, 8);
2983: PetscCall(VecGetLocalSize(x, &N));
2984: PetscCheck(m * n * p == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 3d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p);
2985: PetscCall(VecGetArray(x, &aa));
2987: PetscCall(PetscMalloc(m * sizeof(PetscScalar **) + m * n * sizeof(PetscScalar *), a));
2988: b = (PetscScalar **)((*a) + m);
2989: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
2990: for (i = 0; i < m; i++)
2991: for (j = 0; j < n; j++) b[i * n + j] = PetscSafePointerPlusOffset(aa, i * n * p + j * p - pstart);
2992: *a -= mstart;
2993: PetscFunctionReturn(PETSC_SUCCESS);
2994: }
2996: /*@C
2997: VecGetArray3dWrite - Returns a pointer to a 3d contiguous array that will contain this
2998: processor's portion of the vector data. You MUST call `VecRestoreArray3dWrite()`
2999: when you no longer need access to the array.
3001: Logically Collective
3003: Input Parameters:
3004: + x - the vector
3005: . m - first dimension of three dimensional array
3006: . n - second dimension of three dimensional array
3007: . p - third dimension of three dimensional array
3008: . mstart - first index you will use in first coordinate direction (often 0)
3009: . nstart - first index in the second coordinate direction (often 0)
3010: - pstart - first index in the third coordinate direction (often 0)
3012: Output Parameter:
3013: . a - location to put pointer to the array
3015: Level: developer
3017: Notes:
3018: For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3019: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3020: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3021: the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.
3023: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3025: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
3026: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3027: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3028: @*/
3029: PetscErrorCode VecGetArray3dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3030: {
3031: PetscInt i, N, j;
3032: PetscScalar *aa, **b;
3034: PetscFunctionBegin;
3036: PetscAssertPointer(a, 8);
3038: PetscCall(VecGetLocalSize(x, &N));
3039: PetscCheck(m * n * p == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 3d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p);
3040: PetscCall(VecGetArrayWrite(x, &aa));
3042: PetscCall(PetscMalloc(m * sizeof(PetscScalar **) + m * n * sizeof(PetscScalar *), a));
3043: b = (PetscScalar **)((*a) + m);
3044: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3045: for (i = 0; i < m; i++)
3046: for (j = 0; j < n; j++) b[i * n + j] = aa + i * n * p + j * p - pstart;
3048: *a -= mstart;
3049: PetscFunctionReturn(PETSC_SUCCESS);
3050: }
3052: /*@C
3053: VecRestoreArray3d - Restores a vector after `VecGetArray3d()` has been called.
3055: Logically Collective
3057: Input Parameters:
3058: + x - the vector
3059: . m - first dimension of three dimensional array
3060: . n - second dimension of the three dimensional array
3061: . p - third dimension of the three dimensional array
3062: . mstart - first index you will use in first coordinate direction (often 0)
3063: . nstart - first index in the second coordinate direction (often 0)
3064: . pstart - first index in the third coordinate direction (often 0)
3065: - a - location of pointer to array obtained from VecGetArray3d()
3067: Level: developer
3069: Notes:
3070: For regular PETSc vectors this routine does not involve any copies. For
3071: any special vectors that do not store local vector data in a contiguous
3072: array, this routine will copy the data back into the underlying
3073: vector data structure from the array obtained with `VecGetArray()`.
3075: This routine actually zeros out the `a` pointer.
3077: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
3078: `VecGetArray2d()`, `VecGetArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3079: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3080: @*/
3081: PetscErrorCode VecRestoreArray3d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3082: {
3083: void *dummy;
3085: PetscFunctionBegin;
3087: PetscAssertPointer(a, 8);
3089: dummy = (void *)(*a + mstart);
3090: PetscCall(PetscFree(dummy));
3091: PetscCall(VecRestoreArray(x, NULL));
3092: *a = NULL;
3093: PetscFunctionReturn(PETSC_SUCCESS);
3094: }
3096: /*@C
3097: VecRestoreArray3dWrite - Restores a vector after `VecGetArray3dWrite()` has been called.
3099: Logically Collective
3101: Input Parameters:
3102: + x - the vector
3103: . m - first dimension of three dimensional array
3104: . n - second dimension of the three dimensional array
3105: . p - third dimension of the three dimensional array
3106: . mstart - first index you will use in first coordinate direction (often 0)
3107: . nstart - first index in the second coordinate direction (often 0)
3108: . pstart - first index in the third coordinate direction (often 0)
3109: - a - location of pointer to array obtained from VecGetArray3d()
3111: Level: developer
3113: Notes:
3114: For regular PETSc vectors this routine does not involve any copies. For
3115: any special vectors that do not store local vector data in a contiguous
3116: array, this routine will copy the data back into the underlying
3117: vector data structure from the array obtained with `VecGetArray()`.
3119: This routine actually zeros out the `a` pointer.
3121: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
3122: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3123: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3124: @*/
3125: PetscErrorCode VecRestoreArray3dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3126: {
3127: void *dummy;
3129: PetscFunctionBegin;
3131: PetscAssertPointer(a, 8);
3133: dummy = (void *)(*a + mstart);
3134: PetscCall(PetscFree(dummy));
3135: PetscCall(VecRestoreArrayWrite(x, NULL));
3136: *a = NULL;
3137: PetscFunctionReturn(PETSC_SUCCESS);
3138: }
3140: /*@C
3141: VecGetArray4d - Returns a pointer to a 4d contiguous array that contains this
3142: processor's portion of the vector data. You MUST call `VecRestoreArray4d()`
3143: when you no longer need access to the array.
3145: Logically Collective
3147: Input Parameters:
3148: + x - the vector
3149: . m - first dimension of four dimensional array
3150: . n - second dimension of four dimensional array
3151: . p - third dimension of four dimensional array
3152: . q - fourth dimension of four dimensional array
3153: . mstart - first index you will use in first coordinate direction (often 0)
3154: . nstart - first index in the second coordinate direction (often 0)
3155: . pstart - first index in the third coordinate direction (often 0)
3156: - qstart - first index in the fourth coordinate direction (often 0)
3158: Output Parameter:
3159: . a - location to put pointer to the array
3161: Level: developer
3163: Notes:
3164: For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3165: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3166: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3167: the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.
3169: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3171: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
3172: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3173: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecRestoreArray4d()`
3174: @*/
3175: PetscErrorCode VecGetArray4d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3176: {
3177: PetscInt i, N, j, k;
3178: PetscScalar *aa, ***b, **c;
3180: PetscFunctionBegin;
3182: PetscAssertPointer(a, 10);
3184: PetscCall(VecGetLocalSize(x, &N));
3185: PetscCheck(m * n * p * q == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 4d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p, q);
3186: PetscCall(VecGetArray(x, &aa));
3188: PetscCall(PetscMalloc(m * sizeof(PetscScalar ***) + m * n * sizeof(PetscScalar **) + m * n * p * sizeof(PetscScalar *), a));
3189: b = (PetscScalar ***)((*a) + m);
3190: c = (PetscScalar **)(b + m * n);
3191: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3192: for (i = 0; i < m; i++)
3193: for (j = 0; j < n; j++) b[i * n + j] = c + i * n * p + j * p - pstart;
3194: for (i = 0; i < m; i++)
3195: for (j = 0; j < n; j++)
3196: for (k = 0; k < p; k++) c[i * n * p + j * p + k] = aa + i * n * p * q + j * p * q + k * q - qstart;
3197: *a -= mstart;
3198: PetscFunctionReturn(PETSC_SUCCESS);
3199: }
3201: /*@C
3202: VecGetArray4dWrite - Returns a pointer to a 4d contiguous array that will contain this
3203: processor's portion of the vector data. You MUST call `VecRestoreArray4dWrite()`
3204: when you no longer need access to the array.
3206: Logically Collective
3208: Input Parameters:
3209: + x - the vector
3210: . m - first dimension of four dimensional array
3211: . n - second dimension of four dimensional array
3212: . p - third dimension of four dimensional array
3213: . q - fourth dimension of four dimensional array
3214: . mstart - first index you will use in first coordinate direction (often 0)
3215: . nstart - first index in the second coordinate direction (often 0)
3216: . pstart - first index in the third coordinate direction (often 0)
3217: - qstart - first index in the fourth coordinate direction (often 0)
3219: Output Parameter:
3220: . a - location to put pointer to the array
3222: Level: developer
3224: Notes:
3225: For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3226: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3227: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3228: the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.
3230: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3232: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
3233: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3234: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3235: @*/
3236: PetscErrorCode VecGetArray4dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3237: {
3238: PetscInt i, N, j, k;
3239: PetscScalar *aa, ***b, **c;
3241: PetscFunctionBegin;
3243: PetscAssertPointer(a, 10);
3245: PetscCall(VecGetLocalSize(x, &N));
3246: PetscCheck(m * n * p * q == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 4d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p, q);
3247: PetscCall(VecGetArrayWrite(x, &aa));
3249: PetscCall(PetscMalloc(m * sizeof(PetscScalar ***) + m * n * sizeof(PetscScalar **) + m * n * p * sizeof(PetscScalar *), a));
3250: b = (PetscScalar ***)((*a) + m);
3251: c = (PetscScalar **)(b + m * n);
3252: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3253: for (i = 0; i < m; i++)
3254: for (j = 0; j < n; j++) b[i * n + j] = c + i * n * p + j * p - pstart;
3255: for (i = 0; i < m; i++)
3256: for (j = 0; j < n; j++)
3257: for (k = 0; k < p; k++) c[i * n * p + j * p + k] = aa + i * n * p * q + j * p * q + k * q - qstart;
3258: *a -= mstart;
3259: PetscFunctionReturn(PETSC_SUCCESS);
3260: }
3262: /*@C
3263: VecRestoreArray4d - Restores a vector after `VecGetArray4d()` has been called.
3265: Logically Collective
3267: Input Parameters:
3268: + x - the vector
3269: . m - first dimension of four dimensional array
3270: . n - second dimension of the four dimensional array
3271: . p - third dimension of the four dimensional array
3272: . q - fourth dimension of the four dimensional array
3273: . mstart - first index you will use in first coordinate direction (often 0)
3274: . nstart - first index in the second coordinate direction (often 0)
3275: . pstart - first index in the third coordinate direction (often 0)
3276: . qstart - first index in the fourth coordinate direction (often 0)
3277: - a - location of pointer to array obtained from VecGetArray4d()
3279: Level: developer
3281: Notes:
3282: For regular PETSc vectors this routine does not involve any copies. For
3283: any special vectors that do not store local vector data in a contiguous
3284: array, this routine will copy the data back into the underlying
3285: vector data structure from the array obtained with `VecGetArray()`.
3287: This routine actually zeros out the `a` pointer.
3289: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
3290: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3291: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`
3292: @*/
3293: PetscErrorCode VecRestoreArray4d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3294: {
3295: void *dummy;
3297: PetscFunctionBegin;
3299: PetscAssertPointer(a, 10);
3301: dummy = (void *)(*a + mstart);
3302: PetscCall(PetscFree(dummy));
3303: PetscCall(VecRestoreArray(x, NULL));
3304: *a = NULL;
3305: PetscFunctionReturn(PETSC_SUCCESS);
3306: }
3308: /*@C
3309: VecRestoreArray4dWrite - Restores a vector after `VecGetArray4dWrite()` has been called.
3311: Logically Collective
3313: Input Parameters:
3314: + x - the vector
3315: . m - first dimension of four dimensional array
3316: . n - second dimension of the four dimensional array
3317: . p - third dimension of the four dimensional array
3318: . q - fourth dimension of the four dimensional array
3319: . mstart - first index you will use in first coordinate direction (often 0)
3320: . nstart - first index in the second coordinate direction (often 0)
3321: . pstart - first index in the third coordinate direction (often 0)
3322: . qstart - first index in the fourth coordinate direction (often 0)
3323: - a - location of pointer to array obtained from `VecGetArray4d()`
3325: Level: developer
3327: Notes:
3328: For regular PETSc vectors this routine does not involve any copies. For
3329: any special vectors that do not store local vector data in a contiguous
3330: array, this routine will copy the data back into the underlying
3331: vector data structure from the array obtained with `VecGetArray()`.
3333: This routine actually zeros out the `a` pointer.
3335: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
3336: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3337: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3338: @*/
3339: PetscErrorCode VecRestoreArray4dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3340: {
3341: void *dummy;
3343: PetscFunctionBegin;
3345: PetscAssertPointer(a, 10);
3347: dummy = (void *)(*a + mstart);
3348: PetscCall(PetscFree(dummy));
3349: PetscCall(VecRestoreArrayWrite(x, NULL));
3350: *a = NULL;
3351: PetscFunctionReturn(PETSC_SUCCESS);
3352: }
3354: /*@C
3355: VecGetArray2dRead - Returns a pointer to a 2d contiguous array that contains this
3356: processor's portion of the vector data. You MUST call `VecRestoreArray2dRead()`
3357: when you no longer need access to the array.
3359: Logically Collective
3361: Input Parameters:
3362: + x - the vector
3363: . m - first dimension of two dimensional array
3364: . n - second dimension of two dimensional array
3365: . mstart - first index you will use in first coordinate direction (often 0)
3366: - nstart - first index in the second coordinate direction (often 0)
3368: Output Parameter:
3369: . a - location to put pointer to the array
3371: Level: developer
3373: Notes:
3374: For a vector obtained from `DMCreateLocalVector()` `mstart` and `nstart` are likely
3375: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3376: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3377: the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray2d()`.
3379: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3381: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
3382: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3383: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3384: @*/
3385: PetscErrorCode VecGetArray2dRead(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3386: {
3387: PetscInt i, N;
3388: const PetscScalar *aa;
3390: PetscFunctionBegin;
3392: PetscAssertPointer(a, 6);
3394: PetscCall(VecGetLocalSize(x, &N));
3395: PetscCheck(m * n == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 2d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n);
3396: PetscCall(VecGetArrayRead(x, &aa));
3398: PetscCall(PetscMalloc1(m, a));
3399: for (i = 0; i < m; i++) (*a)[i] = (PetscScalar *)aa + i * n - nstart;
3400: *a -= mstart;
3401: PetscFunctionReturn(PETSC_SUCCESS);
3402: }
3404: /*@C
3405: VecRestoreArray2dRead - Restores a vector after `VecGetArray2dRead()` has been called.
3407: Logically Collective
3409: Input Parameters:
3410: + x - the vector
3411: . m - first dimension of two dimensional array
3412: . n - second dimension of the two dimensional array
3413: . mstart - first index you will use in first coordinate direction (often 0)
3414: . nstart - first index in the second coordinate direction (often 0)
3415: - a - location of pointer to array obtained from VecGetArray2d()
3417: Level: developer
3419: Notes:
3420: For regular PETSc vectors this routine does not involve any copies. For
3421: any special vectors that do not store local vector data in a contiguous
3422: array, this routine will copy the data back into the underlying
3423: vector data structure from the array obtained with `VecGetArray()`.
3425: This routine actually zeros out the `a` pointer.
3427: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
3428: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3429: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3430: @*/
3431: PetscErrorCode VecRestoreArray2dRead(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3432: {
3433: void *dummy;
3435: PetscFunctionBegin;
3437: PetscAssertPointer(a, 6);
3439: dummy = (void *)(*a + mstart);
3440: PetscCall(PetscFree(dummy));
3441: PetscCall(VecRestoreArrayRead(x, NULL));
3442: *a = NULL;
3443: PetscFunctionReturn(PETSC_SUCCESS);
3444: }
3446: /*@C
3447: VecGetArray1dRead - Returns a pointer to a 1d contiguous array that contains this
3448: processor's portion of the vector data. You MUST call `VecRestoreArray1dRead()`
3449: when you no longer need access to the array.
3451: Logically Collective
3453: Input Parameters:
3454: + x - the vector
3455: . m - first dimension of two dimensional array
3456: - mstart - first index you will use in first coordinate direction (often 0)
3458: Output Parameter:
3459: . a - location to put pointer to the array
3461: Level: developer
3463: Notes:
3464: For a vector obtained from `DMCreateLocalVector()` `mstart` is likely
3465: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3466: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`.
3468: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3470: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
3471: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3472: `VecGetArray2d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3473: @*/
3474: PetscErrorCode VecGetArray1dRead(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3475: {
3476: PetscInt N;
3478: PetscFunctionBegin;
3480: PetscAssertPointer(a, 4);
3482: PetscCall(VecGetLocalSize(x, &N));
3483: PetscCheck(m == N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local array size %" PetscInt_FMT " does not match 1d array dimensions %" PetscInt_FMT, N, m);
3484: PetscCall(VecGetArrayRead(x, (const PetscScalar **)a));
3485: *a -= mstart;
3486: PetscFunctionReturn(PETSC_SUCCESS);
3487: }
3489: /*@C
3490: VecRestoreArray1dRead - Restores a vector after `VecGetArray1dRead()` has been called.
3492: Logically Collective
3494: Input Parameters:
3495: + x - the vector
3496: . m - first dimension of two dimensional array
3497: . mstart - first index you will use in first coordinate direction (often 0)
3498: - a - location of pointer to array obtained from `VecGetArray1dRead()`
3500: Level: developer
3502: Notes:
3503: For regular PETSc vectors this routine does not involve any copies. For
3504: any special vectors that do not store local vector data in a contiguous
3505: array, this routine will copy the data back into the underlying
3506: vector data structure from the array obtained with `VecGetArray1dRead()`.
3508: This routine actually zeros out the `a` pointer.
3510: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
3511: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3512: `VecGetArray1d()`, `VecRestoreArray2d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3513: @*/
3514: PetscErrorCode VecRestoreArray1dRead(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3515: {
3516: PetscFunctionBegin;
3519: PetscCall(VecRestoreArrayRead(x, NULL));
3520: *a = NULL;
3521: PetscFunctionReturn(PETSC_SUCCESS);
3522: }
3524: /*@C
3525: VecGetArray3dRead - Returns a pointer to a 3d contiguous array that contains this
3526: processor's portion of the vector data. You MUST call `VecRestoreArray3dRead()`
3527: when you no longer need access to the array.
3529: Logically Collective
3531: Input Parameters:
3532: + x - the vector
3533: . m - first dimension of three dimensional array
3534: . n - second dimension of three dimensional array
3535: . p - third dimension of three dimensional array
3536: . mstart - first index you will use in first coordinate direction (often 0)
3537: . nstart - first index in the second coordinate direction (often 0)
3538: - pstart - first index in the third coordinate direction (often 0)
3540: Output Parameter:
3541: . a - location to put pointer to the array
3543: Level: developer
3545: Notes:
3546: For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3547: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3548: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3549: the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3dRead()`.
3551: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3553: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
3554: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3555: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3556: @*/
3557: PetscErrorCode VecGetArray3dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3558: {
3559: PetscInt i, N, j;
3560: const PetscScalar *aa;
3561: PetscScalar **b;
3563: PetscFunctionBegin;
3565: PetscAssertPointer(a, 8);
3567: PetscCall(VecGetLocalSize(x, &N));
3568: PetscCheck(m * n * p == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 3d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p);
3569: PetscCall(VecGetArrayRead(x, &aa));
3571: PetscCall(PetscMalloc(m * sizeof(PetscScalar **) + m * n * sizeof(PetscScalar *), a));
3572: b = (PetscScalar **)((*a) + m);
3573: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3574: for (i = 0; i < m; i++)
3575: for (j = 0; j < n; j++) b[i * n + j] = PetscSafePointerPlusOffset((PetscScalar *)aa, i * n * p + j * p - pstart);
3576: *a -= mstart;
3577: PetscFunctionReturn(PETSC_SUCCESS);
3578: }
3580: /*@C
3581: VecRestoreArray3dRead - Restores a vector after `VecGetArray3dRead()` has been called.
3583: Logically Collective
3585: Input Parameters:
3586: + x - the vector
3587: . m - first dimension of three dimensional array
3588: . n - second dimension of the three dimensional array
3589: . p - third dimension of the three dimensional array
3590: . mstart - first index you will use in first coordinate direction (often 0)
3591: . nstart - first index in the second coordinate direction (often 0)
3592: . pstart - first index in the third coordinate direction (often 0)
3593: - a - location of pointer to array obtained from `VecGetArray3dRead()`
3595: Level: developer
3597: Notes:
3598: For regular PETSc vectors this routine does not involve any copies. For
3599: any special vectors that do not store local vector data in a contiguous
3600: array, this routine will copy the data back into the underlying
3601: vector data structure from the array obtained with `VecGetArray()`.
3603: This routine actually zeros out the `a` pointer.
3605: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
3606: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3607: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3608: @*/
3609: PetscErrorCode VecRestoreArray3dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3610: {
3611: void *dummy;
3613: PetscFunctionBegin;
3615: PetscAssertPointer(a, 8);
3617: dummy = (void *)(*a + mstart);
3618: PetscCall(PetscFree(dummy));
3619: PetscCall(VecRestoreArrayRead(x, NULL));
3620: *a = NULL;
3621: PetscFunctionReturn(PETSC_SUCCESS);
3622: }
3624: /*@C
3625: VecGetArray4dRead - Returns a pointer to a 4d contiguous array that contains this
3626: processor's portion of the vector data. You MUST call `VecRestoreArray4dRead()`
3627: when you no longer need access to the array.
3629: Logically Collective
3631: Input Parameters:
3632: + x - the vector
3633: . m - first dimension of four dimensional array
3634: . n - second dimension of four dimensional array
3635: . p - third dimension of four dimensional array
3636: . q - fourth dimension of four dimensional array
3637: . mstart - first index you will use in first coordinate direction (often 0)
3638: . nstart - first index in the second coordinate direction (often 0)
3639: . pstart - first index in the third coordinate direction (often 0)
3640: - qstart - first index in the fourth coordinate direction (often 0)
3642: Output Parameter:
3643: . a - location to put pointer to the array
3645: Level: beginner
3647: Notes:
3648: For a vector obtained from `DMCreateLocalVector()` `mstart`, `nstart`, and `pstart` are likely
3649: obtained from the corner indices obtained from `DMDAGetGhostCorners()` while for
3650: `DMCreateGlobalVector()` they are the corner indices from `DMDAGetCorners()`. In both cases
3651: the arguments from `DMDAGet[Ghost]Corners()` are reversed in the call to `VecGetArray3d()`.
3653: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3655: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecPlaceArray()`,
3656: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3657: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3658: @*/
3659: PetscErrorCode VecGetArray4dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3660: {
3661: PetscInt i, N, j, k;
3662: const PetscScalar *aa;
3663: PetscScalar ***b, **c;
3665: PetscFunctionBegin;
3667: PetscAssertPointer(a, 10);
3669: PetscCall(VecGetLocalSize(x, &N));
3670: PetscCheck(m * n * p * q == N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local array size %" PetscInt_FMT " does not match 4d array dimensions %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT " by %" PetscInt_FMT, N, m, n, p, q);
3671: PetscCall(VecGetArrayRead(x, &aa));
3673: PetscCall(PetscMalloc(m * sizeof(PetscScalar ***) + m * n * sizeof(PetscScalar **) + m * n * p * sizeof(PetscScalar *), a));
3674: b = (PetscScalar ***)((*a) + m);
3675: c = (PetscScalar **)(b + m * n);
3676: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3677: for (i = 0; i < m; i++)
3678: for (j = 0; j < n; j++) b[i * n + j] = c + i * n * p + j * p - pstart;
3679: for (i = 0; i < m; i++)
3680: for (j = 0; j < n; j++)
3681: for (k = 0; k < p; k++) c[i * n * p + j * p + k] = (PetscScalar *)aa + i * n * p * q + j * p * q + k * q - qstart;
3682: *a -= mstart;
3683: PetscFunctionReturn(PETSC_SUCCESS);
3684: }
3686: /*@C
3687: VecRestoreArray4dRead - Restores a vector after `VecGetArray4d()` has been called.
3689: Logically Collective
3691: Input Parameters:
3692: + x - the vector
3693: . m - first dimension of four dimensional array
3694: . n - second dimension of the four dimensional array
3695: . p - third dimension of the four dimensional array
3696: . q - fourth dimension of the four dimensional array
3697: . mstart - first index you will use in first coordinate direction (often 0)
3698: . nstart - first index in the second coordinate direction (often 0)
3699: . pstart - first index in the third coordinate direction (often 0)
3700: . qstart - first index in the fourth coordinate direction (often 0)
3701: - a - location of pointer to array obtained from `VecGetArray4dRead()`
3703: Level: beginner
3705: Notes:
3706: For regular PETSc vectors this routine does not involve any copies. For
3707: any special vectors that do not store local vector data in a contiguous
3708: array, this routine will copy the data back into the underlying
3709: vector data structure from the array obtained with `VecGetArray()`.
3711: This routine actually zeros out the `a` pointer.
3713: .seealso: [](ch_vectors), `Vec`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecPlaceArray()`,
3714: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3715: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3716: @*/
3717: PetscErrorCode VecRestoreArray4dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3718: {
3719: void *dummy;
3721: PetscFunctionBegin;
3723: PetscAssertPointer(a, 10);
3725: dummy = (void *)(*a + mstart);
3726: PetscCall(PetscFree(dummy));
3727: PetscCall(VecRestoreArrayRead(x, NULL));
3728: *a = NULL;
3729: PetscFunctionReturn(PETSC_SUCCESS);
3730: }
3732: /*@
3733: VecLockGet - Get the current lock status of a vector
3735: Logically Collective
3737: Input Parameter:
3738: . x - the vector
3740: Output Parameter:
3741: . state - greater than zero indicates the vector is locked for read; less than zero indicates the vector is
3742: locked for write; equal to zero means the vector is unlocked, that is, it is free to read or write.
3744: Level: advanced
3746: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPush()`, `VecLockReadPop()`
3747: @*/
3748: PetscErrorCode VecLockGet(Vec x, PetscInt *state)
3749: {
3750: PetscFunctionBegin;
3752: PetscAssertPointer(state, 2);
3753: *state = x->lock;
3754: PetscFunctionReturn(PETSC_SUCCESS);
3755: }
3757: PetscErrorCode VecLockGetLocation(Vec x, const char *file[], const char *func[], int *line)
3758: {
3759: PetscFunctionBegin;
3761: PetscAssertPointer(file, 2);
3762: PetscAssertPointer(func, 3);
3763: PetscAssertPointer(line, 4);
3764: #if PetscDefined(USE_DEBUG) && !PetscDefined(HAVE_THREADSAFETY)
3765: {
3766: const int index = x->lockstack.currentsize - 1;
3768: *file = index < 0 ? NULL : x->lockstack.file[index];
3769: *func = index < 0 ? NULL : x->lockstack.function[index];
3770: *line = index < 0 ? 0 : x->lockstack.line[index];
3771: }
3772: #else
3773: *file = NULL;
3774: *func = NULL;
3775: *line = 0;
3776: #endif
3777: PetscFunctionReturn(PETSC_SUCCESS);
3778: }
3780: /*@
3781: VecLockReadPush - Push a read-only lock on a vector to prevent it from being written to
3783: Logically Collective
3785: Input Parameter:
3786: . x - the vector
3788: Level: intermediate
3790: Notes:
3791: If this is set then calls to `VecGetArray()` or `VecSetValues()` or any other routines that change the vectors values will generate an error.
3793: The call can be nested, i.e., called multiple times on the same vector, but each `VecLockReadPush()` has to have one matching
3794: `VecLockReadPop()`, which removes the latest read-only lock.
3796: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPop()`, `VecLockGet()`
3797: @*/
3798: PetscErrorCode VecLockReadPush(Vec x)
3799: {
3800: PetscFunctionBegin;
3802: PetscCheck(x->lock++ >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector is already locked for exclusive write access but you want to read it");
3803: #if PetscDefined(USE_DEBUG) && !PetscDefined(HAVE_THREADSAFETY)
3804: {
3805: const char *file, *func;
3806: int index, line;
3808: if ((index = petscstack.currentsize - 2) < 0) {
3809: // vec was locked "outside" of petsc, either in user-land or main. the error message will
3810: // now show this function as the culprit, but it will include the stacktrace
3811: file = "unknown user-file";
3812: func = "unknown_user_function";
3813: line = 0;
3814: } else {
3815: file = petscstack.file[index];
3816: func = petscstack.function[index];
3817: line = petscstack.line[index];
3818: }
3819: PetscStackPush_Private(x->lockstack, file, func, line, petscstack.petscroutine[index], PETSC_FALSE);
3820: }
3821: #endif
3822: PetscFunctionReturn(PETSC_SUCCESS);
3823: }
3825: /*@
3826: VecLockReadPop - Pop a read-only lock from a vector
3828: Logically Collective
3830: Input Parameter:
3831: . x - the vector
3833: Level: intermediate
3835: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPush()`, `VecLockGet()`
3836: @*/
3837: PetscErrorCode VecLockReadPop(Vec x)
3838: {
3839: PetscFunctionBegin;
3841: PetscCheck(--x->lock >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector has been unlocked from read-only access too many times");
3842: #if PetscDefined(USE_DEBUG) && !PetscDefined(HAVE_THREADSAFETY)
3843: {
3844: const char *previous = x->lockstack.function[x->lockstack.currentsize - 1];
3846: PetscStackPop_Private(x->lockstack, previous);
3847: }
3848: #endif
3849: PetscFunctionReturn(PETSC_SUCCESS);
3850: }
3852: /*@
3853: VecLockWriteSet - Lock or unlock a vector for exclusive read/write access
3855: Logically Collective
3857: Input Parameters:
3858: + x - the vector
3859: - flg - `PETSC_TRUE` to lock the vector for exclusive read/write access; `PETSC_FALSE` to unlock it.
3861: Level: intermediate
3863: Notes:
3864: The function is useful in split-phase computations, which usually have a begin phase and an end phase.
3865: One can call `VecLockWriteSet`(x,`PETSC_TRUE`) in the begin phase to lock a vector for exclusive
3866: access, and call `VecLockWriteSet`(x,`PETSC_FALSE`) in the end phase to unlock the vector from exclusive
3867: access. In this way, one is ensured no other operations can access the vector in between. The code may like
3869: .vb
3870: VecGetArray(x,&xdata); // begin phase
3871: VecLockWriteSet(v,PETSC_TRUE);
3873: Other operations, which can not access x anymore (they can access xdata, of course)
3875: VecRestoreArray(x,&vdata); // end phase
3876: VecLockWriteSet(v,PETSC_FALSE);
3877: .ve
3879: The call can not be nested on the same vector, in other words, one can not call `VecLockWriteSet`(x,`PETSC_TRUE`)
3880: again before calling `VecLockWriteSet`(v,`PETSC_FALSE`).
3882: .seealso: [](ch_vectors), `Vec`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPush()`, `VecLockReadPop()`, `VecLockGet()`
3883: @*/
3884: PetscErrorCode VecLockWriteSet(Vec x, PetscBool flg)
3885: {
3886: PetscFunctionBegin;
3888: if (flg) {
3889: PetscCheck(x->lock <= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector is already locked for read-only access but you want to write it");
3890: PetscCheck(x->lock >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector is already locked for exclusive write access but you want to write it");
3891: x->lock = -1;
3892: } else {
3893: PetscCheck(x->lock == -1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Vector is not locked for exclusive write access but you want to unlock it from that");
3894: x->lock = 0;
3895: }
3896: PetscFunctionReturn(PETSC_SUCCESS);
3897: }